24 research outputs found

    Grayscale Digital Halftoning Using Optimization Techniques

    Get PDF
    In this paper a complete outline of advanced Digital halftoning techniques is given. This paper explains halftoning from its definition, application of halftoning to different useful techniques which are improved to give a high signal to noise ratio image. Apart from signal to noise ratio another parameter which measures the similarity between two images is also shown in this paper. Additionally the drawback of each method and comparison of the SNR, and SSIM of all methods is also shown in this paper. Error diffusion technique using FS, Stucki and JJN filters is an efficient approach to halftoning. Its main drawback is that it undergoes linear distortion. This paper is completely describing the error diffusion method and the improvements made to error diffusion so as to get a well-defined and a visually pleasing halftone image. However an evolutionary algorithms called as particle swarm optimization and Genetic Algorithm are used to create filters for the image block wise and comparing with that of the image and then finally reconstructing the whole image. In these methods of PSO and GA the cost function is formulated based on the SSIM, average minority pixel distance and the string with the best cost function value is sorted using the Evolutionary algorithms. As the human eye acts as a spatial low pass filter the image which is to be halftoned is filtered through any visual model such as a HVS model and then undergoes through the process of evolutionary algorithms

    Halftoning: revisión y análisis.

    Get PDF
    Halftoning es una técnica indispensable para mostrar imágenes digitales en pantalla e imprimirlas en papel usando cualquier tipo de impresora tales como Inkjet y láser. Además de lo anterior, la técnica de halftoning se ha empleado recientemente en diversas aplicaciones en el campo de computación y comunicación, tales como compresión y autenticación de imágenes, criptografía visual, etc. Este artículo proporciona una revisión detallada de los métodos principales de halftoning, los cuales son ordered dither, difusión de error, difusión de error con enfatización de borde, difusión de puntos, ruido verde y búsqueda binaria directa. Para el análisis de las ventajas y desventajas de cada método de halftoning se realizó una comparación de calidad de imagen halftone generada por los métodos mencionados anteriormente usando medición MOS (Mean Opinion Score). Asimismo, se consideró la complejidad computacional de cada método de halftoning

    Robust Phase Retrieval with Green Noise Binary Masks

    Full text link
    Phase retrieval with pre-defined optical masks can provide extra constraint and thus achieve improved performance. The recent progress in optimization theory demonstrates the superiority of random masks in phase retrieval algorithms. However, traditional approaches just focus on the randomness of the masks but ignore their non-bandlimited nature. When using these masks in the reconstruction process for phase retrieval, the high frequency part of the masks is often removed in the process and thus leads to degraded performance. Based on the concept of digital halftoning, this paper proposes a green noise binary masking scheme which can greatly reduce the high frequency content of the masks while fulfilling the randomness requirement. The experimental results show that the proposed green noise binary masking scheme outperform the traditional ones when using in a DMD-based coded diffraction pattern phase retrieval system

    Parallel Algorithm for Hardware Implementation of Inverse Halftoning

    Get PDF
    Abstract— A Parallel algorithm and its hardware implementation of Inverse Halftone operation is proposed in this paper. The algorithm is based on Lookup Tables from which the inverse halftone value of a pixel is directly determined using a pattern of pixels. A method has been developed that allows accessing more than one value from the lookup table at any time. The lookup table is divided into smaller lookup tables, such that each pattern selected at any time goes to a separate smaller lookup table. The 15-pixel parallel version of the algorithm was tested on sample images and a simple and effective method has been used to overcome quality degradation due to pixel loss in the proposed algorithm. It can provide at least 4 times decrease in lookup table size when compared with serial lookup table method implemented multiple times for same number of pixels

    New methods for digital halftoning and inverse halftoning

    Get PDF
    Halftoning is the rendition of continuous-tone pictures on bi-level displays. Here we first review some of the halftoning algorithms which have a direct bearing on our paper and then describe some of the more recent advances in the field. Dot diffusion halftoning has the advantage of pixel-level parallelism, unlike the popular error diffusion halftoning method. We first review the dot diffusion algorithm and describe a recent method to improve its image quality by taking advantage of the Human Visual System function. Then we discuss the inverse halftoning problem: The reconstruction of a continuous tone image from its halftone. We briefly review the methods for inverse halftoning, and discuss the advantages of a recent algorithm, namely, the Look Up Table (LUT)Method. This method is extremely fast and achieves image quality comparable to that of the best known methods. It can be applied to any halftoning scheme. We then introduce LUT based halftoning and tree-structured LUT (TLUT)halftoning. We demonstrate how halftone image quality in between that of error diffusion and Direct Binary Search (DBS)can be achieved depending on the size of tree structure in TLUT algorithm while keeping the complexity of the algorithm much lower than that of DBS

    Halftoning: revisión y análisis.

    Get PDF
    Halftoning es una técnica indispensable para mostrar imágenes digitales en pantalla e imprimirlas en papel usando cualquier tipo de impresora tales como Inkjet y láser. Además de lo anterior, la técnica de halftoning se ha empleado recientemente en diversas aplicaciones en el campo de computación y comunicación, tales como compresión y autenticación de imágenes, criptografía visual, etc. Este artículo proporciona una revisión detallada de los métodos principales de halftoning, los cuales son ordered dither, difusión de error, difusión de error con enfatización de borde, difusión de puntos, ruido verde y búsqueda binaria directa. Para el análisis de las ventajas y desventajas de cada método de halftoning se realizó una comparación de calidad de imagen halftone generada por los métodos mencionados anteriormente usando medición MOS (Mean Opinion Score). Asimismo, se consideró la complejidad computacional de cada método de halftoning

    An Optimal Shaped Sensor Array Derivation

    Get PDF
    In Structural Health Monitoring (SHM) applications, the Direction of Arrival (DoA) estimation of Guided Waves (GW) on sensor arrays is often used as a fundamental means to locate Acoustic Sources (AS) generated by damages growth or undesired impacts in thin-wall structures (e.g., plates or shells). In this paper, we consider the problem of designing the arrangement and shape of piezo-sensors in planar clusters in order to optimize the DoA estimation performance in noise-affected measurements. We assume that: (i) the wave propagation velocity is unknown, (ii) the DoA is estimated via the time delays of wavefronts between sensors, and (iii) the maximum value of the time delays is limited. The optimality criterion is derived basing on the Theory of Measurements. The sensor array design is so that the DoA variance is minimized in an average sense by exploiting the Calculus of Variations. In this way, considering a three-sensor cluster and a monitored angles sector of 90°, the optimal time delays–DoA relations are derived. A suitable re-shaping procedure is used to impose such relations and, at the same time, to induce the same spatial filtering effect between sensors so that the sensor acquired signals are equal except for a time-shift. In order to achieve the last aim, the sensors shape is realized by exploiting a technique called Error Diffusion, which is able to emulate piezo-load functions with continuously modulated values. In this way, the Shaped Sensors Optimal Cluster (SS-OC) is derived. A numerical assessment via Green’s functions simulations shows improved performance in DoA estimation by means of the SS-OC when compared to clusters realized with conventional piezo-disk transducers
    corecore