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Abstract—Nowadays, cascade control is still one of the most 

used control strategies in the manufacturing and process 

industries. The new requirements of precision and 

robustness of position and trajectory tracking in control 

systems for manufacturing components at micro-scale, 

influenced by hard nonlinearities such as friction and 

backlash, have motivated the effort toward the development 

of algorithms for optimal tuning of control parameters. This 

paper presents a literature review of the algorithms and 

methods used to solve this problem. Swarm intelligence 

inspired optimization algorithms, namely particle swarm 

optimization algorithm (PSO) and grey wolf optimization 

algorithm (GWO), are applied for tuning of P-PI cascade 

controllers of CNC machine tool servo system in the 

presence of friction and backlash. The objective of the 

optimization is to minimize the maximum position error 

during the reversal of the axes. A comparative analysis of 

proposed algorithms with a standard industry-based fine 

tune (FT) method is also provided. Simulation study as well 

as real-world experiments carried out on a CNC machine 

tool controller show a remarkable improvement in the 

performance of the cascade control system using the 

proposed swarm intelligence-based strategy.  

Keywords—swarm intelligence, particle swarm optimization, 

grey wolf optimizer, cascade control systems 

I. INTRODUCTION 

Cascade control systems are one of the most used 

control structures not only in process industries but also in 

manufacturing industries, particularly in the field of 

computer numerical control. Comparing to conventional 

single-loop feedback control systems, cascade control 

systems have the ability to correct or eliminate 

disturbances before they influence the controlled variable 

of interest and overcome the drawbacks when such 

disturbances related to the manipulated variable occur. A 

typical configuration of the cascade control system is 
based on two controllers within two nested loops, inner 

and outer loop. The controller in the inner loop is the 

primary (also called master) and the controller in the outer 

loop is secondary (aka slave). According to [1], the 

principal benefits of implementing such a control scheme 

are in the following two aspects (i) fast dynamic of the 

inner loop which can eliminate input disturbances, and (ii) 

improvement of the system response speed. On the other 

hand, their simple structure and easy way of 

implementation make them widely adopted in the 

industrial processes, especially in the process control 

industry and manufacturing industry.  

Design and tuning of cascade control parameters are the 

most significant issues in this field. Therefore, many 
methods and approaches have been proposed to tune the 

parameters of controllers and achieve better control 

performance. One of the possible approaches that can be 

found in the state-of-the-art literature is based on the 

classical auto-tuning method. The authors in [2] proposed 

an on-line pattern recognition approach to acquire the 

parameters and expert system based on fuzzy logic 

inference to tune cascade control parameters of PID 

controllers online. The authors in [3] designed a cascade 

control system with the ability to tune one optimal 

parameter of PID controllers. Furthermore, an automatic 
tuning methodology was proposed in [4] in order to take 

into consideration high load disturbance rejection 

performance. Achieved simulation results lead towards 

conclusions that the proposed open–loop procedure allows 

advantages in terms of simultaneous tuning of the PID 

controllers as well as in the determination of a command 

signal.  

On the other side, many approaches based on a single 

relay feedback test were reported in the relevant literature. 

The methodology for tuning parameters of the cascade 

control system was presented in [1], where two cases were 

analyzed (i) when process models are available and (ii) 
when process models are not available. According to the 

aforementioned methodology, the authors developed an 

auto-tuning method that uses relay feedback. As a result, 

phases of identification and tuning of the parameters are 

decoupled without the need for an extensive trial- and -

error efforts for modeling and tuning. Furthermore, the 

authors in [5] proposed an auto-tuning procedure based on 

a single relay experiment. This procedure allows 

parameters for both loops to be identified simultaneously. 

The automatic tuning method based on a single relay 

experiment was proposed in [6]. The experimental results 
demonstrated the effectiveness of the tuning method when 

it is implemented in the domain of process control.  

In other more contemporary works, algorithms are 

suggested for the direct design of cascade controllers 

driven by input-output data with a focus based on Virtual 

Feedback Tuning (VRFT). In this way, the experimental 



data serve to adjust the internal and external loops [7]. 

