
A&A 560, A35 (2013)
DOI: 10.1051/0004-6361/201322281
c© ESO 2013

Astronomy
&

Astrophysics

Using 3D Voronoi grids in radiative transfer simulations
P. Camps, M. Baes, and W. Saftly

Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, 9000 Gent, Belgium
e-mail: peter.camps@ugent.be

Received 15 July 2013 / Accepted 5 October 2013

ABSTRACT

Context. Probing the structure of complex astrophysical objects requires effective three-dimensional (3D) numerical simulation of the
relevant radiative transfer (RT) processes. As with any numerical simulation code, the choice of an appropriate discretization is crucial.
Adaptive grids with cuboidal cells such as octrees have proven very popular; however, several recently introduced hydrodynamical
and RT codes are based on a Voronoi tessellation of the spatial domain. An unstructured grid of this nature poses new challenges in
laying down the rays (straight paths) needed in RT codes.
Aims. We show that it is straightforward to implement accurate and efficient RT on 3D Voronoi grids.
Methods. We present a method for computing straight paths between two arbitrary points through a 3D Voronoi grid in the context
of a RT code. We implement this grid in our RT code SKIRT, using the open source library Voro++ to obtain the relevant properties
of the Voronoi grid cells based solely on the generating points. We compare the results obtained through the Voronoi grid with those
generated by an octree grid for two synthetic models, and we perform the well-known Pascucci RT benchmark using the Voronoi grid.
Results. The presented algorithm produces correct results for our test models. Shooting photon packages through the geometrically
much more complex 3D Voronoi grid is only about three times slower than the equivalent process in an octree grid with the same
number of cells, while in fact the total number of Voronoi grid cells may be lower for an equally good representation of the density
field.
Conclusions. The benefits of using a Voronoi grid in RT simulation codes will often outweigh the somewhat slower performance.

Key words. hydrodynamics – radiative transfer – methods: numerical

1. Introduction

The radiation observed from most astrophysical systems has
been substantially affected by the gas and/or dust residing in
or in front of the system under study. Many of these systems
have a complicated three-dimensional (3D) geometry, for ex-
ample arm structures in spiral galaxies (Misiriotis et al. 2000;
Fritz et al. 2012), filaments and clumps in star-forming regions
(Goldsmith et al. 2008; Paron et al. 2013; Fallscheer et al. 2013),
and bow-shocks around evolved stars (Decin et al. 2012; Wang
et al. 2013). Properly probing the structure of these systems re-
quires a 3D numerical treatment of the relevant radiative trans-
fer (RT) processes (Disney et al. 1989; Witt et al. 1992; Baes
& Dejonghe 2001), which may include dust, line, ionizing UV,
Lyα, neutron, and neutrino RT.

Because of the complexities involved in multiple anisotropic
scattering, absorption, and reemission, the full RT problem
is highly nonlocal and nonlinear. It is not feasible to di-
rectly integrate the equations in three dimensions except
for the simplest problems. Consequently virtually all mod-
ern RT codes use ray tracing or Monte Carlo techniques
(Gordon et al. 2001; Ciardi et al. 2001; Kurosawa & Hillier
2001; Juvela & Padoan 2003; Wolf 2003; Stamatellos &
Whitworth 2003; Bethell et al. 2004; Harries et al. 2004;
Wood et al. 2004; Doty et al. 2005; Ercolano et al. 2005;
Niccolini & Alcolea 2006; Jonsson 2006; Pinte et al. 2006;
Verhamme et al. 2006; Tasitsiomi 2006; Steinacker et al. 2006;
Bianchi 2008; Laursen et al. 2009; Baes et al. 2011; Robitaille
2011; Heymann & Siebenmorgen 2012; Abdikamalov et al.
2012; Lunttila & Juvela 2012; Steinacker et al. 2013). In addition

to their intrinsic 3D nature, these techniques allow the inclu-
sion of, for example, a clumpy medium (Witt & Gordon 1996,
2000; Bianchi et al. 2000; Doty et al. 2005; Stalevski et al. 2012;
Schechtman-Rook et al. 2012), polarization (Code & Whitney
1995; Goosmann & Gaskell 2007), or kinematical informa-
tion (Matthews & Wood 2001; Baes & Dejonghe 2002; Baes
et al. 2003). Recent RT applications explicitly using 3D include
models of young stellar objects (Wolf et al. 1998), protostellar
to protoplanetary disks (Indebetouw et al. 2006; Niccolini &
Alcolea 2006), reflection nebulae (Witt & Gordon 1996), molec-
ular clouds (Pelkonen et al. 2009; Steinacker et al. 2005), spiral
galaxies (Bianchi 2008; Schechtman-Rook et al. 2012; De Looze
et al. 2012a), interacting and starburst galaxies (Chakrabarti
et al. 2007; Hayward et al. 2011), and active galactic nuclei
(Schartmann et al. 2008; Stalevski et al. 2012).

For the purpose of numerical computation, the domain un-
der study must be discretized. Since memory requirements and
computation time rapidly increase with the number of grid cells,
modern 3D RT codes employ an adaptive grid, placing more and
smaller cells in areas that require a higher resolution. Starting
from a cuboidal root cell that spans the complete spatial do-
main, an adaptive mesh refinement (AMR) scheme recursively
subdivides each cell into k × l × m cuboidal subcells until the
required resolution is reached. In the special case of an octree,
k = l = m = 2 so that each cell is subdivided into eight sub-
cells (hence the name of the data structure). Adaptive-mesh grids
and especially octree grids are well established (Kurosawa &
Hillier 2001; Steinacker et al. 2002; Wolf 2003; Harries et al.
2004; Niccolini & Alcolea 2006; Jonsson 2006; Bianchi 2008;
Laursen et al. 2009; Robitaille 2011; Lunttila & Juvela 2012;

Article published by EDP Sciences A35, page 1 of 9

http://dx.doi.org/10.1051/0004-6361/201322281
http://www.aanda.org
http://www.edpsciences.org

A&A 560, A35 (2013)

Fig. 1. A Voronoi tessellation for 400 random sites (in gray), bounded
by a cube. Voronoi cell edges are shown in red, Delaunay edges in blue.

