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SUMMARY

The firing patterns of grid cells in medial entorhinal
cortex (mEC) and associated brain areas form trian-
gular arrays that tessellate the environment [1, 2]
and maintain constant spatial offsets to each other
between environments [3, 4]. These cells are thought
to provide an efficient metric for navigation in large-
scale space [5–8]. However, an accurate and univer-
salmetric requires grid cell firingpatterns touniformly
cover the space to be navigated, in contrast to recent
demonstrations that environmental features such
as boundaries can distort [9–11] and fragment [12]
grid patterns. To establish whether grid firing is
determined by local environmental cues, or provides
a coherent global representation, we recorded mEC
grid cells in rats foraging in an environment con-
taining two perceptually identical compartments
connected via a corridor. During initial exposures to
the multicompartment environment, grid firing pat-
terns were dominated by local environmental cues,
replicating between the two compartments. How-
ever, with prolonged experience, grid cell firing
patterns formed a single, continuous representation
that spanned both compartments. Thus, we provide
the first evidence that in a complex environment,
grid cell firing can form the coherent global pattern
necessary for them to act as a metric capable of
supporting large-scale spatial navigation.

RESULTS

We investigated whether grid cell firing patterns are determined

by local sensory cues or whether they provide a coherent global

representation of space by recording from 85 medial entorhinal

cortex (mEC) grid cells in eight rats as they foraged within an

environment containing two perceptually identical compart-

ments connected via a corridor (Figure 1A). The environment

was painted matte black and lit only by single lights on

the south wall of each compartment. Black curtains encircled
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the environment to reduce the availability of distal cues. Each

recording session consisted of two 40-min trials, with the

floor of the environment rotated and the positions of the com-

partments swapped between trials to control unidentified sen-

sory cues distinguishing the compartments. The environment

therefore closely matched environments in which perceptual

consistency between adjacent compartments has been shown

to cause place cell firing fields to replicate [13–15]. We hypo-

thesized that if grid cell representations are dominated by

sensory cues, their firing should replicate between the two

compartments. Conversely, if grid cell activity is determined

by the global spatial features of the environment, their firing

patterns should distinguish the two compartments due to their

different absolute positions in space.

During early sessions, periodic firing patterns typical of grid

cells were present in the environment and were replicated

between the two compartments (Figure 1B). However, with

increasing experience, the similarity of the representations be-

tween the two compartments decreased (Figure 1C), apparent

in a negative correlation between the session number and the

spatial correlation of firing rates between the two compartments

(r = �0.6674, r2 = 0.4455, p = 1.669 3 10�12; Figure 1D). The

decrease in representation similarity across sessions was

accompanied by an increase in hexagonal regularity of grid

patterns within the compartments (Figure 1F). In the first five

sessions, but not the last five sessions, gridness in the screening

environment was greater than in the multicompartment environ-

ment (one-sample t tests, t41 = 11.46, p = 2.328 3 10�14 and

t25 = 0.8519, p = 0.4024, respectively; Figure 1G), with the differ-

ence in gridness greater in the first than the last five sessions

(unpaired t test, t66 = 5.279, p = 1.443 3 10�6).

To eliminate the possibility that unidentified local cues allowed

disambiguation of the two compartments, we verified that

firing was stable in global space and did not track the physical

compartments when their positions were switched between

trials. Specifically, in the last five sessions, the inter-trial spatial

correlation between compartments in the same location was

greater than the inter-trial spatial correlation between the same

physical compartments in their new positions (paired t test,

t20 = 6.560, p = 2.160 3 10�6; Figure 1E).

In contrast to grid cells, head direction cells continued to show

the same directional tuning in the two compartments, regardless

of experience (Figures S1A–S1C). The firing of a single border
s
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Figure 1. With Increasing Experience, Grid Cell Firing Patterns Show Reduced Representation Similarity between Compartments and

Increased Regularity

(A) Schematic representation of the multicompartment environment and protocol for each recording session.

