415 research outputs found

    Grey Wolf Optimizer-Based Approaches to Path Planning and Fuzzy Logic-based Tracking Control for Mobile Robots

    Get PDF
    This paper proposes two applications of Grey Wolf Optimizer (GWO) algorithms to a path planning (PaPl) problem and a Proportional-Integral (PI)-fuzzy controller tuning problem. Both optimization problems solved by GWO algorithms are explained in detail. An off-line GWO-based PaPl approach for Nonholonomic Wheeled Mobile Robots (NWMRs) in static environments is proposed. Once the PaPl problem is solved resulting in the reference trajectory of the robots, the paper also suggests a GWO-based approach to tune cost-effective PI-fuzzy controllers in tracking control problem for NWMRs. The experimental results are demonstrated through simple multiagent settings conducted on the nRobotic platform developed at the Politehnica University of Timisoara, Romania, and they prove both the effectiveness of the two GWO-based approaches and major performance improvement

    Q-LEARNING, POLICY ITERATION AND ACTOR-CRITIC REINFORCEMENT LEARNING COMBINED WITH METAHEURISTIC ALGORITHMS IN SERVO SYSTEM CONTROL

    Get PDF
    This paper carries out the performance analysis of three control system structures and approaches, which combine Reinforcement Learning (RL) and Metaheuristic Algorithms (MAs) as representative optimization algorithms. In the first approach, the Gravitational Search Algorithm (GSA) is employed to initialize the parameters (weights and biases) of the Neural Networks (NNs) involved in Deep Q-Learning by replacing the traditional way of initializing the NNs based on random generated values. In the second approach, the Grey Wolf Optimizer (GWO) algorithm is employed to train the policy NN in Policy Iteration RL-based control. In the third approach, the GWO algorithm is employed as a critic in an Actor-Critic framework, and used to evaluate the performance of the actor NN. The goal of this paper is to analyze all three RL-based control approaches, aiming to determine which one represents the best fit for solving the proposed control optimization problem. The performance analysis is based on non-parametric statistical tests conducted on the data obtained from real-time experimental results specific to nonlinear servo system position control

    Data-Driven Model-Free Sliding Mode and Fuzzy Control with Experimental Validation

    Get PDF
    The paper presents the combination of the model-free control technique with two popular nonlinear control techniques, sliding mode control and fuzzy control. Two data-driven model-free sliding mode control structures and one data-driven model-free fuzzy control structure are given. The data-driven model-free sliding mode control structures are built upon a model-free intelligent Proportional-Integral (iPI) control system structure, where an augmented control signal is inserted in the iPI control law to deal with the error dynamics in terms of sliding mode control. The data-driven model-free fuzzy control structure is developed by fuzzifying the PI component of the continuous-time iPI control law. The design approaches of the data-driven model-free control algorithms are offered. The data-driven model-free control algorithms are validated as controllers by real-time experiments conducted on 3D crane system laboratory equipment

    A Survey of Swarm Intelligence-based Optimization Algorithms for Tuning of Cascade Control Systems: Concepts, Models and Applications

    Get PDF
    Nowadays, cascade control is still one of the most used control strategies in the manufacturing and process industries. The new requirements of precision and robustness of position and trajectory tracking in control systems for manufacturing components at micro-scale, influenced by hard nonlinearities such as friction and backlash, have motivated the effort toward the development of algorithms for optimal tuning of control parameters. This paper presents a literature review of the algorithms and methods used to solve this problem. Swarm intelligence inspired optimization algorithms, namely particle swarm optimization algorithm (PSO) and grey wolf optimization algorithm (GWO), are applied for tuning of P-PI cascade controllers of CNC machine tool servo system in the presence of friction and backlash. The objective of the optimization is to minimize the maximum position error during the reversal of the axes. A comparative analysis of proposed algorithms with a standard industry-based fine tune (FT) method is also provided. Simulation study as well as real-world experiments carried out on a CNC machine tool controller show a remarkable improvement in the performance of the cascade control system using the proposed swarm intelligence-based strategy

    Performance Improvement of Low-Cost Iterative Learning-Based Fuzzy Control Systems for Tower Crane Systems

    Get PDF
    This paper is dedicated to the memory of Prof. Ioan Dzitac, one of the fathers of this journal and its founding Editor-in-Chief till 2021. The paper addresses the performance improvement of three Single Input-Single Output (SISO) fuzzy control systems that control separately the positions of interest of tower crane systems, namely the cart position, the arm angular position and the payload position. Three separate low-cost SISO fuzzy controllers are employed in terms of first order discrete-time intelligent Proportional-Integral (PI) controllers with Takagi-Sugeno-Kang Proportional-Derivative (PD) fuzzy terms. Iterative Learning Control (ILC) system structures with PD learning functions are involved in the current iteration SISO ILC structures. Optimization problems are defined in order to tune the parameters of the learning functions. The objective functions are defined as the sums of squared control errors, and they are solved in the iteration domain using the recent metaheuristic Slime Mould Algorithm (SMA). The experimental results prove the performance improvement of the SISO control systems after ten iterations of SMA