Heymann & Siebenmorgen 2012; Saftly et al. 2013) and several
methods have been investigated to make them as efficient as pos-
sible (Saftly et al. 2013).

Adaptive-mesh grids seem to be an obvious choice. It is
straightforward to construct an appropriate grid for any density
field, whether defined by an analytical model or by a collec-
tion of smoothed particles; and it is easy to calculate a straight
path through the grid, since the boundaries of the cuboidal cells
are lined up with the coordinate axes and each cell has a lim-
ited number of neighbors (Saftly et al. 2013). This second point
is very important in the context of RT because ray tracing and
Monte Carlo RT codes determine the radiation field in each grid
cell by laying down random rays (i.e., straight paths) through the
domain. The simulation run time is often dominated by the por-
tion of the code that identifies the grid cells crossed by each path
and calculates the lengths of the corresponding path segments.

Adaptive-mesh grids also have drawbacks. First of all, for a
given density field and required resolution, an AMR grid may
not be the kind of grid with the least number of cells. To illus-
trate this, consider a density field defined by a set of smoothed
particles. An octree grid constructed such that each cell encloses
at most one particle usually has over three times more cells than
there are particles; i.e., two out of three cells are empty1. In con-
trast, an unstructured grid based on a Voronoi tessellation of the
spatial domain (see Sect. 2.1 and Fig. 1), using the given particles
as generating sites, has exactly the same number of cells as there
are particles. While not an issue in many situations, minimiz-
ing the number of cells is sometimes crucial. For example, con-
sider a panchromatic RT simulation involving small dust grains
not in local thermodynamic equilibrium (non-LTE) conditions.
Because each cell stores radiation field data per wavelength bin,
memory requirements are substantial. Moreover, the simulation
run time is most likely dominated by the calculation of the non-
LTE heating and re-emission of the dust grains in each cell. In

1 To verify this claim, we ran a few tests with particles distributed uni-
formly over the spatial domain, and with particles representing a galaxy
generated by a hydrodynamical simulation.

this case, both memory usage and run time scale roughly linearly
with the number of cells.

Furthermore, RT simulations frequently serve to pre-
dict the observable properties of artificial systems resulting
from (magneto-)hydrodynamical (MHD) simulations (Juvela &
Padoan 2003; Bethell et al. 2004; Stamatellos & Whitworth
2005; Jonsson et al. 2010; Acreman et al. 2010; Hayward et al.
2011; Robitaille 2011; Lunttila & Juvela 2012; Juvela et al.
2012). Hydrodynamical simulation codes historically employ
one of two schemes: a Lagrangian formulation based on moving
particles (smoothed particle hydrodynamics or SPH), for exam-
ple Gadget (Springel 2005; Dolag & Stasyszyn 2009; Pakmor
et al. 2012) and SEREN (Hubber et al. 2011); or a Eulerian ap-
proach based on a non-moving spatial grid, often an AMR grid,
for example RAMSES (Fromang et al. 2006), Enzo (Collins
et al. 2010; Bryan et al. 2013), and AMR-VAC (Keppens et al.
2012).

Recent codes including TESS (Duffell & MacFadyen 2011)
and AREPO (Springel 2010, 2011) introduce a new scheme
that employs a moving mesh based on a Voronoi tessellation of
the spatial domain (see Sect. 2.1 and Fig. 1). This new scheme
is claimed to combine the best features of SPH and the tradi-
tional Eulerian approach, and it is becoming increasingly pop-
ular. It has already been applied to various problems includ-
ing the formation of stars, galaxies, and cosmological structures
(Greif et al. 2011; Bauer & Springel 2012; Sijacki et al. 2012;
Kereš et al. 2012; Vogelsberger et al. 2012; Torrey et al. 2012;
Nelson et al. 2013; Marinacci et al. 2013). While the output from
a moving mesh code can be re-gridded to an AMR grid to per-
form RT, the resampling process unavoidably introduces inaccu-
racies and represents additional overhead; it seems preferable to
perform both aspects of the simulation (MHD and RT) on the
same grid.

These considerations lead to the question of whether it is
possible to perform accurate and efficient RT on unstructured
Voronoi grids.

One approach is to approximate a straight path through the
grid by a sequence of non-collinear segments connecting neigh-
boring sites. For example in the SimpleX code (Paardekooper
et al. 2010) and in the LIME code (Brinch & Hogerheijde 2010)
radiation travels along the edges of the Delaunay triangulation
corresponding to the Voronoi grid (see Sect. 2.1; the Delaunay
edges are shown in blue in Fig. 1). While it facilitates calculating
the paths, this approximation requires additional mechanisms to
compensate for errors in path length (see Fig. 5 in Paardekooper
et al. 2010) and direction (see Fig. 4 in Brinch & Hogerheijde
2010). The distance covered by the path inside a particular grid
cell becomes a fuzzy concept, while this is an important quan-
tity in many RT codes, e.g., for tracking the amount of energy
absorbed in the cell. And finally the spread on direction makes it
hard to produce high-resolution images of the simulated object.

In Sect. 2 we present instead an efficient method of calculat-
ing a straight path between two arbitrary points through a 3D
Voronoi grid, applicable in any RT code based on ray tracing
or Monte Carlo techniques. The path segments inside each grid
cell are calculated to high precision using a straightforward al-
gorithm that relies on the mathematical properties of Voronoi
tessellations. In Sect. 3 we introduce an implementation of the
method in our dust RT code SKIRT (Baes et al. 2011). We
demonstrate the method’s reliability, accuracy, and efficiency by
comparing results obtained through the Voronoi grid with those
generated by existing well-tested grids. In Sect. 4 we summarize
our conclusions.

A35, page 2 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322281&pdf_id=1

P. Camps et al.: 3D Voronoi grids in radiative transfer

Fig. 2. A single Voronoi cell (in red) with its neighboring sites (in gray)
and corresponding Delaunay edges (in blue). A straight path through
the cell is shown (in green) with its intersection points with the cell
boundary at entry and exit.