(B and C) Example firing rate maps. The left and right rate maps in each row are the same cell recorded in trial 1 and trial 2, respectively. Hotter colors indicate

higher firing rates; unvisited bins are white. The correlation values above each plot are the spatial correlations of firing rates between the two compartments.

(B) Example grid cells recorded during early exposures to the multicompartment environment, where firing fields replicated between compartments.

(C) Example grid cells from late recording sessions, where firing patterns distinguished the compartments.

(D) Spatial correlations of grid cell firing rates between the compartments as a function of the animals’ experience of the environment. Each data point represents

the average correlation across all cells from one animal in one session, with different animals plotted in different colors.

(E) Spatial correlations between grid cell firing in equivalent absolute locations in successive trials (‘‘space-wise correlation’’: e.g., compartment A trial 1 versus

compartment B trial 2) or between equivalent locations within the same physical compartment in successive trials (‘‘compartment-wise correlation’’: e.g.,

compartment A trial 1 versus compartment A trial 2), showing mean + SEM for cells in the last five sessions.

(F) The difference in gridness of firing patterns between the familiar square screening environment and the average of the gridness in each compartment

(screening gridness � multicompartment gridness) as a function of experience. Plotted values are mean ± SEM across all cells recorded in each session.

(G) Difference in gridness (screening gridness � multicompartment gridness) in the first and last five sessions, showing mean and SEM; ***p < 0.001.
cell recorded in a late session also replicated between the two

compartments (Figures S1D–S1F).

To determine whether grid firing in the two compartments pre-

dominantly reflected a local or global reference frame, we fitted

ideal grid patterns to the recorded firing rate maps according to

three models (see Supplemental Experimental Procedures for

details). The grids were first fit by the ‘‘independent’’ model, in

which grid phase was allowed to vary freely between the two

compartments, while orientation and scale were required to be

consistent (see Figures S2A–S2D). The independent fit repre-

sented the best possible fit of an ideal grid pattern to the data

and was used to exclude grids too irregular to be well fit by
Cur
any model, a necessary step given the reduced gridness seen

in the multicompartment environment, particularly during early

sessions (Figure 1F). The independent fit also determined the

scale and orientation used in the ‘‘local’’ and ‘‘global’’ models.

In the local model, the fitted grid had the same phase in each

compartment, such that the firing fields replicated. The global

model required the phase to be continuous across the compart-

ments and so formed a single grid spanning the two. Local and

global fits were normalized by the independent fit to allow

comparison across cells. Firing patterns in the corridor were

spatially stable and ‘‘grid-like’’—consisting of peaks and troughs

in firing. However, they were significantly less regular than firing
rent Biology 25, 1176–1182, May 4, 2015 ª2015 The Authors 1177



patterns in the compartments and were discarded from further

analyses (Figures S3A–S3C). The irregularity was likely caused

by the stereotyped behavior displayed by rats in the corridor

(Figures S3D–S3F) and is consistent with past recordings of

grid cells in linear environments [16, 17].

During early exposures, grid cell firing in the two compart-

ments was best described by the local model (Figure 2A). How-

ever, with increasing experience, the local model’s fit to the data

decreased (r = �0.5913, r2 = 0.3496, p = 2.503 3 10�6; Fig-

ure 2C). In contrast to the local model, the fit to the global model

increased with experience, showing a positive correlation

(r = 0.4187, r2 = 0.1753, p = 0.0016; Figures 2B and 2D).