The automatic method that simultaneously tunes both PID 

controllers of the cascade control system was developed 
[8]. The method is based on a single closed-loop step test, 

while process information is represented by using the B-

spline series. Optimization in the frequency domain with 

restrictions on maximum sensitivity, the limit of 

multiplicative uncertainty, and sensitivity to measurement 

noise is shown in [9]. However, these works are applied to 

systems with slow dynamics and with requirements of 

precision and quality in the dynamic response that are not 

very demanding. A large variety of control techniques 

such as predictive control and sliding control have been 

reported in the literature [10], [11], and fuzzy and neuro-
fuzzy control techniques have been reported in [12], [13]. 

According to the presented literature review, optimal 

tuning of cascade control systems’ parameters becomes a 

cumbersome task in the presence of hard nonlinearities 

(friction, backslash, stiction). In the last two decades, 

nature-inspired swarm intelligence metaheuristic 

algorithms have been used as very efficient techniques for 

obtaining the optimal solutions of high-dimensional, 

nonlinear, and complex optimization problems [14]. The 

popularity of those algorithms is due to several main 

reasons [15]: simplicity in concept, flexibility to adapt to 

different problems, gradient-free mechanism, and ability to 
avoid local optima. Therefore, some of the metaheuristic 

methods were applied in the tuning of the controllers for 

cascade control systems. A multi-objective GA for optimal 

tuning of a networked linear controller applied to control a 

high-performance drilling process was proposed in [16]. 

The tool’s working life and the material removal rate are 

criteria to be maximized. Furthermore, investigations in 

this field have been continued and authors in [13] 

implemented a hybrid approach based on an adaptive 

neuro-fuzzy inference system for modeling and control of 

the cutting force during the high-performance drilling 
process. An evolutionary algorithm called differential 

evolution (DE) was applied in [17] to tune the parameters 

of the adaptive cascade controller. Although the DE 

algorithm demonstrated effectiveness in trajectory tracking 

control of the hydraulic actuator, practical implementation 

of the proposed controller was not presented in the paper. 

In literature [18], a novel swarm intelligence-based Whale 

Optimization Algorithm (WOA) is applied for optimal 

design and tuning parameters of fuzzy control systems. 

The particle swarm optimization (PSO) algorithm is a 

population-based method originally proposed in [19]. It 

has been proven to be a powerful tool for solving global 
engineering optimization problems. Compared to other 

algorithms, the advantages of the PSO algorithm lie in its 

easy programming and implementation, fast convergence 

speed, and effective performance [20], [21], [22]. These 

advantages motivated us to introduce the PSO algorithm 

to optimize the parameters of servosystem influenced by 

hard nonlinearities such as friction and backlash. Another 

motivation comes from a literature survey of current state-

of-the-art methods. Although the authors in [23] presented 

a cascade control system where the inner and outer loop of 

the controllers are tuned by the PSO algorithm, to the best 
of authors’ knowledge, none of the literature sources in 

the field has carried out the influence of the hard 

nonlinearities (friction and backslash) on cascade 

controllers.  

On the other side, a grey wolf optimizer (GWO) is a 

novel population-based method proposed in [15]. 

According to [24], the main advantages of this method are 
(i) simple and free from computational burden, (ii) 

flexible to apply for different problems without any 

special modification of its structure (iii) better capability 

to avoid local optima in comparison to the conventional 

optimization algorithm, (iv) easy to transform into the 

programming language and implement. 

Therefore, in this paper, PSO and GWO algorithms are 

applied to identify optimal parameters of servosystem 

influenced by hard nonlinearities such as friction and 

backlash, as well as to provide near-optimal solutions of 

P/PI cascade controllers’ parameters. The main objective is 
to minimize the maximum position error while maintaining 

accuracy and without significantly increasing the control 

effort. The performance of the proposed PSO and GWO 

algorithms are experimentally verified and compared with 

the standard industry approach called Fine Tune (FT). 

The structure of the paper is organized as follows. The 

literature overview of the cascade controllers and 

approaches used to model and optimize those systems are 

presented in introductory Section 1. Section 2 introduces a 

problem formulation with the mechanical modeling of the 

proposed system. Section 3 gives a description of the PSO 

algorithm, while Section 4 presents the GWO algorithm 
applied for tuning of P/PI controller parameters. The 

experimental results are given in Section 5. The 

concluding remarks of the paper are summarized in 

Section 6. 