2. Method

2.1. Voronoi tesselations of 3D space

Given a set of points {p1, p2, . . . pn} in 3D space, called sites,
the corresponding Voronoi tessellation (Dirichlet 1850; Voronoi
1908) is a set of cells {Ci} where each cell Ci consists of all
the points p at least as close to pi as to any other site. The cor-
responding Delaunay triangulation (Delaunay 1934) is a graph
created by placing a straight edge between any two sites that
share a cell boundary in the Voronoi tessellation. Thus every site
is connected to its nearest neighbors.

An example Voronoi tessellation is shown in Fig. 1, and a
single Voronoi cell is illustrated in Fig. 2. A Voronoi cell is de-
limited by a convex polyhedron. A Delaunay edge, i.e., a line
segment that connects two sites sharing a polygonal face, is per-
pendicularly bisected by the plane containing the face, although
the bisection point may lie outside the face. For a set of sites
chosen randomly from a uniform distribution, the number of
nearest neighbors (or equivalently the number of cells sharing
a face with any given cell) has an expectation value of 15.54
(van de Weygaert 1994).

To obtain an optimal grid in the context of a RT simulation,
the Voronoi sites should be more densely packed (generating
smaller cells) in regions where a higher resolution is desired. For
example one could select the positions randomly from a proba-
bility distribution that follows the density of the RT medium,
and perhaps place extra sites near sharp edges or large gradients.
If the density field is defined by a set of smoothed particles, the
particle locations form natural Voronoi sites. And of course if the
density field is already defined on a Voronoi mesh, the original
site locations can be used.

2.2. A straight path through a Voronoi grid

We consider a cuboidal spatial domain D defined by its corner
points (Dmin, Dmax), and a set of sites { pm ∈ D, m = 1 . . . M }.
All sites are inside the domain, and the corresponding Voronoi
cells are clipped by the domain walls, as illustrated in Fig. 1.
Given a ray describing the path of a photon package, defined by a
starting point r0 ∈ D and a direction k, our aim is to calculate the
ray’s consecutive intersection points with the Voronoi cell walls
– or equivalently, the distance travelled in each cell – until the ray

leaves the domain. This is illustrated in Fig. 2 for a single cell.
The presented method can easily be adjusted for other domain
geometries, or for rays that originate outside the domain.

During a setup phase, before any straight paths are calcu-
lated, the following data are prepared:

1. The domain boundaries (Dmin, Dmax).
2. The positions of the sites { pm, m = 1 . . . M }.
3. For each site pn, the indices {mn,i, i = 1 . . . In } of all sites

neighboring that site or, equivalently, of all cells neighboring
the cell corresponding to that site. Domain walls are repre-
sented by special (negative) index values.

Data items (1) and (2) are externally specified as part of the prob-
lem definition. The neighbor lists (3) can easily be derived from
a Voronoi tessellation or Delaunay triangulation for the specified
set of sites, since nearest neighbor information is the defining
characteristic of these concepts. No information is needed on the
vertices, edges or faces of the polyhedra delimiting the Voronoi
cells.

To begin calculating a straight path, the current point r is set
to the starting point, and the current cell index mr is set to the
index of the cell containing the starting point. By definition of a
Voronoi tessellation, finding the cell containing a given point r
is equivalent to locating the site pi nearest to r. This is a straight-
forward operation that can easily be optimized as described later
in Sect. 2.3. For the time being we assume that there is a function
C(r) that returns the index m of the cell containing a given point.

Once initialized, the method loops over the algorithm that
computes the exit point from the current cell, i.e., the intersec-
tion of the ray formed by the current point r and the direction k
with the current cell’s boundary. The algorithm also produces the
index of the neighboring cell without extra cost. If an exit point
is found, the loop adds a path segment to the output, updates the
current point and the current cell index, and continues to the next
iteration. If the exit is towards a domain wall, the loop is termi-
nated. Because of computational inaccuracies it may occur that
no exit point is found. In that case, no path segment is added to
the output, the current point is advanced in the direction k over
an infinitesimal distance ε � ||Dmax−Dmin||, and the new current
cell index is determined by calling the function C(r).

The algorithm computing the exit point from the current cell
requires the following input data: the current point r; the ray’s
direction k as a unit vector; the index mr of the current cell;
the indices {mi, i = 1 . . . I } of all cells neighboring the current
cell, with domain walls represented by special (negative) values;
the positions of the sites { pm, m = 1 . . . M }; and the domain
boundaries (Dmin, Dmax).

The line containing the ray under consideration can be writ-
ten as L(s) = r + s k with s ∈ R. The exit point can similarly
be written as q = r + sq k with sq > 0, and the distance covered
within the cell is given by sq. The index of the cell next to the
exit point is denoted mq and is easily determined as follows.

1. Calculate the set of values {si} for the intersection points be-
tween the line L(s) and the planes defined by the neighbors
mi (see below for details on this calculation).

2. Select the smallest nonnegative value sq = min{si|si > 0}
in the set to determine the exit point and the corresponding
neighbor mq.

3. If there is no nonnegative value in the set, no exit point has
been found.

To calculate si in step (1) for a regular neighbor mi > 0, intersect
the line L(s) = r + s k with the plane bisecting the sites p(mi)

A35, page 3 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322281&pdf_id=2

A&A 560, A35 (2013)

and p(mr). An unnormalized vector perpendicular to this plane
is given by

n = p(mi) − p(mr) (1)

and a point on the plane is given by

p =
p(mi) + p(mr)

2
· (2)

The equation of the plane can then be written as

n · (x − p) = 0. (3)

Substituting x = r + si k and solving for si provides

si =
n · (p− r)

n · k
· (4)

If n · k = 0 the line and the plane are parallel so that there is no
intersection, and the above equation produces si = ±∞. When
using standard IEEE 754 floating point arithmetic there is no
reason to test for this special case, since the infinite value will
never be selected as the exit point in step (2).

