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Abstract. Servo systems become more and more important in control systems 

applications in various fields as both separate control systems and actuators. Ensuring 

very good control system performance using few information on the servo system model 

(viewed as a controlled process) is a challenging task. Starting with authors’ results on 

data-driven model-free control, fuzzy control and the indirect model-free tuning of fuzzy 

controllers, this paper suggests a low-cost approach to the data-driven fuzzy control of 

servo systems. The data-driven fuzzy control approach consists of six steps: (i) open-

loop data-driven system identification to produce the process model from input-output 

data expressed as the system step response, (ii) Proportional-Integral (PI) controller 

tuning using the Extended Symmetrical Optimum (ESO) method, (iii) PI controller 

parameters mapping onto parameters of Takagi-Sugeno PI-fuzzy controller in terms of 

the modal equivalence principle, (iv) closed-loop data-driven system identification, (v) 

PI controller tuning using the ESO method, (vi) PI controller parameters mapping onto 

parameters of Takagi-Sugeno PI-fuzzy controller. The steps (iv), (v) and (vi) are 

optional. The approach is applied to the position control of a nonlinear servo system. 

The experimental results obtained on laboratory equipment validate the approach. 

Key words: Closed-loop data-driven system identification, Data-driven fuzzy control, 

Extended Symmetrical Optimum method, Servo systems 

1. INTRODUCTION 

As specified in the project [1], in contrast to model-based control, data-driven control 

avoids the system (process) identification by constructing controllers directly from data. 

That is the reason why data-driven control is also referred to as model-free control (i.e. no 
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model in controller tuning), justifying the high interest in nonlinear controllers whose 

parameters are tuned using process input-output data after conducting few experiments, 

or, more generally, data-driven model-free control [2]. Instead, one or more experiments 

are conducted in order to use the information in controller tuning, and non-parametric 

system or process models) can be employed in this regard. 

A concise discussion on the popular data-driven control techniques is given in Precup 

et al. [3] pointing out the following ones that ensure the iterative experiment-based 

update of controller parameters: Iterative Feedback Tuning (IFT) [4], [5], Model-free 

Adaptive Control (MFAC) [6], [7], Simultaneous Perturbation Stochastic Approximation 

[8], [9], Correlation-based Tuning [10], [11], Frequency Domain Tuning [12], [13], 

Iterative Regression Tuning [14], and adaptive online IFT [15]. A review on data-driven 

control [16] offers classifications and highlights the role of observers and estimation in 

control, also leading to non-iterative data-driven control techniques: Model-Free Control 

(MFC) [17], [18], Virtual Reference Feedback Tuning (VRFT) [19], [20], Active 

Disturbance Rejection Control (ADRC) [21], [22], data-driven predictive control [23], 

[24], unfalsified control [25], [26], Data-Driven Inversion Based Control [27], [28], and 

the investigation of equivalent conditions on the given data under which different 

analysis and control problems can be solved [29]. Other representative techniques are 

emphasized in book [2]. It is suggestively stated in [3] and [30] that MFC is an efficient 

tool for Machine Learning; moreover, as specified earlier in [25], unfalsified control is 

also an efficient tool for Machine Learning. 

As pointed out in the studies conducted in [1] and [31], fuzzy control is an important 

subject in the area of nonlinear control as the fuzzy controllers are relatively easily 

understandable and also offer very good control system performance indices. However, 

the heuristic approach to design and tune fuzzy controllers is compensated by the 

systematic design of fuzzy controllers that can employ the stable design of fuzzy control 

systems, the optimal and robust controller design and tuning. Classical and recent 

applications of fuzzy control deal with Popov-type stability analysis [32], embedded 

fuzzy control system for machining processes [33], tire slip control [34], predictive 

functional control based on fuzzy models [35], stability and sensitivity analysis of fuzzy 

control systems [36], stability analysis dedicated to the fuzzy control of nonlinear 

processes [37], robust evolving cloud-based control [38], power control of series hybrid 

electric vehicles [39], vehicle navigation by fuzzy cognitive maps [40], fuzzy control for 

the iron ore sintering process [41], type-2 fuzzy control for line following [42], and 

Singularity-free fixed-time fuzzy control for robotic systems [43]. 