II. PROBLEM FORMULATION 

The drive system of the CNC machine tool analyzed in 

this paper is based on two masses (motor and load) linked 

with the both elastic and dumping connection. The motor 

coupled to load (Fig. 1) is represented as a two-mass 
oscillator, where the first mass represents the moment of 

inertia of the drive and the second mass refers to the 

moment of inertia of the load side. The elastic and 

dumping components are modeled by spring and dumper, 

respectively. The parameters of this mechanical model are 

as follows: 
• K is the torsion spring constant;   
• B is the inner damping coefficient of the shaft;  
• JM is the motor moment of inertia;  
• JL is the load moment of inertia;  
• MM is the motor torque;   
• ML is the load torque disturbance;  
• MS is the transmitted shaft torque. 

 
In the model used in this paper, the motor angular 

velocity (ωM), and load angular velocity (ωL), as well as 

the transmitted shaft torque (MS), are used as state 

variables. 

JM, M                        JL, L 
 

 

 

 

 

 

 

Motor (MM)       Load (ML) 

Fig. 1. Model of the two-mass system 
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After a series of transformations, the transfer function 

of motor angular velocity (ωM) to the motor torque (MM) 

is given by equation (1): 
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where characteristic angular frequencies ω01 and ω02 are 
introduced as (2) and (3):  
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and damping coefficients D1 and D2 are given by (4) and 

(5): 
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Furthermore, the transfer function between angular 

velocity of the load (ωL) and angular velocity of the motor 

(ωM) is presented by equation (6): 
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A. Friction 

Friction is a phenomenon that has a strong influence 

on the performance and behavior of both mechanical and 

electromechanical systems. Since the effect of friction can 

lead to significant error of CNC machine tools positioning 

system, good representation and prediction of friction 

force are important for control of such kind of 
electromechanical systems. Therefore, in order to 

compensate the error caused by the friction force, the 

combined Coulomb-viscous model of friction force F is 

adopted (equation 7):  

C Vsgn( ) F F v F v         (7) 

where F is the friction force, v is the relative velocity 

between two surfaces in contact, FC is the Coulomb 

friction level, and component FV represents a small 

viscous friction. 

B. Backlash 

Besides friction, the backlash is another common 

nonlinear factor that affects the behavior of the CNC 

machine tools positioning systems. In order to model this 

nonlinearity, the classic dead zone model is utilized in this 

paper. The exponential model for leads-crew backlash 

compensation is performed according to the following 

equation (8): 
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where PP2 and PP3 are backlash peak amplitude and 

backlash peak time period, respectively.  

In order to model the phenomenon of hysteresis 
nonlinearity in the actuator, parameter fH which represents 

the amplitude of the hysteresis is adopted in the proposed 

control system. 

C. Fitness function 

According to the aforementioned analysis, a target 

function for optimization is represented by the following 
six parameters, equation (9): 

pos vel vel

p p 2 3 H     iK K K K PP PP f   

                 

(9) 

where pos

pK  represents the proportional gain of the position 

controller in the outer loop, vel

iK and vel

p  K represent the 

proportional and integral gain of the speed controller in 
the inner loop, PP2 and PP3 are the backlash peak 

amplitude and the backlash peak time compensators, 

respectively, and fH is the parameter that compensates the 

friction hysteresis. 

The main objective of this research is to minimize the 

maximum position error Epk (equation 10) which is caused 

by changing the direction of the axis or by changing the 

trajectory of the movement. Epk is directly influenced by 

hard nonlinearities of the mechanical systems such as 

friction and backlash and its minimization is of high 

importance for the improvement of the product quality.   

 pos vel vel

p p 2 3 H pkOPT
     argmin max( )iK K K K PP PP f E   

        

(10) 

III. PARTICLE SWARM OPTIMIZATION ALGORITHM 

Particle swarm optimization (PSO) algorithm, 

originally proposed in [19], is a population-based 

optimization method inspired by the movement and 

intelligence of the organisms in a swarm (e.g., a flock of 

birds, or school of fish). In order to search for food, each 

member of the swarm determines its velocity based on 

their personal experience as well as information gained 

through interaction with other members of the swarm. 