A two-way ANOVA revealed an interaction between experience

of the environment and the goodness of fit of the two models

(session 3 model, F(19,68) = 1.89, p = 0.0293; Figure 2E). We

assessed whether in the first and last five sessions the local or

global models fitted the data significantly better than would be

expected under the null hypothesis of no particular phase rela-

tionship between the grids in each compartment. Specifically,

each recorded rate map was fitted by 1,000 ideal grids with

random phase offsets between the two compartments. For

each cell/session conjunction with an independent fit >0.45,

we then calculated the proportion of the 1,000 grids with random

phase offsets which achieved a better fit than the local and

global models. If no particular phase relationship between the

grids in each compartment existed, the local and global models

would on average fall in the middle of the distribution of the

randomly offset grids. In contrast, in the first five sessions, the

proportion of the 1,000 grids with a better fit than the local model

was significantly lower than 0.5 (Wilcoxon signed-rank test

[WSRT], z = �3.724, p = 1.964 3 10�4; Figure 2F). However, in

the last five sessions, the local model no longer fit the data better

than would be expected by chance (WSRT, p = 0.6377; Fig-

ure 2F). Conversely, in the last five sessions, but not the first

five sessions, the global model’s fit to the data was significantly

better than expected from the null distribution (WSRTs, p =

0.0019 and z = �0.1089, p = 0.9133; Figure 2F). It is important

to note that local and global representations are not mutually

exclusive: grid patterns can be both identical in the two compart-

ments and continuous across them both. As such, onewould not

necessarily expect consistently low local fits during late sessions

or consistently low global fits during early sessions.

An independent analysis of the difference between observed

grid phase in the right-hand compartment and that predicted

from the left-hand compartment if firing formed a local or global

representation confirmed a transition from a local to a global

firing pattern (Figures S2G and S2H).

Grid cells are organized into functionally distinct modules

[9, 18]. These modules are distributed non-uniformly in the brain,

with modules in dorsal areas of mEC often having smaller-scale

firing patterns than those found more ventrally [1, 18]. Here, as is

typical of recordings in mEC, electrodes were implanted dorsally

and advanced ventrally to locate grid cells. As such, the transi-

tion from a local to a global representation could be explained

by biases in the sampling of modules across time. Specifically,

if smaller-scale grid modules formed local representations

and larger-scale modules formed global representations, the

dorsal-to-ventral sampling bias could produce an artifactual

local-to-global representation shift. To eliminate this possibility,
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we repeated the prior analysis separately for cells with scale

either above or below the median grid scale. Both groups

exhibited a significant shift from local to global representations

(Figures S2E and S2F). However, as we did not record any grid

cells with a scale less than the median in the last five sessions,

we further analyzed the single grid scale (45–55 cm) for which

grid cells with an independent fit >0.45 were recorded through-

out the experiment. Again, the local model’s fit decreased with

experience (r = �0.6185, r2 = 0.3826, p = 0.0048; Figure 3A),

while the global model’s fit increased (r = 0.8001, r2 = 0.6402,

p = 3.9023 10�5; Figure 3B). Indeed, within this scale, grid firing

patterns changed with experience from significantly more local

to significantly more global than expected by chance between

the first and last five sessions (Figure 3C). The same transition

was also evident when analysis was restricted further to grid

cells from a single module within an individual animal. In the

animal with the most sequential recordings of grid cells from

a single grid module and with an independent fit >0.45 (ten ses-

sions), a two-way ANOVA revealed an interaction between

experience of the environment and the goodness of fit of the

two models (session3model, F(8,25) = 9.99, p = 0.0019; Figures

3D and 3E), with the global model’s fit increasing significantly

with experience (r = 0.7188, r2 = 0.5167, p = 0.0056; Figure 3E).

That the transition from local to global representations is

apparent within individual grid scales and modules demon-

strates that it cannot be explained simply by biases in the

sampling of grid scales and modules across time.

Grid cell firing likely derives from path integration: utilizing

information about self-motion to update a representation of

self-location [5, 19–22]. We therefore asked whether there was

any difference in the grid representations between the thirds of

each compartment closest to and furthest from the corridor.

We hypothesized that the reduced distance between the sec-

tions of the compartments nearest the corridor may result in the

accumulation of less path integration error and so produce

more accurate global representations than in the sections

furthest away. Confirming this hypothesis, in the first five ses-

sions, grid patterns in the near third of each compartment were

significantly less local than those in the furthest third (paired

one-tailed t test, t(17) = �1.931, p = 0.0352; Figure 3F), while in

the last five sessions, grid patterns in the thirds closest to the

corridor were significantly more global than those in the furthest

thirds (paired one-tailed t test, t(10) = 1.959, p= 0.0392; Figure 3F).