The model-free tuning of fuzzy controllers is an alternative approach to the model-

based design resulting in data-driven fuzzy control [1] to benefit from the advantages of 

data-driven control and fuzzy control and to mitigate their drawbacks. The combinations 

of data-driven model-free and fuzzy control include H∞ fuzzy control [44], fault tolerant 

fuzzy control [45], parameterized data-driven fuzzy control [46], data-driven interpretable 

fuzzy control [47], MFC merged with Proportional-Derivative (PD) Takagi-Sugeno fuzzy 

control [48], [49], MFAC merged with PD Takagi-Sugeno fuzzy control [50], [51], 

ADRC mixed with PD Takagi-Sugeno fuzzy control [52] and tuned by VRFT [22] as 

well, fuzzy logic-based adaptive ADRC [53], data-driven arithmetic fuzzy control using 

the distending function [54], and data-driven MFC developed around continuous-time 

intelligent Proportional-Integral (PI) control [31]. The indirect model-free tuning of fuzzy 

controllers has initially been proposed in authors’ papers [55] and [56], and continued in 
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[48] and [50] by controller structures that combine data-driven control and fuzzy control 

in order to incorporate model-free features in fuzzy control system structures. 

According to the studies carried out in [57]–[59], several auto-tuning approaches, 

using a single relay, a sequential array of relays or decentralized relays, are available in 

the literature. Relay identification can achieve fine tuning of controllers including fuzzy 

controllers. Since experiments are conducted with the control system, it is justified to 

consider auto-tuning as an approach to data-driven fuzzy control. Some recent approaches to 

the auto-tuning of fuzzy controllers include the auto-tuning of PI-fuzzy controllers for variable 

speed wind turbines [60], the PI-fuzzy logic-based tuning of controllers for hybrid wind & 

photovoltaic power systems [61], the auto-tuning of Proportional-Integral-Derivative (PID)-

fuzzy controllers for pitch angle control of wind turbines [62], telescope tracking systems 

[63], and indoor control for renewable air-conditioning [64]. 

Building upon authors’ results on the indirect model-free tuning on fuzzy controllers 

[55], [56] and the auto-tuning of PI controllers [65], [66], this paper suggests a low-cost 

approach to data-driven fuzzy control of servo systems focusing on servo systems that 

can be modeled by second-order systems with an integral (I) component and a small time 

constant. These servo systems are controlled by Takagi-Sugeno PI-fuzzy controllers. The 

data-driven fuzzy control approach consists of six steps which include open-loop and 

closed-loop data-driven system identification to produce the process model from input-

output data expressed as system step responses (i.e. non-parametric models), tuning the 

linear PI controller using the Extended Symmetrical Optimum (ESO) method [67], [68], 

and mapping the parameters of the PI controller onto the parameters of the Takagi-

Sugeno PI-fuzzy controller in terms of the modal equivalence principle [69]. The approach 

is important with respect to the state-of-the-art because it is relatively simple as far as both 

the theoretical support and the implementation are concerned. Nevertheless, only few of the 

steps must be proceeded, depending on the interests of the control systems designers, who 

do not need to possess strong knowledge on the control systems and the controlled processes. 

Concluding, this work presents a low-cost approach to data-driven fuzzy control. This 

approach is novel and feasible in practical applications. 

The rest of the paper treats the following topics: the tuning approach is presented in 

the next section. Section 3 is dedicated to the validation in the illustrative example of 

position control of a nonlinear servo system using a Takagi-Sugeno PI-fuzzy controller. 

Experimental results obtained on laboratory equipment [70] are included. The conclusions are 

pointed out in Section 4. 