Traditional PSO algorithm is initialized with a 

population of randomly generated candidate solutions 
known as particles. Each particle flies through the 

multidimensional search space of the optimization 

problem with a specific velocity searching for the optimal 

solution; its position represents a potential solution of the 

problem and its velocity is dynamically adjusted 

according to its own flying experience and according to 

the neighbouring flying experience. Particle position and 

particle velocity are updated iteratively by using equation 

(11) and equation (12):  
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where:  

 t is the generation number; 

 represents the velocity of the particle i in 
generation t, 

 represents the velocity of the particle i in 

generation t+1; 

 represents the position of the particle i in 

generation t;  

 represent the positions of the particle i in 

generation t+1; 

 is the local best solution (“pbest”) of each particle;  

 is the global best solution (“gbest”) of the swarm;  

 W is inertia weight set as in equation (13);  

 C1 and C2 are positive acceleration constants; 

 rand() and Rand() are two random numbers in the 

range [0,1].  

 

The pseudocode of PSO algorithm implemented to 

optimize fitness function given by equation (10) is 

described in Table I [25]: 

TABLE I.  PSEUDO CODE OF PSO ALGORITHM 

Initialize the parameters of PSO algorithm (swarm size, 

maximum number of generation, inertia weights, Wmax and 
Wmin, acceleration constants, C1 and C2); 

Initialize a swarm of particles with random positions and 
velocities (equations 14 and 15); 

Evaluate each particle’s fitness function by using (equation 
10); 

Initialize the global (“gbest”) and the local best position 
(“pbest”);  

Repeat 

      generation = generation + 1; 

      generate next swarm by updating the velocities  and  

      positions of the particles; 

      evaluate swarm; 

      compute each particle’s fitness function (equation 10); 

      find new global (“gbest”) and the local best position  

      (“pbest”); 

      update “gbest” of the swarm and “pbest” of each particle; 

Until the maximum of generation is not met 

Output: the optimal parameters 

pos vel vel

p p 2 3 H OPT
     iK K K PP PP f    

  

IV. GREY WOLF OPTIMIZATION ALGORITHM 

Grey Wolf Optimization (GWO) algorithm, initially 

proposed in [15], belongs to a class of novel swarm-based 

meta-heuristics inspired by the social leadership and 

hunting technique of grey wolves in nature. According to 
the GWO algorithm, the grey wolves are classified into 

four levels of social hierarchy: alpha (α), beta (β), delta 

(δ), and omega (ω). The alphas are the leaders of the 

group responsible for the hunting process and making 

decisions. The betas belong to the second level of the 

hierarchy and they assist the alphas in making decisions, 

while deltas belong to the third level and dominate the 

wolves of the last level omega. The omegas are the lowest 

ranking grey wolves on the pyramid of social hierarchy.  

 

GWO algorithm is based on the aforementioned social 

behavior of the grey wolves. The optimization (hunting) 

process is initialized with randomly generated candidate 
solutions (grey wolves) in a multi-dimensional search 

space. This phase of searching for prey is also known as 

exploration. The best fitness solution is defined as alpha 

(α), the second and third best solutions are beta (β) and 

delta (δ), and the rest of the solutions are assumed to be 

omega (ω). In order to catch the prey, the α, β, and δ grey 

wolves firstly encircle the victim. During the optimization 

(hunting) process, they estimate the victim position and 

update their positions randomly around the victim 

according to the mathematical model given by the 

following equations (14) and (15): 

(t) (t)pD C X X  

                   

(14) 

(t 1) (t) A DpX X   

                 

(15) 

where t represents iteration,
pX is the position vector of 

the prey, X is the position vector of a grey wolf, A and C

are coefficient vectors calculated by (16), (17): 

12A a r a  

                                

(16) 

22C r 

                    

(17) 

The components of vector a  linearly decrease from 2 

to 0, and r1 and r2 are random vectors in [0,1]. 

Furthermore, hunting behavior of the grey wolves can 

be mathematically modeled by equations (18), (19) and 

(20): 
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The positions of α, β, and δ grey wolves (the first free 

best solutions) are updated according to the following 

formulas (21), (22), (23) and (24): 
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Finally, the hunting process is finished by attaching 

the prey (exploitation phase). The pseudocode of the 
GWO algorithm is presented in Table II:  

 



TABLE II.  PSEUDO CODE OF GWO ALGORITHM 

Initialize the parameters of GWO algorithm (population size, 
maximum number of iterations, position vector X, and vectors 
A, a, C); 

Initialize a population of grey wolves (equations 14 and 15); 

Evaluate each grey wolf’s fitness function by using (equation 
10);  

Identify three best wolves (the best search agent - Xα, the 
second best search agent - Xβ,  the third best search agent - Xδ) 
according to their fitness functions; 

