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Abstract—The wireless devices will rapidly growth with the
application of the Internet of Thing (IoT), which results in the
huge power consumption. To realize the green communication,
in this paper, we study the energy efficiency (EE) problem
in a non-orthogonal multiple access (NOMA)-based CRAN,
where microwave and millimeter wave (mmWave) are applied
in fronthaul and access links, respectively. Based on this, we
formulate the power optimization problem to maximize the EE of
the system subject to the fronthaul capacity and transmit power
constraints. Due to the formulated problem is nonconvex, we first
transform the fractional objective function into the subtractive
form. After that, an algorithm containing outer and inner loops
is proposed to deal with this non-convex problem. In particular,
in the outer loop, the `1-norm technique is adopted to transform
the nonconvex fronthaul capacity constraint into the convex one;
while in the inner loop, the weighted minimum mean square error
(WMMSE) approach is applied to solve the formulated problem.
Simulation results demonstrate that the proposed NOMA scheme
can obtain higher EE as well as throughput in comparison with
the conventional orthogonal multiple access (OMA) scheme.

Index Terms—IoT, green communication, EE, CRAN,
mmWave, NOMA

I. Introduction

With the application and development of the Internet of
Things (IoT), next generation wireless communication systems
are expected to support billions of wireless devices, including
smartphones, cars, electronic households and so on [1]. The
huge number of wireless devices leads to the growing energy
consumption of wireless communications, which brings the
increase of the greenhouse. Therefore, green communication
(i.e., energy-efficient communication) has became a significant
standard for future IoT networks, which means that the low
energy consumption and high data throughput should be
simultaneously satisfied [2], [3].
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Fig. 1: The NOMA-based cloud radio access network.

To realize the requirement of the massive wireless devices
connectivity in IoT networks, non-orthogonal multiple access
(NOMA) technique can be as an effective candidate because
it allows multiple devices to connect to the network with the
same time frequency resource [4]. Furthermore, the NOMA
technique has recently been included into the 3GPP long term
evolution advanced (LTE-A) standard due to its enormous
potential in improving the spectrum efficiency (SE) of the
system [5], [6]. On the other hand, the cloud radio access
network (CRAN), where the conventional base stations (BSs)
with large coverage area are replaced by remote radio heads
(RRHs) with low power and small coverage, has been as
a promising scheme to obtain the high SE and energy ef-
ficiency (EE) for future wireless networks [7]. In CRAN,
the complicated signal processing and resource allocation are
conducted by cloud with a central processor (CP), and RRHs
only take charge of the radio frequency processing. Based
on this, the low-complexity RRHs and centralized resource
allocation simplify the system management and enhance the
system performance [8]. Therefore, the combination of the
NOMA and CRAN to form a NOMA-based CRAN (as shown
in Fig. 1) will be a perfect candidate for future IoT networks.

A. Related Works

Recently, CRAN has been obtained the great attention by re-
searchers and some related study results have been published.
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In [9], the authors aim to minimize the total transmit power
of the RRHs by optimizing the set of the active RRHs, the
precoding and transmit power while maintaining the fronthaul
capacity and devices’ quality of service (QoS) constraints.
Then, two algorithms, the pricing-based and linear-relaxed
algorithms, are proposed to solve the formulated problem. The
authors in [10] study the joint decompression and decoding
for an uplink CRAN and propose an iterative algorithm to
maximize the achievable uplink sum rate. In [11], the system
utility is first defined and then the authors focus on joint
optimization of device grouping and transmit beamforming to
maximize the system utility subject to the devices’ QoS and
the RRHs’ power constraints. To avoid the high computational
complexity, a low-complexity two-stage iterative algorithm is
proposed. In [12], the authors consider the delay problem in
uplink CRAN and a low-complexity delay-aware fronthaul
allocation algorithm is proposed for minimizing the system
delay. A downlink CRAN utility maximization problem is
formulated in [13] by optimizing the device scheduling, BS
clustering and beamforming design. Based on the above, the
authors propose a two-stage iterative algorithm to solve the
original optimization problem. Meanwhile, some advanced
virtual resource (e.g., BS and antennas) sharing schemes are
proposed to improve the performance of the CRAN [14], [15].
However, the above works all consider the wired fronthaul
links (e.g., fiber). For the deployment of the ultra-dense RRHs,
it is impractical and of high cost to have wired connections
between CP and all RRHs.

In fact, there have been some works considering the wireless
fronthaul links. In [8], the authors apply the millimeter-wave
(mmWave) wireless fronthaul links and orthogonal frequency
division multiple access (OFMDA)-based access links. Then,
a joint power and subcarrier allocation algorithm is pro-
posed to maximize the weighted sum rate of the devices.
In [16], the wired and wireless fronthaul are simultaneously
adopted. Accordingly, the authors define an economical SE
(ESE) metric to jointly consider the impact of wired/wireless
fronthaul cost and traditional EE, and an outer- and inner-
based iterative algorithm is proposed for maximizing ESE.
In [17], the EE maximization problem is considered in a
heterogeneous CRAN with constraint of overall capacity of
wireless fronthaul, and a convex relaxation-based power allo-
cation algorithm is proposed. The authors in [18] study a joint
design framework of fronthaul and access links to maximize
the sum rate of the CRAN. Meanwhile, the multi-device
beamforming scheme is adopted for exploiting the spatial
diversity. Then, a difference of convex (DOC) and weighted
minimum-mean-squared-error (WMMSE)-based algorithm is
proposed. Although the above works consider the wireless
fronthaul links, the fronthaul capacity are usually assumed as
fixed (e.g., [16], [17]). In addition, the transmit power of the
CP is also considered a constant in [8]. [18] only considers
the system throughput and does not involve EE.

