186 research outputs found

    The e-Science Paradigm for Particle Physics

    Get PDF

    INDIGO-Datacloud: foundations and architectural description of a Platform as a Service oriented to scientific computing

    Get PDF
    Software Engineering.-- et al.In this paper we describe the architecture of a Platform as a Service (PaaS) oriented to computing and data analysis. In order to clarify the choices we made, we explain the features using practical examples, applied to several known usage patterns in the area of HEP computing. The proposed architecture is devised to provide researchers with a unified view of distributed computing infrastructures, focusing in facilitating seamless access. In this respect the Platform is able to profit from the most recent developments for computing and processing large amounts of data, and to exploit current storage and preservation technologies, with the appropriate mechanisms to ensure security and privacy.INDIGO-DataCloud is co-founded by the Horizon 2020Framework Programme.Peer reviewe

    The Future of High Energy Physics Software and Computing

    Full text link
    Software and Computing (S&C) are essential to all High Energy Physics (HEP) experiments and many theoretical studies. The size and complexity of S&C are now commensurate with that of experimental instruments, playing a critical role in experimental design, data acquisition/instrumental control, reconstruction, and analysis. Furthermore, S&C often plays a leading role in driving the precision of theoretical calculations and simulations. Within this central role in HEP, S&C has been immensely successful over the last decade. This report looks forward to the next decade and beyond, in the context of the 2021 Particle Physics Community Planning Exercise ("Snowmass") organized by the Division of Particles and Fields (DPF) of the American Physical Society.Comment: Computational Frontier Report Contribution to Snowmass 2021; 41 pages, 1 figure. v2: missing ref and added missing topical group conveners. v3: fixed typo

    Air pollution modelling using a graphics processing unit with CUDA

    Get PDF
    The Graphics Processing Unit (GPU) is a powerful tool for parallel computing. In the past years the performance and capabilities of GPUs have increased, and the Compute Unified Device Architecture (CUDA) - a parallel computing architecture - has been developed by NVIDIA to utilize this performance in general purpose computations. Here we show for the first time a possible application of GPU for environmental studies serving as a basement for decision making strategies. A stochastic Lagrangian particle model has been developed on CUDA to estimate the transport and the transformation of the radionuclides from a single point source during an accidental release. Our results show that parallel implementation achieves typical acceleration values in the order of 80-120 times compared to CPU using a single-threaded implementation on a 2.33 GHz desktop computer. Only very small differences have been found between the results obtained from GPU and CPU simulations, which are comparable with the effect of stochastic transport phenomena in atmosphere. The relatively high speedup with no additional costs to maintain this parallel architecture could result in a wide usage of GPU for diversified environmental applications in the near future.Comment: 5 figure

    Perspectives of Nuclear Physics in Europe: NuPECC Long Range Plan 2010

    Get PDF
    The goal of this European Science Foundation Forward Look into the future of Nuclear Physics is to bring together the entire Nuclear Physics community in Europe to formulate a coherent plan of the best way to develop the field in the coming decade and beyond.<p></p> The primary aim of Nuclear Physics is to understand the origin, evolution, structure and phases of strongly interacting matter, which constitutes nearly 100% of the visible matter in the universe. This is an immensely important and challenging task that requires the concerted effort of scientists working in both theory and experiment, funding agencies, politicians and the public.<p></p> Nuclear Physics projects are often “big science”, which implies large investments and long lead times. They need careful forward planning and strong support from policy makers. This Forward Look provides an excellent tool to achieve this. It represents the outcome of detailed scrutiny by Europe’s leading experts and will help focus the views of the scientific community on the most promising directions in the field and create the basis for funding agencies to provide adequate support.<p></p> The current NuPECC Long Range Plan 2010 “Perspectives of Nuclear Physics in Europe” resulted from consultation with close to 6 000 scientists and engineers over a period of approximately one year. Its detailed recommendations are presented on the following pages. For the interested public, a short summary brochure has been produced to accompany the Forward Look.<p></p&gt
    corecore