To calculate si in step (1) for a domain wall mi < 0, substitute
the appropriate normal and position vectors for the wall plane in
Eq. (4). For example, for the left wall one has n = (−1, 0, 0) and
p = (Dmin,x, 0, 0) so that

si =
Dmin,x − rx

kx
· (5)

In an actual implementation of this algorithm there is no need to
accumulate the complete set of {si} values; one can simply keep
track of the smallest nonnegative value. As a further optimiza-
tion, part of the intersection calculation can be avoided for about
half of the planes by noting that the sign of n · k determines the
sign of si in Eq. (4). Indeed, the site p(mr) and the current point r
are on the same side of the plane defined by Eq. (3) (unless r lies
in the plane), so that the numerator of Eq. (4) is always positive
(or zero if r lies in the plane).

2.3. Finding the cell containing a given point

We now return to the implementation of the function C(r) that
identifies the Voronoi cell containing a given query point. By
definition of a Voronoi tessellation, this operation is equivalent
to finding the site closest to the query point. There are many so-
phisticated ways to accelerate this nearest neighbor search, for
example by building a k-d tree (Friedman et al. 1977) or an
R-tree (Guttman 1984) data structure. We chose to use a sim-
ple mechanism, since this function is usually invoked only once
per path and thus its performance is not overly critical.

We assume the domain D is partitioned in a set of cuboidal
blocks { Bk, k = 1 . . .K } according to a regular linear grid.
During the setup phase described in the beginning of Sect. 2.2,
an additional data structure is constructed containing, for each
block Bk in the partition of the domainD, the indices {mk, j, j =
1 . . . Jk } of all Voronoi cells that possibly overlap that block.
Determining these lists in principle requires an intersection test
between each block and each cell. In practice it suffices to con-
sider the cell’s bounding box, which can be easily intersected
with the blocks.

One might be tempted to derive a Voronoi cell’s bound-
ing box from the positions of the neighboring sites; however,
the convex hull of a cell’s neighboring sites does not necessar-
ily fully enclose the cell. Because a Voronoi cell is convex, its

bounding box can be easily calculated from the list of its ver-
tices. This requires fully constructing the cell; however, this is
needed anyway to calculate the cell volume for use in other ar-
eas of the RT simulation (e.g., determining the specific energy
absorbed per unit mass by the medium in the cell). Regardless,
the cell geometry is needed solely during setup and does not have
to be retained thereafter.

The function C(r) receives the following input data: the
query point r; for each block Bk, the indices {mk, j, j = 1 . . . Jk }

of all Voronoi cells that possibly overlap that block; the posi-
tions of the sites { pm, m = 1 . . . M }; and the domain boundaries
(Dmin, Dmax).

For each query, the function C(r) performs these steps:

1. Verify that the query point is inside the domain; if not return
a special (negative) index value.

2. Locate the block containing the query point; this is trivial
since blocks are on a regular linear grid.

3. Retrieve the list of cells possibly overlapping that block, and
thus possibly containing the query point.

4. Calculate the squared distance from the query point to the
sites for each of these cells. By definition of a Voronoi tesse-
lation, the closest site determines the Voronoi cell containing
the query point.

3. Tests, results, and discussion

3.1. Implementation

The SKIRT code (Baes et al. 2011) performs 3D continuum
RT using the Monte Carlo technique. It is used for studying
dusty astrophysical objects including spiral galaxies (De Looze
et al. 2012a,b; De Geyter et al. 2013) and active galactic nu-
clei (Stalevski et al. 2012, 2013). Input models can be defined
through a range of built-in geometries, or imported from the re-
sults of a MHD simulation. The SKIRT code also offers vari-
ous dust grid options, including regular grids and adaptive grids
(Saftly et al. 2013).

We implemented a Voronoi dust grid in SKIRT according to
the method presented in Sect. 2. This allowed us to use the built-
in geometries for creating synthetic test models, and to compare
the results with those produced by the existing and well-tested
grids.

We employed the open source library Voro++ (Rycroft
2009) to set up the input data described in Sects. 2.2 and 2.3.
The library and its data structures are used only during setup.
All relevant information is extracted and stored in our own data
structures for reference after setup.

3.2. Test models

We tested the Voronoi dust grid with two synthetic models of our
own making, called torus and spiral, and we ran the RT bench-
mark described by Pascucci et al. (2004). We first present the
results for our models, and in Sect. 3.5 we discuss the results for
the Pascucci benchmark.

The torus model consists of a central light source surrounded
by an axisymmetric dusty torus, as might be present in the center
of active galactic nuclei. The dust geometry is described by a ra-
dial power-law density from a given inner to outer radius, with an
opening angle of 50 degrees. A cut through the dust distribution
is shown in the top row of Fig. 4. The sites for the Voronoi dust
grid are selected randomly from a uniform distribution over the
cuboidal domain enclosing the torus. Since the model is axisym-
metric, we can compare the results of the Voronoi grid with those

A35, page 4 of 9

P. Camps et al.: 3D Voronoi grids in radiative transfer

104 cells 104.5 cells 105 cells 105.5 cells 106 cells 106.5 cells

Fig. 3. A cut through the dust density distribution of the torus model, discretized on Voronoi grids with a resolution varying from 104 cells (left) to
106.5 cells (right). All grids were constructed from a set of uniformly distributed sites.

produced by a regular two-dimensional (2D) cylindrical grid, in
addition to those produced by an adaptive (3D) octree grid. In
Fig. 3 we illustrate the effect of the number of Voronoi grid cells
for the torus model.

The spiral model represents an idealized spiral galaxy with
three arms, similar to the spiral model presented in Saftly et al.
(2013). The stellar distribution includes a flattened Sérsic bulge
and a double-exponential disk with a spiral arm perturbation.
The dust is distributed in a thinner, similarly perturbed double-
exponential disk. Cuts through the dust distribution are shown in
the top row of Figs. 5 and 6. In this case, the sites for the Voronoi
dust grid are selected randomly from the dust distribution, as op-
posed to a uniform distribution. Areas with a higher dust density
are thus, on average, covered with smaller cells.