2. THE TUNING APPROACH 

It is assumed that the servo system as a controlled process can be modeled by the 

transfer function P(s): 
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where kp is the process gain and T > 0 is the process small time constant or parasitic time 

constant. The transfer function in (1) includes the actuator dynamics and the measurement 

instrumentation dynamics. 
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The presence of the I component in the transfer function (1) increases the difficulty of 

system identification, namely the computation of the two parameters such that (1) to 

approximate with an acceptable accuracy the behavior of the real-world servo system. 

Two data-driven identification approaches, (i) and (ii) discussed as follows, are considered 

to be adequate for the process with the transfer function given in (1). 

(i) The open-loop approach. A step signal input is applied to the servo system around 

the operating point of interest on a time horizon of approximately 
T10 . 

If the step signal u(t) of magnitude u: 

 )()( tutu = 
 (2) 

is applied to the input of the servo system, as shown in Fig. 1, then a system response 

expressed in Fig. 1 is illustrated, where y(t) is the servo system (or process) output and 

also the controlled system output,  (t) is the unit step signal, and the subscript  

indicates the steady-state value of a certain variable. The step signal u(t) is also the 

control signal if the servo system is included in a control system structure, and u, which 

is used in the controller is assumed to be known, and matches one of the operating 

regimes that are important for the servo control system. 

 

Fig. 1 Input step signal applied as control signal and servo system response. This figure is 

adapted from Preitl et al. [66] 

Fig. 1 highlights that it is not necessarily impose to the servo system to evolve starting 

with zero initial conditions. The initial conditions are stated by means of the pair of input-

output data values (u0, y0), which define the initial operating point. Therefore, nonzero 

initial conditions can be accepted, which is the usual situation in servo control systems 

operation. 

The expression of the system response is: 
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For large values of time, i.e. t  >> T, the exponential component is vanishing because 

0lim
/

=−

→

Tt

t
e , so the steady-state response can be approximated by: 

 .)()( 0 −+ uTtkyty P
 (4) 

As shown in [65] and [66], the time constant Td = T, where the asymptote to the system 

response cuts the t axis in Fig. 1, plays the role of a pure time delay for which: 

 .368.0)( 0 += uTkyTy Pd
 (5) 

The data-driven identification approach (i) is carried out in terms of the steps (i1), (i2) 

and (i2) described as follows: 

Step (i1). A unit step signal defined in (2) is applied as a control signal to the servo 

system viewed as a controlled output and the system response is recorded. 

Step (i2). Considering two time moments t1 and t2, the corresponding output values 

y(t1) and y(t2) are measured on the basis of Fig. 1. The expression of the process small 

time constant is [65], [66]: 
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Step (i3). The expression of the process gain results after the manipulation of (5): 
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Using (4), another (approximate) way to compute 
Pk  is: 
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(ii) The closed-loop approach. A Proportional (P) controller with the transfer function C(s): 

 
CksC =)(  (9) 

is included in a control loop that represents the control system for the servo system (Fig. 

2), where kc is the controller gain. 

 

Fig. 2 Servo system control system structure as a control loop 

The variables and blocks in Fig. 2 are: r – reference input or set-point, r~  – filtered 

reference input, FR – reference input filter, d – disturbance input, which can be applied to 

the process input, the process output or, as shown in Fig. 2, in a certain (informational) 

place in the process structure, C – controller (a P controller in the framework of the 
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approach (ii)), P – controlled process, i.e. the servo system, which can be modeled using 

(1), yre −= ~  – control error. 

Using the control system structure illustrated in Fig. 2, the transfer functions of the 

blocks in (1) and (9), assuming the absence of the block Fr, the closed-loop control 

system transfer function with respect to the reference input (assuming a zero disturbance 

input) is expressed as: 
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with the parameters 
0  – natural frequency [65], [66]: 
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and   – damping factor [65], [66]: 
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For an adequately chosen value of kC the control system can be brought in the situation to 

have two complex conjugated poles and the system response with respect to a step reference 

input of magnitude r, which is also supposed to be known as u in relation with (2): 

 ),()( trtr = 
 (13) 

to exhibit the oscillatory behavior illustrated in Fig. 3. 