It is clear that [8]-[18] only focus on the resource allocation
in CRAN. As a significant technique candidate for the future
IoT networks, NOMA-based CRAN has been not obtained
the enough attention. In [19], the authors analyze the outage
probability of the NOMA-based CRAN. Similarly, the authors

in [20] derive a simple expression in terms of outage probabil-
ity for both nearby devices and the cell-edge devices. To filling
this research gap, in this paper, we study the EE problem in
a NOMA-based CRAN with wireless fronthaul links.

B. Main Contributions

To realize the green communication for future wireless
communication, we study the EE problem in a NOMA-based
CRAN, where the CP is equipped with a large number of
antennas and the microwave-based wireless fronthaul link is
considered. Due to the small coverage area of the RRHs, the
mmWave-based access link is adopted. Meanwhile, all RRHs
work in full duplex (FD) pattern, i.e., they can simultaneously
receive data from the CP through microwave and transmit data
to devices through mmWave. Meanwhile, all devices access
the RRHs with NOMA for improving the SE. Based on the
above, we formulate a power optimization problem (including
the CP’s and RRHs’ transmit power) to maximize the EE of
the system. The main contributions are summarized as follows:

• We construct a NOMA-based CRAN system, where the
microwave and mmWave are used for frothaul and access
links, respectively. Then, we formulate an EE maxi-
mization problem by optimizing the CP’s and RRHs’
transmit power while satisfying the devices’ QoS and the
constraints of the CP’s and RRHs’ transmit power.

• By exploiting fractional programming, we first transform
the original EE-based fractional objective function into
the subtractive form by bringing the parameter. However,
the parameter-based objective function is still noncon-
cave. Furthermore, the non-convex fronthaul capacity
constraint also leads that the solved problem is a con-
convex optimization problem. Based on this, we propose
a two-loop iterative algorithm to deal with it. Specifically,
a reweighted `1-norm technique-based outer iterative is
applied to transform the non-convex fronthaul capacity
constraint into a convex one. After that, the WMMSE
approach-based inner iterative is designed to transform
the solved problem into a convex optimization problem,
which is solved by standard convex optimization tech-
niques.

• We show numerically the fast convergence and effective-
ness of the proposed algorithm. Meanwhile, compared
with the conventional orthogonal multiple access (OMA)
scheme, our proposed NOMA scheme can obtain a higher
EE as well as throughput of the system.

The remainder of this paper is organized as follows. In
Section II, the NOMA-based CRAN system model is described
and EE maximization problem is formulated. In Section III,
the iterative algorithm is proposed for solving the formulated
problem. Numerical results are presented in Section IV and
the paper is concluded in Section V.

The notations of this paper are as follows: (·)∗, (·)T and
(·)H denote the conjugate, transpose and Hermitian transpose,
respectively, ‖ · ‖n means the n norm, E{·} represents the
expectation operator, Re(·) means the real number operation,
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[·]+ denotes the max{0, ·}. A summary of key notations is
presented in Table I.

II. SystemModel and Problem Formulation

A. System Model

The general architecture of the NOMA-based CRAN is
showed in Fig. 1, where the RRHs receive the devices’ data
from the CP via microwave communication. Meanwhile, the
RRHs forward the received data to devices by mmWave
communication. In this paper, we use the FD technology
for fronthaul links, where the FD communication hardware
is equipped for each RRH. As the mmWave access and
microwave fronthaul transmissions are over different frequency
bands, there are no interference when the RRHs simultane-
ously receive data from the CP and transmit them to devices.
We assume that there are N single-antenna RRHs, and K
single-antenna devices associate to each RRH with the NOMA
while the CP is equipped with M antennas (M � N). We
assume that the perfect channel state information (CSI) are
available at CP for central signal precoessing and resource
allocation.

1) The Microwave Fronthaul Link: The received signal at
the nth RRH is given by

yFH
n = hn

√
PFH

n vnxn︸          ︷︷          ︸
Desired signal

+ hn

N∑
l,n

√
PFH

l vlxl︸               ︷︷               ︸
Multi−RRH interference

+ zn︸︷︷︸
Noise

, (1)

where hn ∈ C
1×M denotes the downlink fronthaul channel

from the CP to the nth RRH, while PFH
n , vn ∈ C

M×1 and xn

represent the transmit power, precoding vector and signal for
the nth RRH, respectively. zn is an independent and identically
distributed (i.i.d.) additive while Gaussian noise (AWGN)
defined as CN(0,N0). To cancel the multi-RRH interference,
the classical zero forcing (ZF) precoding is applied and thus
we have V = HH(HHH)−1, where H = [hT

1 , ...,h
T
N]T . To

this end, the precoding of the nth RRH can be expressed as
vn = Vn/||Vn||, where Vn is the nth column of V. Accordingly,
the achievable throughput of the nth RRH can be expressed
as

RFH
n (PFH

n ) = WFHlog2

(
1 +
||hnvn||

2PFH
n

WFHN0

)
, (2)

where WFH is the overall bandwidth in microwave communi-
cations.