3.3. Test grids

For the torus model we ran simulations with three different dust
grids: a regular 2D cylindrical grid with 2502 = 62 500 cells;
an adaptive octree grid with ≈950 000 cells; and a Voronoi grid
with about the same number of uniformly distributed cells. The
top row of Fig. 4 shows a cut through the gridded dust density
distribution for each of these grids. The cylindrical grid captures
the sharp edges of the model perfectly, because the cylindrical
coordinate axes are lined up with the edges. The octree grid does
a fine job as well because of its adaptive nature: smaller cells
are automatically created along the sharp edges. The Voronoi
grid does not do particularly well at the edges because of the
random placement of its cells. This would not be an issue when
importing a grid from a moving mesh code, because the cell sizes
would already be properly adjusted to the underlying gradients.

For the spiral model we ran simulations with two different
dust grids: an adaptive octree grid with ≈1 350 000 cells; and a
Voronoi grid with about the same number of cells, placed using a
weighed distribution according to the dust density (smaller cells
in higher density areas). The top rows of Figs. 5 and 6 show a cut
through the gridded dust density distribution for each of these
grids. The differences between the grids are most easily seen in
the lower density areas.

Although this study does not focus on grid quality, we still
need to ensure that our Voronoi grid implementation properly
represents the theoretical dust densities defined by the synthetic
models. To obtain an objective quality measure, we sample the
theoretical dust density ρt and the gridded dust density ρg at a
large number of random points uniformly distributed over the
domain. We use the standard deviation of the difference ρt − ρg
as a measure for how well the grid reflects the theoretical density
distribution. Table 1 lists the resulting numbers for the various
grids and models. For each model the value for the octree grid is
normalized to unity.

Taking into account our naive cell placement, the Voronoi
grid compares well with the highly tuned adaptive octree grid,
thus verifying this aspect of our implementation.

3.4. Results

Shooting photon packages through the grid is the most important
test in the context of this study.

The middle row of Fig. 4 shows the dust temperature calcu-
lated by a panchromatic simulation for the torus model, using
the three grids describe above. All quantities, including the radi-
ation field and the amount of dust absorption, are discretized on
the same grid as the dust density. In each simulation, the central
light source emits 105 photon packages for each of 100 wave-
length bins on a logarithmic grid. Scattering events cause addi-
tional photon packages to be created, which is particularly rel-
evant for this model because of the high optical depth of the
torus. In the end, each simulation traces about 700 million pho-
ton packages through the dust grid.

The bottom rows of Figs. 4–6 show the flux density calcu-
lated by a monochromatic simulation for each model and grid
combination. The Poisson noise is caused by the statistical na-
ture of the Monte Carlo technique. In each simulation, the light
sources emit 10 million photon packages at a fixed wavelength,
and scattering events again cause additional photon packages to
be created.

Other than the effects of grid resolution and the unavoidable
noise, the calculated temperature and flux density maps are the
same for the various grids. In particular, as noted in Sect. 3.3,
the Voronoi grid does not resolve the central area of the dust
distribution as well as the other grids, causing some deviation in
the central area of the calculated flux density field. This effect is
ultimately due to the naive placement of the Voronoi cells in our
tests, and would not be present for a properly adjusted grid.

These results validate the accuracy of our straight path cal-
culation method for Voronoi grids.

Table 2 provides an indication of the processing time spent
per cell crossing for each simulation. To obtain these numbers,
the elapsed time for the photon shooting phase of a simulation
is divided by the number of grid cells crossed during that phase.
The result thus includes some overhead for generating the ran-
dom paths and for storing results, in addition to the grid traversal
calculation itself. The tests were performed on a typical desktop
computer using a single core. The last column lists the ratio be-
tween the cell crossing times for the Voronoi and octree grids.
The Voronoi grid performs roughly three times slower than our
highly optimized octree implementation (which maintains, for
example, a neighbor list for each cell to accelerate the process
of finding the next cell on a path). This seems surprisingly fast
in view of the high geometric complexity of a Voronoi grid (il-
lustrated in Figs. 1 and 2) compared to the cuboidal cells in an
octree. Moreover, as noted in the introduction, an octree grid

A35, page 5 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322281&pdf_id=3

A&A 560, A35 (2013)

ρdust – cylindrical grid ρdust – octree grid ρdust – Voronoi grid

Tdust – cylindrical grid Tdust – octree grid Tdust – Voronoi grid

f – cylindrical grid f – octree grid f – Voronoi grid

Fig. 4. Illustration of the results for the torus model with three different dust grids. Rows – top: the dust density distribution (cut through the central
edge-on plane); middle: the calculated dust temperature (cut through the central edge-on plane); bottom: the calculated flux density escaping from
the model (edge-on view). Columns – left: regular 2D cylindrical grid with 2502 = 62 500 cells; middle: adaptive octree grid with ≈950 000 cells;
right: Voronoi grid with ≈950 000 uniformly distributed cells.

ρdust – octree grid ρdust – Voronoi grid

f – octree grid f – Voronoi grid

Fig. 5. Illustration of the results for the spiral model, edge-on view. Rows – top: the dust density distribution (cut through the central edge-on
plane); bottom: the calculated flux density escaping from the model (edge-on view). Columns – left: adaptive octree grid with ≈1 350 000 cells;
right: Voronoi grid with ≈1 350 000 cells with a non-uniform, weighed distribution.

A35, page 6 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322281&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322281&pdf_id=5

P. Camps et al.: 3D Voronoi grids in radiative transfer

ρdust – octree grid ρdust – Voronoi grid

f – octree grid f – Voronoi grid

Fig. 6. Illustration of the results for the
spiral model, face-on view. Rows –
top: the dust density distribution (cut
through the central face-on plane); bot-
tom: the calculated flux density escap-
ing from the model (face-on view).
Columns – left: adaptive octree grid
with ≈1 350 000 cells; right: Voronoi
grid with ≈1 350 000 cells with a non-
uniform, weighed distribution.

Table 1. Grid quality.