The expression of the control system response is: 
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The following notations are introduced: 
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for the damped natural frequency 
n  and the period of oscillations 

nT  of the response. 

Fig. 3 highlights, similar to the approach (i), that it is not necessarily imposed to the 

control system to evolve starting with zero initial conditions. In this context, the initial 

conditions are stated by means of the pair of input-output data values (r0, y0), which 

define the initial operating point, and nonzero initial conditions can be accepted as well. 

The considered situation is normal because this approach is applied only if the control 

systems designer considers that it is of interest to apply it for possible re-tuning the 

controller. 
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Fig. 3 Reference input step signal (without Fr) and control system response. This figure is 

adapted from Preitl et al. [66] and it assumes that all sub-systems of the control 

systems are implemented accurately 

The expressions of the time moments specific to the response and illustrated in Fig. 3 

are as follows [65], [66]: 
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and the relationship between the system response (output) values in Fig. 3, which also gives 

the overshoot 1, is [65], [66]: 
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Aiming an as accurate as possible data-driven identification, the control system must be 

brought in the situation 0.25 <  < 0.707 (it is recommended in [65] and [66] to set  = 0.5) 

by the appropriate modification of kC. This “ideal” value  = 0.5 is convenient in order to 

measure relatively easily the specific numerical values on both axes in Fig. 3. 

The relationships (16) and (17) are equivalent to the following reversed relationships 

[65], [66]: 
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In the conditions of known kC, measured 1 and Tn, and computed  and 0, the 

expressions of the two parameters in (1) are [65], [66]: 
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The data-driven identification approach (ii) is carried out in terms of the steps (ii1), 

(ii2) and (ii2) described as follows: 

Step (ii1). A unit step signal defined in (13) is applied as a reference input to the 

control system and the system response is recorded. 

Step (ii2). The controller gain kC is set such that to obtain a system response with 

0.25 <  < 0.707. If the system response fulfils this condition, the approach continues with 

the step (ii3). Otherwise, the step (ii1) is repeated. 

Step (ii3). The values of ym1, y and t21 are measured. Relationships in (18) are next 

applied to obtain the values of  and 0. Finally, relationships in (19) are applied to 

compute the values of T and next kp. 

PI controllers can cope with the process modeled in (1). The transfer function of a PI 

controller is C(S): 
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where kC > 0 or kc > 0 are two expressions of the controller gain, with their relation 

specified in (20), and Ti > 0 is the integral time constant. The ESO method [67], [68] is 

successfully applied to tune the PI controller parameters in (20) as it guarantees a trade-

off to the empirical control system performance specifications (expressed as maximum 

values of percent overshoot, settling time and rise time) of the linear control system 

making use of a single design parameter  within the largest recommended domain 

1 <   20. The PI tuning conditions specific to the ESO method are as follows [67], [68]: 
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The transfer function of the simplest reference input filter out of the two ones 

recommended in the papers [67] and [68] is: 
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The Takagi-Sugeno fuzzy controller is designed and tuned in terms of transferring in a 

fuzzy logic-like interpretation the knowledge from the PI controller structure. The structure 

and the input membership functions of a the low-cost Takagi-Sugeno fuzzy controller are 

presented in Fig. 4, where q−1 indicates the backward shift operator, td indicates the discrete 

time index, TISO-FC is the Two Inputs-Single Output fuzzy controller, e(td) is the 

increment of control error, and u(td) is the increment of control signal. 
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 A B 

Fig. 4 Structure (A) and input membership functions (B) of low-cost Takagi-Sugeno 

fuzzy controller. This figure is adapted from Precup et al. [71] 

Discretizing the continuous-time PI controller by Tustin’s method, the recurrent 

equation of the incremental discrete-time PI controller is as follows [71]: 
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and Ts > 0 is the sampling period. 