2) The MmWave Access Link: We denote gn jk as the chan-
nel coefficient from the nth RRH to the kth device served by
the jth RRH. Without the generality, the channels are sorted
as |gnn1|

2 ≤ · · · ≤ |gnnK |
2 according to their channel quality.

According to the NOMA protocol, the received signal of the
kth device served by the nth RRH can be written as

yAC
nk = gnnk

K∑
i=1

√
PAC

ni sni︸               ︷︷               ︸
Desired signal

+

N∑
j,n

g jnk

K∑
i=1

√
PAC

ji s ji︸                    ︷︷                    ︸
Inter−RRH interference

+ znk︸︷︷︸
Noise

, (3)

where snk denotes the transmit signal for the kth device served
by the nth RRH, and znk is an i.i.d. AWGN defined as

TABLE I: Summary of Key Notations.

Notations Descriptions
N Number of RRHs
K Number of devices per RRH
M Number of CP antennas

WFH Bandwidth of the microwave
WAC Bandwidth of the mmWave
PFH

n Transmit power for the nth RRH
PFH

max Maximal transmit power for the nth RRH
PAC

nk Transmit power for the kth device served by the nth RRH
PAC

n,max Maximal transmit power for the nth RRH
PFH

c Circuit power consumption for the CP
PAC

c,n Circuit power consumption for the nth RRH
RAC

nk,min The QoS for the kth device served by the nth RRH
PFH Power allocation policy of the CP
PAC Power allocation policy of the RRHs
ξ Drain inefficiency of the power amplifier

CN(0,N0). After that, the successive interference cancellation
technique will be carried out at the devices. As a result, the
kth device will detect and decode the ith (i > m) device’s data
and remove it from its observation; while other devices’ data
will be treated as noise. Accordingly, the received signal can
be rewritten as

yAC
nk = gnnk

k∑
i=1

√
PAC

ni sni︸               ︷︷               ︸
Desired signal

+

N∑
j,n

g jnk

K∑
i=1

√
PAC

ji s ji︸                    ︷︷                    ︸
Inter−RRH interference

+ znk︸︷︷︸
Noise

, (4)

and the achievable throughput can be expressed as

RAC
nk (PAC) = WAClog2

1 +
|gnnk |

2PAC
nk

πnk

 , (5)

where πnk = |gnnk |
2 ∑k−1

i=1 PAC
ni +

∑N
j,n |g jnk |

2 ∑K
i=1 PAC

ji + WACN0,
PAC denotes the power allocation policy of all RRHs (i.e.
{PAC

nk }N×K), and WAC is the overall bandwidth in mmWave
communications.

B. Problem Formulation

In general, the power consumption consists of transmit
power and circuit power consumption. To this end, the power
consumption at the CP can be modeled as

PFH(PFH) = ξ

N∑
n=1

PFH
n + PFH

c , (6)

where PFH denotes the power allocation policy of the CP (i.e.
{PAC

nk }N×1), ξ is the reciprocal of drain efficiency of power
amplifier, and PFH

c denotes the circuit power consumption.
Similarly, the power consumption at RRHs can expressed as

PAC(PAC) = ξ

N∑
n=1

K∑
k=1

PAC
nk +

N∑
n=1

PAC
c,n , (7)

where PAC
c,n denotes the circuit power consumption of the nth

RRH. To this end, we define the EE as

ηEE(PFH,PAC) =

∑N
n=1

∑K
k=1 RAC

nk (PAC)
PFH(PFH) + PAC(PAC)

[bps/Joule], (8)
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and formulate the EE maximization problem as follows

max
{PFH

n ,PAC
nk }

ηEE(PFH,PAC), (9a)

s.t. RAC
nk (PAC) ≥ RAC

nk,min,∀n, k (9b)
N∑

n=1

PFH
n ≤ PFH

max, (9c)

K∑
k=1

PAC
nk ≤ PAC

n,max, n ∈ {1, · · · ,N}, (9d)

K∑
k=1

RAC
nk (PAC) ≤ RFH

n (PFH), n ∈ {1, · · · ,N}, (9e)

PFH
n ≥ 0, PAC

nk ≥ 0,∀n, k, (9f)

where (9b) denotes the device’s minimal throughput require-
ment, while (9c) and (9d) denote the power constraints for
the CP and each RRH, respectively. (9e) denotes the fronthaul
capacity constraint, which means that the fronthaul capacity
of each RRH must be no less than the capacity it provides
for K devices. Due to the fractional objective function (9b),
inter-RRH interference and the non-convex constraints (9e),
(9) is a non-convex optimization problem.

III. The Solution of The Optimization Problem
We solve the original EE optimization problem by three

steps. At the first step, we equivalently transform the original
fractional objective function into a subtractive form. Next,
the non-convex fronthaul capacity constraint is approximated
as convex one by `1-norm technique. Finally, we apply the
WMMSE approach to solve the formulated problem.