Model Cylindrical Octree Voronoi
Torus 0.82 1 1.75
Spiral – 1 1.68

Notes. The difference between the theoretical and gridded dust density
is sampled at a large number of random points, uniformly distributed
over the domain. The standard deviation on this difference is used as a
quality measure for the grid. In the table, the value for the octree grid
is normalized to unity for each model. Smaller numbers indicate better
quality.

may need many more cells than the Voronoi grid to represent a
particular density field, further balancing performance in favor
of the Voronoi grid.

As discussed in Sect. 2.2, the cell crossing algorithm may
occasionally fail to find an exit point because of computational
inaccuracies. In our tests this occurred at most once per 50 mil-
lion cell crossings, so this issue does not affect the algorithm’s
performance.

3.5. The Pascucci benchmark

The Pascucci benchmark (Pascucci et al. 2004) models a star
embedded in a circumstellar disk with an inner cavity free of
dust, prescribing an analytical 2D distribution and a set of optical
depths and viewing angles. A cut through the central edge-on

Table 2. Run time.

Time per cell crossing (ns)
Model Simulation type Octree Voronoi Vor./Oct.
Torus monochromatic 219 693 3.2
Torus panchromatic 400 1006 2.5
Spiral monochromatic 309 903 2.9
Spiral panchromatic 442 1095 2.5

Notes. The elapsed time for the photon shooting phase of a simulation is
divided by the number of grid cells crossed during that phase. The result
is an indication of the time spent per cell crossing, including grid traver-
sal calculations and some overhead for generating the random paths and
for storing results. The tests were performed on a typical desktop com-
puter using a single core. The last column lists the ratio between the run
times for the Voronoi and octree grids. Larger numbers indicate slower
performance.

plane of the dust density distribution is shown in the left panel
of Fig. 7.

We ran panchromatic simulations for this model with opti-
cal depths τ = 0.1, 1, and 10 using a 3D Voronoi grid consisting
of one million cells randomly placed according to a 1/r distri-
bution. This distribution serves to properly resolve the intense
radiation field in the center of the model. In each simulation, the
central light source emits 105 photon packages for each of 150
wavelength bins on a logarithmic grid.

The two rightmost panels of Fig. 7 compare the spectral en-
ergy distribution (SED) produced by our SKIRT simulations

A35, page 7 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322281&pdf_id=6

A&A 560, A35 (2013)

ρdust – Voronoi grid

10-1 100 101 102

λ (µm)

104

105

106

107

λ
F
λ

(W
m
−

2
)

SEDs for i=12.5 ◦

τ=10

τ=1

τ=0.1

10-1 100 101 102

λ (µm)

104

105

106

107

λ
F
λ

(W
m
−

2
)

SEDs for i=77.5 ◦

τ=10

τ=1

τ=0.1

Fig. 7. Illustration of the results for the Pascucci benchmark (Pascucci et al. 2004). The left panel shows a cut through the central edge-on plane
of the dust density distribution discretized on a 3D Voronoi grid with one million cells randomly placed according to a 1/r distribution. The other
panels show the simulated spectral energy distribution (SED) for disk inclinations equal to 12.5◦ (center) and 77.5◦ (right), for optical depths
τ = 0.1, 1, and 10. Dots indicate benchmark reference points; solid lines represent our simulation results using the 3D Voronoi grid shown in the
left panel.

with the corresponding benchmark results published in Pascucci
et al. (2004). The center panel shows the SEDs for the various
optical depths at a nearly face-on disk inclination of 12.5◦, the
right panel at a nearly edge-on inclination of 77.5◦. Dots indicate
benchmark reference points; solid lines represent our simulation
results.

For higher optical depths our simulation results deviate
slightly because the SKIRT code is not optimized for opera-
tion in this regime; running the benchmark with a 2D axially
symmetric logarithmic grid results in the same deviation (not
shown). These results further validate our method for calculat-
ing straight paths through a Voronoi grid.

3.6. Applicability

From Sect. 2 it follows that the presented method requires as
input data solely the coordinates of the Voronoi sites, plus any
relevant physical properties (such as mass densities) for the cell
surrounding each site. In other words, the interface between the
input model and the RT code is very thin, opening up a wide
range of possibilities. An input model can be defined by SPH
particles, serving as Voronoi sites; or by a Voronoi mesh pro-
duced by an MHD code; or by appropriately distributed ran-
dom points generated from (semi)-analytical density or opacity
fields, similar to the approach in Paardekooper et al. (2010), for
example.

We also note in Sects. 2.2 and 2.3 that the path calculation
algorithm itself requires no information on a Voronoi cell other
than its bounding box and the locations of its own site and all
neighboring sites. The required data structures can be easily built
from the input data using a publicly available Voronoi library.
The library code is invoked only during the initialization phase,
minimizing its impact on performance and robustness, and al-
lowing it to be easily replaced by another code if the need arises.
For example, while we are happy with the Voro++ library’s ease
of use and with its performance during the tests, we may in the
future consider using a parallelized method (Lo 2012; Springel
2011).

As a consequence, the presented method allows the RT code
to support a Voronoi grid while remaining uncoupled from the
code producing the input model. This decreases the complexity

of the interface, and allows cooperation even when source code
is not publicly available. In contrast to this approach, for exam-
ple, the Sunrise RT code (Jonsson 2006) directly invokes parts
of the non-public Arepo moving mesh code (Springel 2011) to
implement the interface2.

4. Conclusions

The choice of an appropriate discretization is crucial in any nu-
merical simulation code. Because of the large dynamic range of
the physical quantities, in most problems the resolution of the
grid must scale with the field densities or gradients. Adaptive
grids with cuboidal cells, such as octrees or more generally
AMR grids, have proven very popular in part because of their
relative ease of implementation. However, several recent codes
have adopted unstructured grids based on Voronoi tessellations,
or equivalently, Delaunay triangulations. These grids tend to
more closely reflect dynamic ranges in the model with fewer
cells, presenting cell boundaries that are more adjusted to the
underlying gradients. Since a Voronoi grid is defined solely by
its generating points, the cell size and distribution can be easily
fine-tuned by placing these sites in the appropriate locations.