    INTELLIGENT MODELLING OF GRADIENT FLEXIBLE PLATE STRUCTURE UTILISING HYBRID EVOLUTIONARY ALGORITHM

    Get PDF
    The gradient flexible plate structure has been widely used in engineering industries. However, the gradient flexible plate is susceptible to vibrational disturbances and affecting its durability and performance over time. Hence, the unwanted vibration needs to be controlled and can be accomplished by developing an accurate model. Despite that, the accurate model is hard to be obtained especially in estimating the model parameters. Thus, the research presents the development of dynamic modelling for gradient flexible plate structure (GFPS). A slanted GFPS with orientation angle of 30° and all edges clamped was developed and fabricated to represent the actual dynamics of the system. Then, data acquisition and instrumentation system were integrated to the rig to collect the input-output vibration data. The research utilised parametric system identification based on autoregressive with exogenous input (ARX) model structure. First, evolutionary algorithms, namely particle swarm optimisation (PSO) and grey wolf optimisation (GWO) were used in developing GFPS dynamic model and their performances were compared. It was discovered that GWO model outperformed PSO model. However, the computational time of GWO is slower compared to PSO. Thus, a hybrid of grey wolf and particle swarm optimisation (GWO-PSO) were proposed to further improve the system modelling. It was found out that the hybrid GWO-PSO model outperformed PSO and GWO models by achieving the lowest mean squared error, correlation up to 95 % confidence level, and good stability. The obtained GWO-PSO models which is model order 2 and model order 4 were verified by using proportional-integral-derivative (PID) based controller. Their performances were measured in terms of model robustness based on vibration suppression. The final result confirmed that model order 2 of GWO-PSO is the optimum model to represent GFPS system modelling with 71.08% vibration attenuation

    A LOW-COST APPROACH TO DATA-DRIVEN FUZZY CONTROL OF SERVO SYSTEMS

    Get PDF
    Servo systems become more and more important in control systems applications in various fields as both separate control systems and actuators. Ensuring very good control system performance using few information on the servo system model (viewed as a controlled process) is a challenging task. Starting with authors’ results on data-driven model-free control, fuzzy control and the indirect model-free tuning of fuzzy controllers, this paper suggests a low-cost approach to the data-driven fuzzy control of servo systems. The data-driven fuzzy control approach consists of six steps: (i) open-loop data-driven system identification to produce the process model from input-output data expressed as the system step response, (ii) Proportional-Integral (PI) controller tuning using the Extended Symmetrical Optimum (ESO) method, (iii) PI controller parameters mapping onto parameters of Takagi-Sugeno PI-fuzzy controller in terms of the modal equivalence principle, (iv) closed-loop data-driven system identification, (v) PI controller tuning using the ESO method, (vi) PI controller parameters mapping onto parameters of Takagi-Sugeno PI-fuzzy controller. The steps (iv), (v) and (vi) are optional. The approach is applied to the position control of a nonlinear servo system. The experimental results obtained on laboratory equipment validate the approach

    A CENTER MANIFOLD THEORY-BASED APPROACH TO THE STABILITY ANALYSIS OF STATE FEEDBACK TAKAGI-SUGENO-KANG FUZZY CONTROL SYSTEMS

    Get PDF
    The aim of this paper is to propose a stability analysis approach based on the application of the center manifold theory and applied to state feedback Takagi-Sugeno-Kang fuzzy control systems. The approach is built upon a similar approach developed for Mamdani fuzzy controllers. It starts with a linearized mathematical model of the process that is accepted to belong to the family of single input second-order nonlinear systems which are linear with respect to the control signal. In addition, smooth right-hand terms of the state-space equations that model the processes are assumed. The paper includes the validation of the approach by application to stable state feedback Takagi-Sugeno-Kang fuzzy control system for the position control of an electro-hydraulic servo-system

    TRUSS STRUCTURE OPTIMIZATION BASED ON IMPROVED WOLF PACK ALGORITHM

    Get PDF
    Aiming at the optimization of truss structure, a wolf pack algorithm based on chaos and improved search strategy was proposed. The mathematical model of truss optimization was constructed, and the classical truss structure was optimized. The results were compared with those of other optimization algorithms. When selecting and updating the initial position of wolves, chaos idea was used to distribute the initial value evenly in the solution space; phase factor was introduced to optimize the formula of wolf detection; information interaction between wolves is increased and the number of runs is reduced. The numerical results show that the improved wolf pack algorithm has the characteristics of fewer parameters, simple programming, easy implementation, fast convergence speed, and can quickly find the optimal solution. It is suitable for the optimization design of the section size of space truss structures

    Enhanced Grey Wolf Optimization based Hyper-parameter optimized Convolution Neural Network for Kidney Image Classification

    Get PDF
    Over the last few years, Convolution Neural Networks (CNN) have shown dominant performance over real world applications due to their ability to find good solutions and deal with image data. However their performance is highly dependent on the network architecture and methods for optimizing their hyper parameters especially number and size of filters. Designing a good CNN architecture requires human expertise and domain knowledge. So, it is difficult in CNN to find sufficient number and size of filters for classification problems. The standard GWO algorithm used for any optimization purpose suffers from some issues such as slow convergence speed, trapping in local minima and unable to maintain balance between exploration and exploitation. In order to have proper balance between these phases, two modifications in GWO are introduced in this paper. A technique for finding optimum CNN architecture using methods based on Enhanced Grey Wolf Optimization (E-GWO) is proposed. The paper presents optimization of hyper parameters (numbers and size of filters in convolution layer) of CNN using E-GWO to improve the performance of the model. Kidney ultrasound images dataset collected from ultrasound centre is used to evaluate the performance of the proposed algorithm. Experimental results showed that optimization of CNN with E-GWO outperformed CNN optimized with traditional GA, PSO and GWO and conventional CNN yielding 97.01% accuracy. At last, the obtained results are statistically validated using t-test
    corecore