Repeat 

      generate next population by updating each agent position   

      (21-23); 

      update a, A, C by using (16) and (17); 

      compute each agent’s fitness function (equation 10); 

      update Xα, Xβ, Xδ; 

Until the maximum of generation is not met 

Output: the optimal parameters 

pos vel vel

p p 2 3 H OPT
     iK K K PP PP f    

V. EXPERIMENTAL RESULTS 

In order to validate the proposed optimization 
methodology, experimental simulations are performed in 

Matlab software package. The parameters of the PSO 

algorithm are set as follows: the size of population is 20, 

the maximum number of generations is 100, the inertia 

weight W is set starting with 1.1 and is linearly decreased 

to 0.1. Acceleration constants C1 and C2 are set to 2.0. The 

parameters for the GWO algorithm are set as follows: the 

size of population is 20, the maximum number of iterations 

is 100, the parameter a linearly decreased from 2 to 0, and 

r1 and r2 are random vectors in [0,1]. The simulation results 

of the PSO and GWO algorithm are compared with the 
results achieved by one of the standard industry 

approaches used to manually tune CNC machine tools - 

Fine Tune (FT) method. After the performing optimization 

process, the achieved optimal values of the six parameters, 
pos vel vel

p p 2 3 H     ,iK K K PP PP f   are presented in Table III. 

TABLE III.  CONTROL PARAMETERS 

Control 

parameters 

Optimization method 

Fine Tune 

method 

PSO 

algorithm 

Grey Wolf 

Optimizer 
pos

pK  66.6667 74.5 75 

vel

pK
 

0.2865 0.4983 0.2632 

vel

iK
 

0.0080 0.002401 0.0012 

2PP
 

0.7184 0.0902 0.4368 

3PP
 

0.0080 7.6635e-05 0.04393 

Hf  
0.1288 0.00596 0.00231 

 

Fig. 2 shows experimental comparisons of the FT 

method, PSO, and GWO approach for three merit 

functions, maximum position error (maxE), the accuracy 
(ITAE), and the control effort (IAU), respectively. As 

might be seen from Fig. 2, the GWO algorithm achieves a 

significant improvement in minimization of maximum 

error (66.4%) comparing with the FT method. The 

second-best result is achieved by the PSO algorithm with 

an improvement of (62.5%) comparing to the FT method. 

However, even though the position error achieved using 

swarm intelligence-based optimization algorithms is less, 
results reported in Fig. 2 show that the accuracy (ITAE) of 

the FT method was better in relation to the other two 

methods with less the control effort (IAU) required to 

follow the desired trajectory. 

 
Fig. 2. Simulation results 

VI. CONCLUSIONS 

 This paper presents two biologically inspired swarm 

intelligence-based optimization algorithms, namely 

particle swarm optimization algorithm (PSO) and grey 

wolf optimization (GWO) algorithm, implemented to 

optimally adjust parameters of the P-PI cascade 

controllers for CNC machine tool positioning system. 

Both the algorithms are proposed in order to 

simultaneously tune a proportional position controller in 
the external loop and a proportional-integral speed 

controller in the internal loop of the proposed cascade 

control system in the presence of nonlinearities. The 

minimization of the maximum position error directly 

influenced by nonlinearities such as friction and backlash 

is the main optimization objective of this work. The 

proposed optimization procedure results in a set of six 

optimal parameters of the servosystem: the proportional 

gain of the outer loop, the proportional and integral gain 

of the inner loop, the backlash peak amplitude, the 

backlash peak time, and the friction hysteresis parameter. 
The proposed PSO and GWO algorithms are implemented 

in Matlab software environment and experimental results 

are compared with ones obtained by applying the 

industry-driven methods named Fine Tune (FT) method. 

The achieved experimental results show a very important 

improvement in the tuning and behavior of the control 

system by minimization of the peak of the trajectory error. 

The advantage of the GWO over the FT method through 

the improvement of the maximum peak error is 66.4%, 

while the improvement of the PSO algorithm is 62.5%. 

Although the achieved position error (maxE) using swarm 
intelligence based optimization algorithms is less, better 

results in terms of accuracy (ITAE) are obtained using the 
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Fine Tune method.  One of the future research directions 

could be oriented towards the implementation of multi-

objective swarm intelligence-based optimization 
algorithms for the optimal design of cascade control 

systems. 
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