In a RT simulation the Voronoi grid can be a very flex-
ible tool. Appropriate sites can be generated randomly, dis-
tributed according to the input model’s density or opacity fields;
if needed extra sites can be added in high-gradient areas. In the
case of a particle-based input model, the particle locations them-
selves can serve as sites; and for an input model already based
on a Voronoi mesh no re-gridding is required at all.

In this work we have shown that it is straightforward to im-
plement accurate and efficient RT on Voronoi grids. In spite
of the geometric complexity of the cell boundaries, calculating
straight paths between two arbitrary points through a 3D Voronoi
grid is only about three times slower than a highly optimized
octree implementation with the same number of cells, while in
practice the total number of Voronoi grid cells may be lower
for an equally good representation of the density field. The pre-
sented method automatically yields the precise distance covered

2 http://code.google.com/p/sunrise/wiki/
RunningWithArepo

A35, page 8 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322281&pdf_id=7
http://code.google.com/p/sunrise/wiki/RunningWithArepo
http://code.google.com/p/sunrise/wiki/RunningWithArepo

P. Camps et al.: 3D Voronoi grids in radiative transfer

by the path inside each grid cell, and eliminates the need for
approximate corrections or work-arounds required by alternate
approaches where the radiation travels only along the Delaunay
edges. The method requires only a thin interface with the in-
put model and with the actual construction of the grid, allowing
codes to remain largely uncoupled and enabling the use of a pub-
licly available Voronoi library.

While we implemented and tested the method in our con-
tinuum RT code SKIRT, focusing on the effects of dust, it is
widely applicable to all RT codes using ray tracing or Monte
Carlo techniques.

We conclude that the benefits of using a Voronoi grid in
RT simulation codes will often outweigh the somewhat slower
performance.

Acknowledgements. This work fits in the CHARM framework (Contemporary
physical challenges in Heliospheric and AstRophysical Models), a phase VII
Interuniversity Attraction Pole (IAP) programme organised by BELSPO, the
BELgian federal Science Policy Office. W.S. acknowledges the support of Al-
Baath University and The Ministry of High Education in Syria in the form of a
research grant.

References
Abdikamalov, E., Burrows, A., Ott, C. D., et al. 2012, ApJ, 755, 111
Acreman, D. M., Harries, T. J., & Rundle, D. A. 2010, MNRAS, 403, 1143
Baes, M., & Dejonghe, H. 2001, MNRAS, 326, 733
Baes, M., & Dejonghe, H. 2002, MNRAS, 335, 441
Baes, M., Davies, J. I., Dejonghe, H., et al. 2003, MNRAS, 343, 1081
Baes, M., Verstappen, J., De Looze, I., et al. 2011, ApJS, 196, 22
Bauer, A., & Springel, V. 2012, MNRAS, 423, 2558
Bethell, T. J., Zweibel, E. G., Heitsch, F., & Mathis, J. S. 2004, ApJ, 610, 801
Bianchi, S. 2008, A&A, 490, 461
Bianchi, S., Ferrara, A., Davies, J. I., & Alton, P. B. 2000, MNRAS, 311, 601
Brinch, C., & Hogerheijde, M. R. 2010, A&A, 523, A25
Bryan, G. L., Norman, M. L., et al. (The Enzo Collaboration) 2013, ApJS,

submitted [arXiv:1307.2265]
Chakrabarti, S., Cox, T. J., Hernquist, L., et al. 2007, ApJ, 658, 840
Ciardi, B., Ferrara, A., Marri, S., & Raimondo, G. 2001, MNRAS, 324, 381
Code, A. D., & Whitney, B. A. 1995, ApJ, 441, 400
Collins, D. C., Xu, H., Norman, M. L., Li, H., & Li, S. 2010, ApJS, 186, 308
De Geyter, G., Baes, M., Fritz, J., & Camps, P. 2013, A&A, 550, A74
De Looze, I., Baes, M., Bendo, G. J., et al. 2012a, MNRAS, 427, 2797
De Looze, I., Baes, M., Fritz, J., & Verstappen, J. 2012b, MNRAS, 419, 895
Decin, L., Cox, N. L. J., Royer, P., et al. 2012, A&A, 548, A113
Delaunay, B. 1934, Classe des Sciences Mathématiques et Naturelles, 7, 793
Dirichlet, L. 1850, Journal für die reine und angewandte Mathematik, 40, 209
Disney, M., Davies, J., & Phillipps, S. 1989, MNRAS, 239, 939
Dolag, K., & Stasyszyn, F. 2009, MNRAS, 398, 1678
Doty, S. D., Metzler, R. A., & Palotti, M. L. 2005, MNRAS, 362, 737
Duffell, P. C., & MacFadyen, A. I. 2011, ApJS, 197, 15
Ercolano, B., Barlow, M. J., & Storey, P. J. 2005, MNRAS, 362, 1038
Fallscheer, C., Reid, M. A., Di Francesco, J., et al. 2013, ApJ, 773, 102
Friedman, J. H., Bentley, J. L., & Finkel, R. A. 1977, ACM Trans. Math. Softw.,

3, 209
Fritz, J., Gentile, G., Smith, M. W. L., et al. 2012, A&A, 546, A34
Fromang, S., Hennebelle, P., & Teyssier, R. 2006, A&A, 457, 371
Goldsmith, P. F., Heyer, M., Narayanan, G., et al. 2008, ApJ, 680, 428
Goosmann, R. W., & Gaskell, C. M. 2007, A&A, 465, 129
Gordon, K. D., Misselt, K. A., Witt, A. N., & Clayton, G. C. 2001, ApJ, 551,

269
Greif, T. H., Springel, V., White, S. D. M., et al. 2011, ApJ, 737, 75
Guttman, A. 1984, SIGMOD Rec., 14, 47
Harries, T. J., Monnier, J. D., Symington, N. H., & Kurosawa, R. 2004, MNRAS,