A. The Transformation of Objective Function
We assume that the maximum EE of the problem (9) is η?,

namely

η? =

∑N
n=1

∑K
k=1 RAC

nk (P?AC)
PFH(P?FH) + PAC(P?AC)

= max
{PFH,PAC}

∑N
n=1

∑K
k=1 RAC

nk (PAC)
PFH(PFH) + PAC(PAC)

,

(10)

where P?FH and P?AC are the power allocation policy corre-
sponding to η?. Based on the above, we have the following
theorem.

Theorem 1: The maximum EE η? is achieved if and only if

max
{PFH,PAC}

N∑
n=1

K∑
k=1

RAC
nk (PAC) − η?(PFH(PFH) + PAC(PAC))

=

N∑
n=1

K∑
k=1

RAC
nk (P?AC) − η?(PFH(P?FH) + PAC(P?AC))

= 0

(11)

Proof: Refer to [21].
Based on Theorem 1, the original EE problem can be

transformed into the following one with parameter η

max
{PFH,PAC,η}

N∑
n=1

K∑
k=1

RAC
nk (PAC)−η(PFH(PFH)+PAC(PAC)) (12a)

s.t. (9b) − (9f). (12b)

Algorithm 1: Dinkelbach-Based Iterative Algorithm

1 Initialize the maximum number of iterations Lmax, the
maximum tolerate ε, the maximum EE η = 0, and the
iteration index t = 0.

2 repeat
3 Solve the problem (12) for a given η and obtain

the power allocation {PFH,PAC}.
4 Compute ε? =∑N

n=1
∑K

k=1 RAC
nk (PAC)−η(PFH(PFH)+PAC(PAC)).

5 if ε? < ε then
6 Covergence=true.
7 return {P?FH,P

?
AC} = {PFH,PAC} and

η? =
∑N

n=1
∑K

k=1 RAC
nk (PAC)

PFH(PFH)+PAC(PAC) .

8 else
9 Set η =

∑N
n=1

∑K
k=1 RAC

nk (PAC)
PFH(PFH)+PAC(PAC) and t = t + 1.

10 Convergence=false.
11 end if
12 until Convergence=true or t = Lmax;

To obtain the optimal η, Dinkelbach-based iterative
method [21] is usually used by setting the initial value of
η, and then iterating solve (12). We summarize the above
iterative method in Algorithm 1. Next, we need to solve the
optimization problem (12) for a given η, which is still difficult
to solve due to the non-convex objection function (12a) and
the non-convex fronthaul capacity constraint (9e).

B. The Transformation of Fronthaul Capacity Constraints

It is well known that `0-norm is the number of nonzero
entries in a vector. Furthermore, the `0-norm optimization
problem can be usually approximated by a reweighed `1-norm
as follows [22]

||A||0 ≈
∑

i

αi|ai|, (13)

where ai is the ith component in the vector A and αi de-
notes the weighted coefficient. Accordingly, the minimization
problem of ||A||0 can be transformed to minimize

∑
i αi|ai| by

setting proper weighted coefficient αi. Based on this, we first
indicate the following function

1

{
||PAC

nk ||
2
2

}
=

0, if ||PAC
nk ||

2
2 = 0,

1, otherwise.
(14)

As a result, the fronthaul capacity constraint (9e) can be
rewrite as

K∑
k=1

1

{
||PAC

nk ||
2
2

}
RAC

nk (PAC) ≤ RFH
n (PFH), n ∈ {1, · · · ,N}. (15)

In addition, it is obvious that

1

{
||PAC

nk ||
2
2

}
=

∥∥∥||PAC
nk ||

2
2

∥∥∥
0 , (16)

and we reformulate (15) as
K∑

k=1

αnkPAC
nk R̂AC

nk (P̂AC) − RFH
n (PFH) ≤ 0, n ∈ {1, · · · ,N}. (17)
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Algorithm 2: `1-norm-Based Iterative Algorithm

1 Initialize the maximum number of iterations Lmax, the
iteration index t = 0 and feasible power {P(0)

FH,P
(0)
AC}.

2 repeat
3 Compute α(t)

nk and R̂AC
nk (P̂(t)

AC), t = t + 1.
4 Solve the problem (19) and obtain the power

allocation {P(t)
FH,P

(t)
AC}.

5 until {P(t)
FH,P

(t)
AC} converge or t = Lmax;

where αnk is a constant and R̂AC
nk (P̂AC) is obtained from the

previous iteration. Meanwhile, αnk can be updated according
to the following

αnk =
1

P̂AC
nk + ε

,∀n, k, (18)

where ε > 0 is a small constant, while P̂AC
nk denotes optimal

power for previous iteration. It is clear that (17) is a convex
constraint, and thus we need to solve the following optimiza-
tion problem

max
{PFH,PAC}

N∑
n=1

K∑
k=1

RAC
nk (PAC)−η?

(
PFH(PFH)+PAC(PAC)

)
(19a)

s.t. (9b) − (9d), (9f), (17). (19b)

To obtain the effective power allocation, we need to itera-
tively solve (19) by updating parameter αnk, and we summarize
it in Algorithm 2.

