32 research outputs found

    Agent Behavior Prediction and Its Generalization Analysis

    Full text link
    Machine learning algorithms have been applied to predict agent behaviors in real-world dynamic systems, such as advertiser behaviors in sponsored search and worker behaviors in crowdsourcing. The behavior data in these systems are generated by live agents: once the systems change due to the adoption of the prediction models learnt from the behavior data, agents will observe and respond to these changes by changing their own behaviors accordingly. As a result, the behavior data will evolve and will not be identically and independently distributed, posing great challenges to the theoretical analysis on the machine learning algorithms for behavior prediction. To tackle this challenge, in this paper, we propose to use Markov Chain in Random Environments (MCRE) to describe the behavior data, and perform generalization analysis of the machine learning algorithms on its basis. Since the one-step transition probability matrix of MCRE depends on both previous states and the random environment, conventional techniques for generalization analysis cannot be directly applied. To address this issue, we propose a novel technique that transforms the original MCRE into a higher-dimensional time-homogeneous Markov chain. The new Markov chain involves more variables but is more regular, and thus easier to deal with. We prove the convergence of the new Markov chain when time approaches infinity. Then we prove a generalization bound for the machine learning algorithms on the behavior data generated by the new Markov chain, which depends on both the Markovian parameters and the covering number of the function class compounded by the loss function for behavior prediction and the behavior prediction model. To the best of our knowledge, this is the first work that performs the generalization analysis on data generated by complex processes in real-world dynamic systems

    Discrete Strategies in Keyword Auctions and Their Inefficiency for Locally Aware Bidders

    Get PDF
    We study formally discrete bidding strategies for the game induced by the Generalized Second Price keyword auction mechanism. Such strategies have seen experimental evaluation in the recent literature as parts of iterative best response procedures, which have been shown not to converge. We give a detailed definition of iterative best response under these strategies and, under appropriate discretization of the players' strategy spaces we find that the discretized configurations space {\em contains} socially optimal pure Nash equilibria. We cast the strategies under a new light, by studying their performance for bidders that act based on local information; we prove bounds for the worst-case ratio of the social welfare of locally stable configurations, relative to the socially optimum welfare

    Born to trade: a genetically evolved keyword bidder for sponsored search

    Get PDF
    In sponsored search auctions, advertisers choose a set of keywords based on products they wish to market. They bid for advertising slots that will be displayed on the search results page when a user submits a query containing the keywords that the advertiser selected. Deciding how much to bid is a real challenge: if the bid is too low with respect to the bids of other advertisers, the ad might not get displayed in a favorable position; a bid that is too high on the other hand might not be profitable either, since the attracted number of conversions might not be enough to compensate for the high cost per click. In this paper we propose a genetically evolved keyword bidding strategy that decides how much to bid for each query based on historical data such as the position obtained on the previous day. In light of the fact that our approach does not implement any particular expert knowledge on keyword auctions, it did remarkably well in the Trading Agent Competition at IJCAI2009

    Optimizing Your Online-Advertisement Asynchronously

    Full text link
    We consider the problem of designing optimal online-ad investment strategies for a single advertiser, who invests at multiple sponsored search sites simultaneously, with the objective of maximizing his average revenue subject to the advertising budget constraint. A greedy online investment scheme is developed to achieve an average revenue that can be pushed to within O()O(\epsilon) of the optimal, for any >0\epsilon>0, with a tradeoff that the temporal budget violation is O(1/)O(1/\epsilon). Different from many existing algorithms, our scheme allows the advertiser to \emph{asynchronously} update his investments on each search engine site, hence applies to systems where the timescales of action update intervals are heterogeneous for different sites. We also quantify the impact of inaccurate estimation of the system dynamics and show that the algorithm is robust against imperfect system knowledge

    Designing a successful adaptive agent for TAC Ad auction

    Get PDF
    This paper describes the design and evaluation of Aston-TAC, the runner-up in the Ad Auction Game of 2009 International Trading Agent Competition. In particular, we focus on how Aston-TAC generates adaptive bid prices according to the Market-based Value Per Click and how it selects a set of keyword queries to bid on to maximise the expected profit under limited conversion capacity. Through evaluation experiments, we show that AstonTAC performs well and stably not only in the competition but also across a broad range of environments
    corecore