331 research outputs found

    Green Communication for NOMA-Based CRAN

    Get PDF
    The number of wireless devices is growing rapidly on a daily basis echoing the increasing number of applications of the Internet of Thing (IoT). Facing massive connections and unavoidable interference, how to provide a green communication is a concerning matter. In this regard, non-orthogonal multiple-access (NOMA) is a natural communications technology that can scale with the massive number of simultaneous connections for a limited bandwidth. In this paper, we aim to maximize the energy efficiency (EE) for a NOMA-based cloud radio access network (CRAN), where sub-6 GHz and millimeter wave (mmWave) bands are used in fronthaul and access links, respectively. In particular, we formulate the power optimization problem to maximize the EE of the system subject to the fronthaul capacity and transmit power constraints. To address this nonconvex problem, we first convert the fractional objective function into a subtractive form. A two-layer algorithm is then proposed. In the outer loop, the â„“1-norm technique is adopted to transform the nonconvex fronthaul capacity constraint into a convex one, whereas in the inner loop, the weighted minimum mean square error (WMMSE) approach is applied. Simulation results indicate that the proposed NOMA scheme can obtain higher EE as well as throughput when compared with orthogonal multiple-access (OMA) methods

    Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks

    Get PDF
    Heterogeneous cloud radio access networks (H-CRANs) are envisioned to be promising in the fifth generation (5G) wireless networks. H-CRANs enable users to enjoy diverse services with high energy efficiency, high spectral efficiency, and low-cost operation, which are achieved by using cloud computing and virtualization techniques. However, H-CRANs face many technical challenges due to massive user connectivity, increasingly severe spectrum scarcity and energy-constrained devices. These challenges may significantly decrease the quality of service of users if not properly tackled. Non-orthogonal multiple access (NOMA) schemes exploit non-orthogonal resources to provide services for multiple users and are receiving increasing attention for their potential of improving spectral and energy efficiency in 5G networks. In this article a framework for energy-efficient NOMA H-CRANs is presented. The enabling technologies for NOMA H-CRANs are surveyed. Challenges to implement these technologies and open issues are discussed. This article also presents the performance evaluation on energy efficiency of H-CRANs with NOMA.Comment: This work has been accepted by IEEE Network. Pages 18, Figure

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin

    Cross Layer Resource Allocation in H-CRAN with Spectrum and Energy Cooperation

    Full text link
    5G and beyond wireless networks are the upcoming evolution for the current cellular networks to provide the essential requirement of future demands such as high data rate, low energy consumption, and low latency to provide seamless communication for the emerging applications. Heterogeneous cloud radio access network (H-CRAN) is envisioned as a new trend of 5G that uses the advantages of heterogeneous and cloud radio access networks to enhance both the spectral and energy efficiency. In this paper, building on the notion of effective capacity (EC), we propose a framework in non-orthogonal multiple access (NOMA)-based H-CRAN to meet these demands simultaneously. Our proposed approach is to maximize the effective energy efficiency (EEE) while considering spectrum and power cooperation between macro base station (MBS) and radio remote heads (RRHs). To solve the formulated problem and to make it more tractable, we transform the original problem into an equivalent subtractive form via Dinkelbach algorithm. Afterwards, the combinational framework of distributed stable matching and successive convex algorithm (SCA) is then adopted to obtain the solution of the equivalent problem. Hereby, we propose an efficient resource allocation scheme to maximize energy efficiency while maintaining the delay quality of service (QoS) requirements for the all users. The simulation results show that the proposed algorithm can provide a non-trivial trade-off between delay and energy efficiency in NOMA H-CRAN systems in terms of EC and EEE and the spectrum and power cooperation improves EEE of the proposed network. Moreover, our proposed solution complexity is much lower than the optimal solution and it suffers a very limited gap compared to the optimal method

    EE Optimization for Downlink NOMA-based Multi-Tier CRANs

    Get PDF

    Clustering Based Dynamic Bandwidth Allocation in HC-RAN

    Get PDF
    A wireless network is composed of several independent nodes or gadgets that communicate mutually through a wireless link. The most destructive challenge encountered in a wireless network is bandwidth allocation because it defines the amount the network will cost and how effectively it will function. The most cutting-edge network architecture in the present wireless communication system, cluster-based heterogeneous cloud radio access networks (HC-RANs), is what powers cloud computing in heterogeneous networks. In this research, we proposed an HC-RANs that may optimize energy consumption for wireless data transfer in the multi-hop device to device scenario. The proposed scheme offers bandwidth allocation in wireless environments where there are concerns about significant user mobility over the course of a given time. The above design, we used clustering with joint beam formation for the down link of heterogeneous cloud radio access network (HC-RAN), developed design to improved amount of FBS. Result outcomes helped in calculating Critical bandwidth usage (CBU)

    Optimizing energy efficiency for supporting near-cloud access region of UAV based NOMA networks in IoT systems

    Get PDF
    Non-orthogonal multiple access (NOMA) and unmanned aerial vehicle (UAV) are two promising technologies for wireless the fifth generation (5G) networks and beyond. On one hand, UAVs can be deployed as flying base stations to build line-of-sight (LoS) communication links to two ground users (GUs) and to improve the performance of conventional terrestrial cellular networks. On the other hand, NOMA enables the share of an orthogonal resource to multiple users simultaneously, thus improving the spectral efficiency and supporting massive connectivities. This paper presents two protocols namely cloud-base central station (CCS) based power-splitting protocol (PSR) and time-switching protocol (TSR), for simultaneously wireless information and power transmission (SWIPT) at UAV employed in power domain NOMA based multi-tier heterogeneous cloud radio access network (H-CRAN) of internet of things (IoT) system. The system model with k types of UAVs and two users in which the CCS manages the entire H-CRAN and operates as a central unit in the cloud is proposed in our work. Closed-form expressions of throughput and energy efficiency (EE) for UAVs are derived. In particular, the EE is determined for the impacts of power allocation at CCS, various UAV types and channel environment. The simulation results show that the performance for CCS-based PSR outperforms that for CCS-based TSR for the impacts of power allocation at the CCS. On contrary, the TSR protocol has a higher EE than the PSR in cases of the impact of various UAV types and channel environment. The analytic results match Monte Carlo simulations

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research
    • …
    corecore