C. WMMSE-Based Approach For Solving (19)

Although all constraints are convex, (19) is still a non-
convex optimization problem due to the non-convex objective
function. Next, we will equivalently transform (19a) into a
convex one by MMSE scheme. Specifically, if the MMSE
scheme is used to detect snk from received signal yAC

nk , we
have the following detection problem:

θ?nk = arg min
{θnk}

enk,∀n, k, (20)

where ηnk represents the receiver filter at the kth device served
by the nth RRH, enk is its mean square error which can be
expressed as

enk = E
{∣∣∣snk − θnky

AC
nk

∣∣∣2} ,∀n, k. (21)

Substituting (4) into enk, we can obtain

enk = 1 + |θnk |
2
(
|gnnk |

2PAC
nk + πnk

)
− 2Re

(
θnk

√
PAC

nk gnnk

)
. (22)

Combining (22) and (20), we can obtain the optimal receiver
filter θ?nk as

θ?nk =

√
PAC

nk g
∗
nnk

|gnnk |
2PAC

nk + πnk
,∀n, k. (23)

Based on (23), the MMSE e?nk can be expressed as

e?nk = 1 − |gnnk |
2PAC

nk

(
|gnnk |

2PAC
nk + πnk

)−1
,∀n, k. (24)

The detailed derivation of (23) and (24) can refer to Ap-
pendix A. In addition, the following equation can be easily
obtained through (5)1+

|gnnk |
2PAC

nk

πnk

−1

=
πnk

|gnnk |
2PAC

nk + πnk

=1 − |gnnk |
2PAC

nk

(
|gnnk |

2PAC
nk + πnk

)−1
.

(25)

Comparing (25) and (24), we find that they have the same
expression for the right side of the equation, and thus we have
the following1+

|gnnk |
2PAC

nk

πnk

−1

= arg min
{θnk}

enk,∀n, k. (26)

Based on (26), the relationship between the throughput and
MMSE can be expressed as

RAC
nk (PAC) =WAClog2

1 +
|gnnk |

2PAC
nk

πnk


= −WAClog2

(
min
{θnk}

enk

)
=max
{θnk}

(
−WAClog2(enk)

)
.

(27)

After removing log2, (27) can be rewritten as

RAC
nk (PAC) = max

{θnk ,dnk}
WAC

(
−

dnkenk

ln2
+ log2dnk +

1
ln2

)
,∀n, k. (28)

The detailed proof can refer to Appendix B.
Replacing RAC

nk (PAC) of objective function (19) with (28),
we rewrite the optimization problem as follows

max
{PFH,PAC,θnk ,dnk}

N∑
n=1

K∑
k=1

WAC

(
−

dnkenk

ln2
+ log2dnk +

1
ln2

)
(29a)

− η?
(
PFH(PFH)+PAC(PAC)

)
(29b)

s.t. πnkωnk − |gnnk |
2PAC

nk ≤ πnk,∀n, k, (29c)
(9c), (9d), (9f), (17). (29d)

where ωnk = 2
RAC

nk,min
WAC − 1. For the above optimization problem,

WMMSE-based iterative algorithm can be used to solve it.
First, for the given initial feasible power {P̂FH, P̂AC}, we can
obtain the optimal θ?nk given by (23) as

θ?nk =

√
P̂AC

nk g
∗
nnk

|gnnk |
2P̂AC

nk + π̂nk
,∀n, k, (30)

where π̂nk = |gnnk |
2 ∑k−1

i=1 P̂AC
ni +

∑N
j,n |g jnk |

2 ∑K
i=1 P̂AC

ji + WACN0.
Meanwhile, the optimal MMSE e?nk can be calculated by (24)

e?nk = 1 − |gnnk |
2P̂AC

nk

(
|gnnk |

2P̂AC
nk + π̂nk

)−1
,∀n, k. (31)

Based on (31), the optimal d?nk can be expressed as

d?nk =
1

e?nk
,∀n, k. (32)
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Then, we only need to solve the following optimization
problem for the next iteration

min
{PFH,PAC}

N∑
n=1

K∑
k=1

WACd?nkenk

ln2
−η?ξ

 N∑
n=1

K∑
k=1

PAC
nk +

N∑
n=1

PFH
n

 (33a)

s.t. πnkωnk − |gnnk |
2PAC

nk ≤ πnk,∀n, k, (33b)
K∑

k=1

αnkPAC
nk R̂AC

nk (P̂AC)−RFH
n (PFH) ≤ 0, (33c)

N∑
n=1

PFH
n ≤ PFH

max,

K∑
k=1

PAC
nk ≤ PAC

n,max, (33d)

PFH
n ≥ 0, PAC

nk ≥ 0,∀n, k. (33e)

It is clear that (33) is a convex optimization problem.
Therefore, we can obtain the optimal solution of (33) by
solving its dual problem due to the zero-gap solution between
the original problem and its dual problem [23]. First, we define
the Lagrange function as follows

L(PFH,PAC,U,V,T , z)

=

N∑
n=1

K∑
k=1

WACd?nkenk

ln2
−η?ξ

 N∑
n=1

K∑
k=1

PAC
nk +

N∑
n=1

PFH
n


+

N∑
n=1

K∑
k

unk

(
πnkωnk − |gnnk |

2PAC
nk − πnk

)
+

N∑
n=1

vn

 K∑
k=1

αnkPAC
nk R̂AC

nk (P̂AC)−RFH
n (PFH)