The TISO-FC block employs the weighted average method for defuzzification, and 

the SUM and PROD operators in the inference engine. The complete rule base of the 

TISO-FC block is expressed as [71]: 
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The role of the additional parameter , with the largest domain 0 <  < 1, is to reduce 

the overshoot of the control system. Therefore, (25) and the fuzzy controller structure 

make this low-cost fuzzy controller behaves as a bumpless interpolator between two 

linear PI controllers. 

The modal equivalence principle [69] applied to this Takagi-Sugeno PI-fuzzy controller 

leads to the tuning equation: 

 , ee BB =
 (26) 

where the parameter Be should be chosen according to the experience of the control 

systems designer. The parameter  is chosen in a similar way. The optimal tuning can be 

performed with very good results [71] to get the values of these parameters. 

Summarizing all aspects presented in this section, the low-cost data-driven fuzzy 

control approach consists of the six steps (dd1) to (dd6): 
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Step (dd1). The open-loop data-driven system identification approach (i) is applied to 

produce the process model in (1) using the input-output data of the controlled process 

(the servo system) expressed as the servo system step response shown in Fig. 1. 

Step (dd2). The linear PI controller is tuned using the ESO method such that to meet 

the performance specifications imposed to the control system. 

Step (dd3). The parameters of the PI controller are mapped onto the parameters of the 

Takagi-Sugeno PI-fuzzy controller using (26). 

Step (dd4). This step is optional and conducted only if the control systems designer 

considers that it is relevant. For example, such situations occur if the control system 

performance indices are deteriorated in time. The closed-loop data-driven system 

identification approach (ii) is applied to produce the process model in (1) using the input-

output data of the control system expressed as the (closed-loop) control system step 

response shown in Fig. 3. 

Step (dd5). This step is also optional in the context of the step (dd4). The linear PI 

controller is tuned using the ESO method such that to meet again the performance 

specifications imposed to the control system. 

Step (dd6). This step is also optional in the context of the step (dd4) and it is identical 

to the step (dd3). The parameters of the PI controller are mapped onto the parameters of 

the Takagi-Sugeno PI-fuzzy controller using (26). 

Since the step (dd4) is applied in terms of the real-world operation of the control 

system, a special attention should be paid to the transfer from the Takagi-Sugeno PI-

fuzzy controller to the P controller and vice-versa. Bumpless transfers should be ensured 

in this regard, meaning that the history of the “old” digital control algorithm requires to 

be modified in order to avoid big modifications of the control system, which might affect 

negatively the actuators and finally the control system behavior. A simple solution in the 

linear case is presented in the references [65] and [66]. 

3. EXPERIMENTAL RESULTS 

The tuning approach presented in the previous section is validated as follows by 

applying it to the design and tuning of a Takagi-Sugeno PI-fuzzy controller to the angular 

position of a nonlinear servo system laboratory equipment [70]. Some details on the steps 

are given as follows. The state-space model of the servo system is expressed as [71]: 
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where the control signal u(t) applied to the Direct Current (DC) motor is a pulse width 

modulated duty cycle, x1(t) = (t) (rad) is the angular position, x2(t) = (t) (rad/s) is the 
angular speed, and the superscript T indicates matrix transposition. The variable m(t) is 
the output of the saturation and dead zone static nonlinearity, modeled in the first part in 
(27), with the parameters ua = 0.15, ub = 0.1 and uc = 0.15. The application of the step (dd1) 

leads to the values of the servo system (i.e. process) parameters kP = 140 and T = 0.92 s. 
The first steps (dd1) and (dd2) of the approach presented in the previous section are 

applied. These two steps are applied simultaneously in terms of the optimal tuning [71] of the 
Takagi-Sugeno PI-fuzzy controller parameters such that to ensure a reduced parametric 
sensitivity with respect to one of the two parameters in (1). One set of linear PI controller and 
Takagi-Sugeno PI-fuzzy controller parameter values, which ensures the strongest mitigation 

