The Graphics Processing Unit (GPU) is a powerful tool for parallel computing.
In the past years the performance and capabilities of GPUs have increased, and
the Compute Unified Device Architecture (CUDA) - a parallel computing
architecture - has been developed by NVIDIA to utilize this performance in
general purpose computations. Here we show for the first time a possible
application of GPU for environmental studies serving as a basement for decision
making strategies. A stochastic Lagrangian particle model has been developed on
CUDA to estimate the transport and the transformation of the radionuclides from
a single point source during an accidental release. Our results show that
parallel implementation achieves typical acceleration values in the order of
80-120 times compared to CPU using a single-threaded implementation on a 2.33
GHz desktop computer. Only very small differences have been found between the
results obtained from GPU and CPU simulations, which are comparable with the
effect of stochastic transport phenomena in atmosphere. The relatively high
speedup with no additional costs to maintain this parallel architecture could
result in a wide usage of GPU for diversified environmental applications in the
near future.Comment: 5 figure