+

N∑
n=1

tn

 K∑
k=1

PAC
nk − PAC

n,max

 + z

 N∑
n=1

PFH
n − PFH

max

 ,

(34)

where U = {unk}N×K , V = {vn}N×1,T = {tn}N×1 and z are the
Lagrange variables associated with (33b)-(33d), respectively.
Then, the Lagrange dual function can be expressed as

g(U,V,T , z) = min
{PFH,PAC}

L(PFH,PAC,U,V,T , z), (35)

and the dual optimization problem becomes

max
{U,V,T ,z}

g(U,V,T , z), (36a)

s.t. U ≥ 0,V ≥ 0,T ≥ 0, z ≥ 0. (36b)

Since the above dual function is convex, we maximize
g(U,V,T , z) by subgradient method [23], and the dual vari-
ables can be updated as follows:

unk(o + 1) =
[
unk(o) + ψ1(o)

(
πnkωnk − |gnnk |

2PAC
nk − πnk

)]+
,

vn(o + 1) =

vn(o) + ψ2(o)

 K∑
k=1

αnkPAC
nk R̂AC

nk (P̂AC)−RFH
n (PFH)

+

,

tn(o + 1) =

tn(o) + ψ3(o)

 K∑
k=1

PAC
nk − PAC

n,max

+

, (37)

z(o + 1) =

z(o) + ψ4(o)

 N∑
n=1

PFH
n − PFH

max

+

,

Algorithm 3: WMMSE-Based Iterative Algorithm

1 Initialize feasible {P(0)
FH,P

(0)
AC}, t=0.

2 repeat
3 Compute {θ?(t)

nk } according to (30).
4 Compute {d?(t)

nk } according to (32).
5 t = t + 1.
6 Compute {P̂(t)

FH, P̂
(t)
AC} according to (38).

7 until {P̂(t)
FH, P̂

(t)
AC} converges;

where ψn(o) is the positive step size at the oth iteration. Then,
for fixed dual variables, we can obtain the optimal power
allocation by Karush-Kuhn-Tucker (KKT) conditions as

PAC
nk =

(
WFHd?nkRe (θnkgnnk)

Ξnkln2

)2

,

PFH
n =

[
vnWFH

ln2
−

WFHN0

||hnvn||
2

]+

,

(38)

where Ξnk =
WACd?nk

ln2

[
|θnk |

2|gnnk |
2 +

∑K
i=k+1 |θni|

2|gnni|
2
]

+
WACd?nk

ln2

[∑N
j,n

∑K
i=1 |θ ji|

2|gn ji|
2
]
−η?ξ−unk |gnnk |

2 +
∑K

i=k+1 uni(ωni−

1)|gnni|
2 +

∑N
j,n

∑K
i=1 u ji(ω ji−1)|gn ji|

2 + vnαnkR̂AC
nk (P̂AC)+ tn. The

detailed proof can refer to Appendix C. Based on the above
analysis, the optimization scheme to solve problem (19) is
summarized as the Algorithm 3.

From the Algorithm 3, it is clear that the optimal power
allocation can be obtained due to the convex optimization
problem (33) in each iteration. Meanwhile, the optimal θ?nk and
d?nk can be updated at each iteration. To this end, iteratively
updating the above parameters will increases or at least main-
tain the value of the objective function (29) [24]. Therefore,
Algorithm 3 will converge to a stationary solution due to the
limited transmit power.

D. Algorithm Complexity Analysis

First, we summarize the overall algorithm to solve the
optimization problem (9). We need to set the initial feasible
power {PFH,PAC} and η, and thus compute αnk and RAC

nk (PAC).
After that, Algorithm 3 is carried out. Then, we execute
Algorithm 2 and then Algorithm 1 until {PFH,PAC} and η
convergence.

Next, we analyze the complexity of the overall algorithm.
Since the number of dual variables is NK + 2N + 1, the op-
timal dual variables is obtained by using subgradient updated
method with the complexity O(|NK +2N +1|2). As a result, the
complexity of Algorithm 3 is O(e3|NK + 2N + 1|2NK), where
e3 is the maximum iteration times of Algorithm 3. We assume
the maximum iteration times of Algorithms 1 and 2 are e1
and e2, respectively. The complexity of the overall algorithm
is O(e1e2e3|NK + 2N + 1|2NK).

IV. Simulation Results

In this section, simulation results are provided to show the
throughput and EE of the system under the proposed algo-
rithm. For comparison, we also provide the results for OMA
scheme, where the time division multiple access (TDMA) is
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Fig. 3: The convergence of Algorithm 3.

adopted. Specifically, the RRH transmits the downlink data
to device with TDMA scheme. We consider N =3 RRHs as
shown in Fig. 1, and each RRH serves K = 2 devices. The
coverage radius of each RRH is 200 meters, and the distance
between the RRH and the CP is 1500 meters. The mmWave
channel is centered at 73 GHz with a bandwidth of WAC=50
MHz and the path loss is modeled as 69.7 + 24 log10(d)
dB, where d denotes the distance (meter) [8], [25]. The
wireless fronthaul channel is centered at a frequency of 2
GHz with a bandwidth of WFH = 10 MHz, and the path
loss is modeled as 120 + 30 log10(d) dB, where d denotes
the distance (kilometer) [26]. The circuit power consumption
PFH

c = 10 W and PAC
c,n =1 W. The noise power spectral density is

-174 dBm/Hz, and the reciprocal of drain efficiency of power
amplifier ξ = 0.38. ε is set as 10−8. Other related parameters
will be presented in discussion.
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Fig. 4: The downlink throughput versus transmit power of each
RRH.
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Fig. 5: The downlink throughput versus the minimum rate
requirement.