350, 565

Hayward, C. C., Kereš, D., Jonsson, P., et al. 2011, ApJ, 743, 159
Heymann, F., & Siebenmorgen, R. 2012, ApJ, 751, 27
Hubber, D. A., Batty, C. P., McLeod, A., & Whitworth, A. P. 2011, A&A, 529,

A27
Indebetouw, R., Whitney, B. A., Johnson, K. E., & Wood, K. 2006, ApJ, 636,

362
Jonsson, P. 2006, MNRAS, 372, 2
Jonsson, P., Groves, B. A., & Cox, T. J. 2010, MNRAS, 403, 17
Juvela, M., & Padoan, P. 2003, A&A, 397, 201
Juvela, M., Malinen, J., & Lunttila, T. 2012, A&A, 544, A141
Keppens, R., Meliani, Z., van Marle, A., et al. 2012, J. Comput. Phys., 231, 718
Kereš, D., Vogelsberger, M., Sijacki, D., Springel, V., & Hernquist, L. 2012,

MNRAS, 425, 2027
Kurosawa, R., & Hillier, D. J. 2001, A&A, 379, 336
Laursen, P., Razoumov, A. O., & Sommer-Larsen, J. 2009, ApJ, 696, 853
Lo, S. 2012, Comput. Meth. Appl. Mech. Eng., 237 88
Lunttila, T., & Juvela, M. 2012, A&A, 544, A52
Marinacci, F., Pakmor, R., & Springel, V. 2013, MNRAS, accepted

[arXiv:1305.5360]
Matthews, L. D., & Wood, K. 2001, ApJ, 548, 150
Misiriotis, A., Kylafis, N. D., Papamastorakis, J., & Xilouris, E. M. 2000, A&A,

353, 117
Nelson, D., Vogelsberger, M., Genel, S., et al. 2013, MNRAS, 429, 3353
Niccolini, G., & Alcolea, J. 2006, A&A, 456, 1
Paardekooper, J.-P., Kruip, C. J. H., & Icke, V. 2010, A&A, 515, A79
Pakmor, R., Edelmann, P., Röpke, F. K., & Hillebrandt, W. 2012, MNRAS, 424,

2222
Paron, S., Weidmann, W., Ortega, M. E., Albacete Colombo, J. F., & Pichel, A.

2013, MNRAS, 433, 1619
Pascucci, I., Wolf, S., Steinacker, J., et al. 2004, A&A, 417, 793
Pelkonen, V.-M., Juvela, M., & Padoan, P. 2009, A&A, 502, 833
Pinte, C., Ménard, F., Duchêne, G., & Bastien, P. 2006, A&A, 459, 797
Robitaille, T. P. 2011, A&A, 536, A79
Rycroft, C. H. 2009, Chaos, 19, 041111
Saftly, W., Camps, P., Baes, M., et al. 2013, A&A, 554, A10
Schartmann, M., Meisenheimer, K., Camenzind, M., et al. 2008, A&A, 482, 67
Schechtman-Rook, A., Bershady, M. A., & Wood, K. 2012, ApJ, 746, 70
Sijacki, D., Vogelsberger, M., Kereš, D., Springel, V., & Hernquist, L. 2012,

MNRAS, 424, 2999
Springel, V. 2005, MNRAS, 364, 1105
Springel, V. 2010, MNRAS, 401, 791
Springel, V. 2011 [arXiv:1109.2218]
Stalevski, M., Fritz, J., Baes, M., Nakos, T., & Popović, L. Č. 2012, MNRAS,

420, 2756
Stalevski, M., Fritz, J., Baes, M., & Popovic, L. C. 2013 [arXiv:1301.4244]
Stamatellos, D., & Whitworth, A. P. 2003, A&A, 407, 941
Stamatellos, D., & Whitworth, A. P. 2005, A&A, 439, 153
Steinacker, J., Bacmann, A., & Henning, T. 2002, J. Quant. Spectr. Rad. Transf.,

75, 765
Steinacker, J., Bacmann, A., Henning, T., Klessen, R., & Stickel, M. 2005, A&A,

434, 167
Steinacker, J., Bacmann, A., & Henning, T. 2006, ApJ, 645, 920
Steinacker, J., Baes, M., & Gordon, K. D. 2013, ARA&A, 51, 63
Tasitsiomi, A. 2006, ApJ, 645, 792
Torrey, P., Vogelsberger, M., Sijacki, D., Springel, V., & Hernquist, L. 2012,

MNRAS, 427, 2224
van de Weygaert, R. 1994, A&A, 283, 361
Verhamme, A., Schaerer, D., & Maselli, A. 2006, A&A, 460, 397
Vogelsberger, M., Sijacki, D., Kereš, D., Springel, V., & Hernquist, L. 2012,

MNRAS, 425, 3024
Voronoi, G. 1908, Journal für die reine und angewandte Mathematik, 134, 198
Wang, Z., Kaplan, D. L., Slane, P., Morrell, N., & Kaspi, V. M. 2013, ApJ, 769,

122
Witt, A. N., & Gordon, K. D. 1996, ApJ, 463, 681
Witt, A. N., & Gordon, K. D. 2000, ApJ, 528, 799
Witt, A. N., Thronson, Jr., H. A., & Capuano, Jr., J. M. 1992, ApJ, 393, 611
Wolf, S. 2003, Comput. Phys. Commun., 150, 99
Wolf, S., Fischer, O., & Pfau, W. 1998, A&A, 340, 103
Wood, K., Mathis, J. S., & Ercolano, B. 2004, MNRAS, 348, 1337

A35, page 9 of 9

http://arxiv.org/abs/1307.2265
http://arxiv.org/abs/1305.5360
http://arxiv.org/abs/1109.2218
http://arxiv.org/abs/1301.4244

	Introduction
	Method
	Voronoi tesselations of 3D space
	A straight path through a Voronoi grid
	Finding the cell containing a given point

	Tests, results, and discussion
	Implementation
	Test models
	Test grids
	Results
	The Pascucci benchmark
	Applicability

	Conclusions
	References