DISCUSSION

Grid cells are of great interest to computational neuroscientists

as their periodicity allows them to formhighly efficient spatial rep-

resentations and to act as a metric for spatial calculations [5–7].

However, such calculations would be prone to significant errors

where grid firing diverges from a regular and continuous pattern

due to distortions and discontinuities. During initial exposures

to the multicompartment environment, grid patterns were

dominated by local sensory cues, replicating between the two

compartments. However, with increasing experience, disconti-

nuities in grid cell firing patterns between the compartments

were incrementally reduced to form a single, continuous repre-

sentation that spanned both compartments. This transition sug-

gests grid cells adjust their firing to produce the globally coherent
s
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Figure 2. Grid Cell Firing Patterns Transition

from a Local to a Global Representation

with Increasing Experience

(A and B) Fits of local and global models to grid cell

firing patterns in the two compartments. The local

model was an ideal grid constrained to replicate

between the two compartments, whereas the

global model was a single continuous grid span-

ning both compartments. Each row is one cell in

one trial: the underlying rate maps in the left

and right columns are the same. The white rings

overlaid indicate the best fitting local and global

models in the left and right columns, respectively.

Fit values show the spatial correlations between

the local or global models and the data, normalized

by the independent model’s fit.

(A) Examples of grid cells recorded during early

sessions, where the local model best fit the data.

(B) Example grids recorded during late sessions,

where the global model best fit the data.

(C and D) The fit between grid cell firing patterns

and ideal local and global grids, respectively, as a

function of experience of the environment.

(E) The difference in the fit (global fit � local fit)

between the global and local models across

sessions.

In (C), (D), and (E), each data point represents the

average fit for all cells with an independent fit

>0.45, recorded from one animal in one session.

(F) The proportion of 1,000 ideal grids, with random

phase offsets between compartments, with a

better fit to the data than the local or global

models. Values are mean + SEM across all cells

with an independent fit >0.45 in the first or last five

sessions. Wilcoxon signed-rank tests (WSRTs)

compare observed values to an expected median

of 0.5. **p < 0.01; ***p < 0.001.
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Figure 3. The Transition from Local to Global Representations Cannot Be Explained by Biases in the Sampling of Grid Cells

(A and B) The fit between recorded firing patterns of grid cells of a single scale and ideal local and global grids, respectively, as a function of experience of the

environment. Only cells with a scale of 45 to 55 cm in the screening environment are included. Each data point represents the average local and global fits across

all 45–55 cm cells with an independent fit >0.45, recorded from one animal in one session.

(C) The proportion of 1,000 ideal grids, with random phase offsets between the compartments, with a better fit to the cells in (A) and (B) than the local or global

models. Values are mean + SEM across 45–55 cm cells with an independent fit >0.45 in the first or last five sessions. WSRTs compare observed values to an

expected median of 0.5.

(D and E) The fit between recorded firing patterns of grid cells from a single module in a single animal and ideal local and global grids, respectively, as a function of

experience. Dashed lines extend the least-squares lines to predict local and global fits in unrecorded sessions.

(F) The best fit achieved by the local model in the first five sessions and the global model in the last five sessions to the grid patterns in the thirds of the com-

partments nearest to or furthest from the corridor. Values are mean + SEM of the collapsed average within animals of cells with an independent fit >0.45. Paired,

one-tailed t tests test whether difference in observed means differs from an expected mean of 0. *p < 0.05; **p < 0.01.
representation required for them to act as an effective spatial

metric. Though the mechanism underpinning this transition re-

mains undetermined, for grid cells to form a coherent global rep-

resentation, it is necessary for them to identify the relative posi-

tions of all points in the environment. Models of grid cell

formation largely describe their firing in terms of self-motion

[5, 19–22], and the integration of self-motion as the animal ex-

plores the environment (path integration) is one way in which

the relative position of points in space can be discerned. The

more globally coherent firing patterns observed in the sections

of the compartments closest together gives credence to this

explanation: if the global coherence of grid patterns did not

depend on path integration, one would not expect any difference

across the compartments. The highly extended time frame over

which cells transitioned from a local to a global representation

made the continual recording from single cells across the whole
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period difficult. However, single grid modules, which are thought

to form functional units [4, 9, 18], appeared to adjust their repre-

sentations gradually and continuously (Figures 3D and 3E).