A. Throughput of the System

In this subsection, we evaluate the throughput of the system,
where η is set as 0. Fig. 2 shows the convergence of Algo-
rithms 2 and 3. Here, we set PFH

max = 40 dBm, PAC
n,max = 30

dBm, M = 50, and RAC
nk,min = 106 bps (∀n, k). It is clear

that Algorithm 2 (i.e., outer iteration) tends to converge after
10 iterations. In addition, to clearly show the convergence
of Algorithm 3, we present Fig. 3 when the first iteration is
executed in Algorithm 2. It can be found that the Algorithm 3
tends to converge after 25 iteration.

Fig. 4 shows the downlink throughput versus transmit power
of each RRH under different transmit power of CP. We set
the number of CP antennas M = 50. It can be observed
that the downlink throughput increases with PAC

n,max. It is easy
to understand that higher transmit power contributes to more
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Fig. 6: The convergence of Algorithm 1.

throughput. In addition, when the transmit power of CP is 40
dBm, the throughput is higher for an higher transmit power of
each RRH. However, when the transmit power of each RRH is
small (e.g., 20∼22 dBm), the throughput is the same. This is
because although the higher transmit power of CP can provide
larger fronthaul capacity, the throughput of the access link is
limited. On the other hand, we can find that the throughput
under NOMA scheme is higher than that under OMA.

Fig. 5 presents the downlink throughput versus the mini-
mum rate requirement of devices under different number of
CP antennas. Here, we set PFH

max = 40 dBm, PAC
n,max = 30

dBm. It is clearly observed that the throughput decreases with
the minimum rate requirement. This is because that RRHs
must transmit proper power to guarantee the minimum rate
requirement for each device so as to sacrifice some total
throughput. In addition, we can find that more number of CP
antennas can obtain higher throughput under NOMA. It is easy
to understand that the higher antenna gain can be obtained
for more antennas so as to improve the fronthaul capacity,
which can provide higher throughput for the access link. For
the NOMA scheme, we find that the throughput is the same
for different number of CP antennas. It is because that the
throughput of the access link is limited. In addition, it is clear
that the throughput under the NOMA scheme is higher than
that under the OMA scheme.

B. EE of the System

In this subsection, we evaluate the EE of the system. Fig. 6
shows the convergence of Algorithm 1. Here, we set PFH

max = 30
dBm, PAC

n,max = 20 dBm, M = 50, and RAC
nk,min = 106 bps (∀n, k).

We can find that the EE rapidly increases and tends to stabilize
after 3 iterations. Here, we do not show the convergence of
Algorithms 2 and 3, and they have the similar characteristic
with Figs. 2 and 3.

Fig.7 shows the EE versus the transmit power of each RRH.
Here, we set PFH

max = 30 dBm, M = 50, and RAC
nk,min = 106 bps

(∀n, k). It can be observed that the EE first increases and then
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Fig. 7: EE versus transmit power of each RRH.
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Fig. 8: EE versus the minimum rate requirement.

tends to stabilize with the transmit power of each RRH. It is
because that although the higher transmit power of the RRHs
can provide higher throughout, it need to consume more power
to improve the unit throughput. Based on this, the increase of
the EE will be slower and slower with the transmit power as
shown in Fig. 7. In addition, the EE under the OMA has the
similar trend with the transmit power of the RRHs. One the
other hand, the EE under the NOMA scheme is higher than
that under the OMA scheme.

Fig. 8 presents the EE versus the minimum rate requirement.
Here, we set PFH

max = 30 dBm, PAC
n,max = 26 dBm, and M = 50.

We can clearly find that the EE decreases with the minimum
rate requirement. In fact, we have found the similar results at
Fig. 5, namely the throughput decreases with the minimum
rate requirement. Therefore, they have the same reason for it,
i.e., the RRHs must guarantee the devices’ rate requirement at
the sacrifice of the EE. In addition, it can be easily found that
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the EE is higher under the NOMA scheme that that under the
OMA.

V. Conclusions

In this paper, we investigated the throughput and EE in
a NOMA-based CRAN, where each RRH serves devices
with NOMA scheme. Based on this, we formed the power
optimization problem of the CP and RRHs to maximize the
EE of the system while satisfying the fronthaul capacity and
transmit power constraints of the CP and RRHs. Due to the
difficulty of the formulated problem to directly solve, we
first transformed the original fractional objective function into
a subtractive one by bringing the parameter. The optimal
parameter was found by Dinkelbach-based iterative algorithm.
Next, we proposed a two-loop iterative algorithm to solve the
parameter-based optimization problem. For the outer iteration,
we applied the `1-norm-based technique transform the non-
convex fronthaul capacity constraint into the convex one. For
the inner iteration, the WMMSE-based approach was used
to deal with the finial problem. Finally, we found that the
throughput and EE of the system under the proposed NOMA
scheme outperform that under the conventional OMA scheme.

