414,137 research outputs found

    Using 3D Voronoi grids in radiative transfer simulations

    Get PDF
    Probing the structure of complex astrophysical objects requires effective three-dimensional (3D) numerical simulation of the relevant radiative transfer (RT) processes. As with any numerical simulation code, the choice of an appropriate discretization is crucial. Adaptive grids with cuboidal cells such as octrees have proven very popular, however several recently introduced hydrodynamical and RT codes are based on a Voronoi tessellation of the spatial domain. Such an unstructured grid poses new challenges in laying down the rays (straight paths) needed in RT codes. We show that it is straightforward to implement accurate and efficient RT on 3D Voronoi grids. We present a method for computing straight paths between two arbitrary points through a 3D Voronoi grid in the context of a RT code. We implement such a grid in our RT code SKIRT, using the open source library Voro++ to obtain the relevant properties of the Voronoi grid cells based solely on the generating points. We compare the results obtained through the Voronoi grid with those generated by an octree grid for two synthetic models, and we perform the well-known Pascucci RT benchmark using the Voronoi grid. The presented algorithm produces correct results for our test models. Shooting photon packages through the geometrically much more complex 3D Voronoi grid is only about three times slower than the equivalent process in an octree grid with the same number of cells, while in fact the total number of Voronoi grid cells may be lower for an equally good representation of the density field. We conclude that the benefits of using a Voronoi grid in RT simulation codes will often outweigh the somewhat slower performance.Comment: 9 pages, 7 figures, accepted by A

    Grid Cells Form a Global Representation of Connected Environments.

    Get PDF
    The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5-8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such asĀ boundaries can distort [9-11] and fragment [12] gridĀ patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation

    Grid Cell Hexagonal Patterns Formed by Fast Self-Organized Learning within Entorhinal Cortex

    Full text link
    Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. How these hexagonal patterns arise has excited intense interest. It has previously been shown how a selforganizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? A neural model is proposed that converts path integration signals into hexagonal grid cell patterns of multiple scales. This GRID model creates only grid cell patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support a unified computational framework for explaining how entorhinal-hippocampal interactions support spatial navigation.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of Defense Advanced Research Projects Agency (HR00ll-09-3-0001, HR0011-09-C-0011

    Stable boundary conditions for Cartesian grid calculations

    Get PDF
    The inviscid Euler equations in complicated geometries are solved using a Cartesian grid. This requires solid wall boundary conditions in the irregular grid cells near the boundary. Since these cells may be orders of magnitude smaller than the regular grid cells, stability is a primary concern. An approach to this problem is presented and its use is illustrated
    • ā€¦
    corecore