of the parametric sensitivity with respect to T is recommended in [71]: β = 16.9763, kc = 
0.001884, Ti = 15.618 s, Be = 20, BΔe = 0.01281, and η = 0.287. Three optimization algorithms 
were applied in [71], however other ones could be of interest because of the nonlinearity of 
the process and the controller as, for example, parameterized genetic algorithms [72], [73], 
various algorithms adapted from their general formulation for community detection in 
networks [74], metaheuristic algorithms with information feedback models [75], MOEA/D 
[76], slime mould algorithms [77], grey wolf optimizers [78], and algorithms specific to 
neuro-fuzzy model training [79]. The optimization problems in this context should be defined 
with great care accounting for various constraints, which may be caused by man-computer 
symbiosis [80], stochastic demands [81], fault detection and isolation and recovery [82], trade-
off to approximation accuracy and complexity [83], and specific structures of fuzzy systems 
[84], [85], requiring appropriate handling and the modification of the optimization algorithms. 

Using the above parameter values and implementing the low-cost Takagi-Sugeno 

fuzzy controller according to the details given in the previous section, Fig. 5 offers a 

sample of experimental results for the fuzzy control system. Fig. 5 illustrates that the 

 

Fig. 5 Real-time experimental results expressed as fuzzy control system responses y and 

u (PWM indicates Pulse Width Modulation) 
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fuzzy control system exhibits good control system dynamics performance with respect to 

the 40 rad step modifications of the reference input. Fig. 5 also outlines the effects of the 

nonlinearity in (27). 

The results considered in this section help the reader to understand the effectiveness 

and the efficacy of the proposed approach. More effective metrics and performance indices 

could be exploited to assess the advantages of the developed controllers. 

5. CONCLUSIONS 

Starting with a control structure with auto-tuning Proportional-Integral controller, which 
was previously developed by the authors, and two open-loop data-driven system identification 
approaches, this paper gave a low-cost approach to data-driven fuzzy control of servo systems 
focusing on Takagi-Sugeno Proportional-Integral-fuzzy controllers. 

Using well stated tuning relations, which can ensure good control system performance 
indices, which are selectable according to the needs / application, the Extended Symmetrical 
Optimum method is initially used to tune the linear Proportional-Integral controllers. The 
modal equivalence principle is next involved in mapping the parameters of the linear 
controller onto the parameters of the fuzzy one. The paper also presented two identification 
approaches (i) and (ii) of a certain category of servo systems together with the relations for the 
computation of the parameters based on dynamic regime measurements, which are relatively 
easily performed and implemented. The authors helped the reader to understand the novelty 
issues of the developed scheme. 

The approach suggested in this paper is advantageous as it can be generalized to 
processes of integral type and several dynamics and delays. The approach can be 
implemented automatically by the computer-aided computation of the process parameters 
in the two identification approaches instead of actually representing the system responses. 

The data-driven approach presented in the paper proves the potential of auto-tuning 
approaches in data-driven control. The applications had in view belong to the field of 
electrical driving systems with fast / slow variable parameters as function of the process 
operation. 

Section 2 should have addressed more details regarding the considered models and 
tools; in particular, it does not consider the robustness and reliability issues, due for 
example to uncertainty and disturbance effects, as well as the model-reality mismatch. 
This point is fundamental when the reliability and robustness features of the proposed 
solutions have to be verified and validated with respect to real engineering and safety 
critical systems. Therefore, the effectiveness of the methodology proposed in Section 2 is 
a suggested open problem and future issue that could require further investigations. 

Another direction of open research direction is the combination of this data-driven 
technique with other data-driven techniques in order to reduce the heuristics in the steps 
(dd2) and (dd3). The optimal tuning of fuzzy controllers will be carried out accounting 
for stability constraints but with great care to preserve the data-driven feature of the 
future novel approaches. All these open problems and future issues will contribute to 
make data-driven fuzzy control clear and non-questionable. 
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