Appendix A

According to (22), we have

enk = 1 + |θnk |
2
(
|gnnk |

2PAC
nk + πnk

)
− 2Re

(
θnk

√
PAC

nk gnnk

)
=

∣∣∣∣∣1 − θnk

√
PAC

nk gnnk

∣∣∣∣∣2 + |θnk |
2|gnnk |

2
k−1∑
i=1

PAC
ni

+ |θnk |
2

N∑
j,n

|g jnk |
2

K∑
i=1

PAC
ji + |θnk |

2WACN0,

(39)

To minimize enk by optimizing wighted coefficient θnk, i.e.,
solving (20), we can take the derivative of enk for θnk, namely

∂enk

∂θnk
= θ∗nk

(
|gnnk |

2PAC
nk + πnk

)
−

√
PAC

nk gnnk = 0. (40)

Therefore, the optimal weighted coefficient θ?nk can be
calculated as

θ?nk =

√
PAC

nk g
∗
nnk

|gnnk |
2PAC

nk + πnk
,∀n, k. (41)

Combing (41) and (22), we have

e?nk = 1 + |θ?nk |
2
(
|gnnk |

2PAC
nk + πnk

)
− 2Re

(
θ?nk

√
PAC

nk gnnk

)
= 1+

∣∣∣∣∣ √PAC
nk g

∗
nnk

(
|gnnk |

2PAC
nk +πnk

)−1
∣∣∣∣∣2 (
|gnnk |

2PAC
nk +πnk

)
− 2Re

(√
PAC

nk g
∗
nnk

(
|gnnk |

2PAC
nk + πnk

)−1
√

PAC
nk gnnk

)
= 1 + |gnnk |

2PAC
nk

(
|gnnk |

2PAC
nk + πnk

)−1

− 2|gnnk |
2PAC

nk

(
|gnnk |

2PAC
nk + πnk

)−1

= 1 − |gnnk |
2PAC

nk

(
|gnnk |

2PAC
nk + πnk

)−1
.

(42)

We finish the derivation.

Appendix B

First, we define the following function

f (d) = −
bd
ln2

+ log2d +
1

ln2
, (43)

where b is a positive real number. Based on this, we formulate
the following optimization problem.

max
{d>0}

f (d). (44)

Since function f (d) is concave with respect to d, we can
directly solving ∂ f (d)

∂d

∣∣∣∣
d=d?

= 0 to obtain the optimal d? for
maximizing f (d), namely

∂ f (d)
∂d

∣∣∣∣
d=d?

= −
b

ln2
+

1
dln2

= 0 ⇒ d? =
1
b
, (45)

Substituting d? into f (d), we have

max
{d>0}

f (d) = −log2b. (46)

By replacing b with enk and combining (27), we have

RAC
nk (PAC) =max

{θnk}

(
−WAClog2(enk)

)
=max
{θnk}

(
WACmax

{dnk}

(
−

dnkenk

ln2
+ log2dnk +

1
ln2

))
= max
{θnk ,dnk}

WAC

(
−

dnkenk

nk2
+ log2dnk +

1
ln2

)
,∀n, k.

(47)

We finish the proof.

Appendix C

The KKT conditions of (33) can be formulated as

∂L
∂PAC

nk

=
WACd?nk

ln2

[
|θnk |

2|gnnk |
2 − Re

(
θnkgnnk

(
PAC

nk

)− 1
2
)]

+
WACd?nk

ln2

 K∑
i=k+1

|θni|
2|gnni|

2 +

N∑
j,n

K∑
i=1

|θ ji|
2|gn ji|

2


− η?ξ − unk |gnnk |

2 +

K∑
i=k+1

uni(ωni − 1)|gnni|
2

+

N∑
j,n

K∑
i=1

u ji(ω ji − 1)|gn ji|
2 + vnαnkR̂AC

nk (P̂AC) + tn

= 0,
∂L
∂PFH

n
= −η?ξ −

1
2

vnWFH||hnvn||
2

WFHN0 + ||hnvn||
2PFH

n
+ z = 0,

unk

(
πnkωnk − |gnnk |

2PAC
nk − πnk

)
= 0,

vn

 K∑
k=1

αnkPAC
nk R̂AC

nk (P̂AC)−RFH
n (PFH)

 = 0,

tn

 K∑
k=1

PAC
nk − PAC

n,max

 = 0,

z

 N∑
n=1

PFH
n − PFH

max

 = 0.

(48)
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From (48), we can obtain the optimal power allocation as

PAC
nk =

(
WFHd?nkRe (θnkgnnk)

Ξnkln2

)2

,

PFH
n =

[
vnWFH

ln2
−

WFHN0

||hnvn||
2

]+

,

(49)

where Ξnk =
WACd?nk

ln2

[
|θnk |

2|gnnk |
2 +

∑K
i=k+1 |θni|

2|gnni|
2
]

+
WACd?nk

ln2

[∑N
j,n

∑K
i=1 |θ ji|

2|gn ji|
2
]
−η?ξ−unk |gnnk |

2 +
∑K

i=k+1 uni(ωni−

1)|gnni|
2 +

∑N
j,n

∑K
i=1 u ji(ω ji − 1)|gn ji|

2 + vnαnkR̂AC
nk (P̂AC) + tn.
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