69,525 research outputs found

    Grey-box Modelling of a Household Refrigeration Unit Using Time Series Data in Application to Demand Side Management

    Get PDF
    This paper describes the application of stochastic grey-box modeling to identify electrical power consumption-to-temperature models of a domestic freezer using experimental measurements. The models are formulated using stochastic differential equations (SDEs), estimated by maximum likelihood estimation (MLE), validated through the model residuals analysis and cross-validated to detect model over-fitting. A nonlinear model based on the reversed Carnot cycle is also presented and included in the modeling performance analysis. As an application of the models, we apply model predictive control (MPC) to shift the electricity consumption of a freezer in demand response experiments, thereby addressing the model selection problem also from the application point of view and showing in an experimental context the ability of MPC to exploit the freezer as a demand side resource (DSR).Comment: Submitted to Sustainable Energy Grids and Networks (SEGAN). Accepted for publicatio

    Optimized regulator for the quantized anharmonic oscillator

    Get PDF
    The energy gap between the first excited state and the ground state is calculated for the quantized anharmonic oscillator in the framework of the functional renormalization group method. The compactly supported smooth regulator is used which includes various types of regulators as limiting cases. It was found that the value of the energy gap depends on the regulator parameters. We argue that the optimization based on the disappearance of the false, broken symmetric phase of the model leads to the Litim's regulator. The least sensitivity on the regulator parameters leads however to an IR regulator being somewhat different of the Litim's one, but it can be described as a perturbatively improved, or generalized Litim's regulator and provides analytic evolution equations, too.Comment: 8 pages, 4 figure

    A "poor man's" approach for high-resolution three-dimensional topology optimization of natural convection problems

    Full text link
    This paper treats topology optimization of natural convection problems. A simplified model is suggested to describe the flow of an incompressible fluid in steady state conditions, similar to Darcy's law for fluid flow in porous media. The equations for the fluid flow are coupled to the thermal convection-diffusion equation through the Boussinesq approximation. The coupled non-linear system of equations is discretized with stabilized finite elements and solved in a parallel framework that allows for the optimization of high resolution three-dimensional problems. A density-based topology optimization approach is used, where a two-material interpolation scheme is applied to both the permeability and conductivity of the distributed material. Due to the simplified model, the proposed methodology allows for a significant reduction of the computational effort required in the optimization. At the same time, it is significantly more accurate than even simpler models that rely on convection boundary conditions based on Newton's law of cooling. The methodology discussed herein is applied to the optimization-based design of three-dimensional heat sinks. The final designs are formally compared with results of previous work obtained from solving the full set of Navier-Stokes equations. The results are compared in terms of performance of the optimized designs and computational cost. The computational time is shown to be decreased to around 5-20% in terms of core-hours, allowing for the possibility of generating an optimized design during the workday on a small computational cluster and overnight on a high-end desktop

    A Sufficient Condition for Power Flow Insolvability with Applications to Voltage Stability Margins

    Full text link
    For the nonlinear power flow problem specified with standard PQ, PV, and slack bus equality constraints, we present a sufficient condition under which the specified set of nonlinear algebraic equations has no solution. This sufficient condition is constructed in a framework of an associated feasible, convex optimization problem. The objective employed in this optimization problem yields a measure of distance (in a parameter set) to the power flow solution boundary. In practical terms, this distance is closely related to quantities that previous authors have proposed as voltage stability margins. A typical margin is expressed in terms of the parameters of system loading (injected powers); here we additionally introduce a new margin in terms of the parameters of regulated bus voltages.Comment: 12 pages, 7 figure
    corecore