Further, the firing fields of one grid cell recorded across 15

consecutive sessions appeared to shift continuously, rather

than undergo a sudden transformation (Movie S1). These obser-

vations argue against an abrupt change in representation. How-

ever, to fully understand the temporal dynamics of the change

from a local to a global representation, one would have to follow

the same population of cells throughout the transition. The grid

cells’ gradual disambiguation of the compartments across ses-

sions was reminiscent of the slow transition of place fields in

morphed environments from boundary-referenced replication

to direct remapping [23, 24], a process likely indicative of a

slow plasticity-based mechanism [24, 25]. The common slow

transition among grid and place cells likely indicates a unifying
s



underlying mechanism, though it remains to be seen whether

changes in grid cell firing preempts or indeed drives changes in

place cell firing.

EXPERIMENTAL PROCEDURES

For the full experimental protocol, please see Supplemental Experimental

Procedures.

Animals and Surgery

All work was carried out under the Animals (Scientific Procedures) Act 1986

and according to Home Office and institutional guidelines. One or two micro-

drives were implanted above mEC in eight male Lister-Hooded rats.

Electrophysiological Recording and Experimental Protocol

Each session began with a 20-min baseline trial in which electrophysiological

and positional data were acquired while animals foraged in a 13 1 m environ-

ment. Following identification of grid cells, rats were recorded while foraging in

the multicompartment environment. Comprising two 90 3 90 3 50 cm com-

partments connected by a 180 3 40 3 50 cm corridor, the multicompartment

environment was designed such that the two adjacent compartments would

be as perceptually identical as possible.

Each recording session consisted of two 40-min trials, with the compart-

ments’ positions switched and the floor of the environment rotated between

trials to control unidentified sensory cues distinguishing the compartments.

Animals ran at most one session per day for a maximum of 20 sessions.

Analyses

Spike Sorting, Binning, and Grid Cell Inclusion Criteria

Spike sorting was performed offline using the automated clustering algorithm

KlustaKwik [26].

Two-dimensional firing rate maps were calculated by assigning recorded

positions and spikes to 2 3 2 cm bins covering the environment and dividing

the number of spikes in each bin by the cumulative dwell time in each bin.

For inclusion in subsequent analysis, putative grid cells were first assessed

using a gridnessmeasure [27]. Cells were considered grid cells if their gridness

exceeded the 99th percentile of a shuffled distribution of 1,000 gridness scores

calculated from rate maps where spike times were randomly offset relative to

position by at least 20 s. 85 cells passed these criteria, with a mean gridness of

0.89 in the baseline environment.

Correlations

To measure the similarity of grid firing between the two compartments, we

calculated a Pearson product-moment correlation coefficient comparing firing

rates in equivalent bins in the rate maps of the two compartments.

Fitting of Ideal Grids

Recorded rate maps were fitted by ideal grid patterns to determine whether

grid representations were referenced to local or global features of the environ-

ment. In the local model, recorded rate maps were fitted by ideal grids whose

firing patterns replicated between the two compartments. In contrast, ideal

grids fitted in the global model consisted of a single grid pattern spanning

both compartments. The less constrained independent model allowed identi-

fication of the best possible fit between each recorded rate map and any ideal

grid. The independent model was therefore used to discard cells too irregular

to be well fit by any model and to normalize fits in the local and global models.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and one movie and can be found with this article online at

http://dx.doi.org/10.1016/j.cub.2015.02.037.
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