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Abstract. We study formally discrete bidding strategies for the game
induced by the Generalized Second Price keyword auction mechanism.
Such strategies have seen experimental evaluation in the recent literature
as parts of iterative best response procedures, which have been shown not
to converge. We give a detailed definition of iterative best response un-
der these strategies and, under appropriate discretization of the players’
strategy spaces we find that the discretized configurations space contains
socially optimal pure Nash equilibria. We cast the strategies under a new
light, by studying their performance for bidders that act based on local
information; we prove bounds for the worst-case ratio of the social cost
of locally stable configurations, relative to the socially optimum cost.

1 Introduction

We study discrete bidding strategies for repeated keyword auction games, in-
duced by the Generalized Second Price (GSP) mechanism. Sponsored search
auctions have received considerable attention in the recent literature, as the pre-
miere source of income for search engines that allocate advertisement slots. The
GSP mechanism is implemented in different forms by Google, Yahoo!, and Bing.
Other online enterprises also use flavors of GSP; e.g. Google exports its slot al-
location and pricing system as a service. In the simplest form of the mechanism,
advertisers are ranked in order of non-increasing bids and each of the first k is
matched to one of k available slots, paying the next highest bid to his. In the
current version bids are weighted by relevance parameters of advertisers. For
one slot the GSP mechanism coincides with the VCG mechanism. For at least
two slots however, the GSP auction does not retain the features of VCG, e.g.,
truthful reporting of valuations, and encourages strategic behavior.

Strategic behavior in GSP auctions raises the question of how should an ad-
vertiser decide on his bidding. A best response of a player i under a current
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bidding configuration is any bid value within the interval defined by the bids
of at most two other players, that grants i his desired slot; but how should the
exact value be decided? In practice bidders may hire consultants to design bid-
ding strategies for them. Phenomena of competition have been observed in the
adopted strategies, ranging from modest budget investment to aggressive bid-
ding, inducing large prices for competitors. These issues have received attention
in the recent literature [3, 11]. Most of the existing works concern iterative best

response procedures, viewing a GSP auction as a repeated game. Cary et al. [3]
studied strategies where players adjust their bid iteratively, synchronously or
asynchronously – in a randomly chosen order – always targeting the slot that
maximizes their profits. They introduced 3 bidding strategies and proved con-
vergence for one of them to a single fixed point, the equilibrium described in [4].

We focus on the other two simple strategies introduced in [3], that have seen
less theoretical treatment, but have been used in experimental comparisons [3,
9, 11]. The first is Altruistic Bidding (AB), where every player takes a slot by
minimally outbidding the player who currently owns it. The second is Competitor

Busting (CB), where a player minimally underbids the player who owns the slot
above the one aimed for. Both require discretization of the players’ strategy
spaces by a bidding unit ǫ. This may change the original game entirely. Iterative
AB and CB procedures have been observed not to converge for fixed ǫ [3, 9]; can we
expect the best response state space to even have pure Nash equilibria (PNE)?
How should ǫ be tuned so that the game in discrete strategies retains properties
of the original game? The relevance of AB and CB is amplified for bidders that,
due to lack of complete information, perform local best responses.

Contribution. We study iterative AB and CB best response procedures that
differ from previous work [3] in that bidders only update their bid when they
have incentive to target a different slot. We provide a detailed description of AB
and redefine CB differently than it has appeared previously, to ensure its consis-
tency with developments to follow (Section 3). We decide an upper bound on
the discretization parameter ǫ to ensure that the induced discretized configura-
tions space has a socially optimum locally envy-free PNE, analogous to the one
identified in [4], that is also a PNE for the game in continuous strategies. We
ensure that if iterative AB or CB converge to a socially optimum configuration,
then this is a PNE even in continuous strategies. Subsequently we examine the
case of bidders that take only local steps upwards or downwards due to incom-
pleteness of available information (Section 4). We study the social inefficiency of
locally stable configurations of the GSP auction and produce upper bounds on
the inefficiency of configurations reached by local iterative AB/CB (L-AB/L-CB).

Related Work. A considerable amount of work in sponsored search auctions
concerns the strategic behavior of the bidders. As mentioned above, Cary et al. [3]
defined and studied three bidding strategies, Altruistic Bidding (AB), Competitor

Busting (CB) and Balanced Bidding (BB). CB has been observed often in prac-
tice [2, 13]. Using CB advertisers try to exhaust the budget of their competitors
by placing the highest possible bid that will guarantee them the slot they decide
to target. Altruistic bidding is the opposite of CB, whereas BB balances between



these two extremes. For BB the authors showed that, under some conditions, it
converges to the efficient locally envy-free equilibrium characterized in [4]. For AB
and CB it was shown that they do not generally converge. Experimental analysis
of AB and CB revealed low and high revenue respectively.

The performance of these strategies is analyzed in Bayesian settings in [12,
10]. In [9], vindictive strategies are studied for games where bidders are ei-
ther vindictive or cooperative. Regarding efficiency of equilibria, the first up-
per bounds on the Price of Anarchy with respect to the social welfare in GSP
Auctions were obtained by Lahaie [7]. Tighter upper bounds were obtained for
conservative bidders (that do not outbid their valuation) by Leme and Tardos
in [8]. It was shown that the price of anarchy is at most equal to the golden ratio
for the complete information game and at most 8 for the Bayesian setting.

2 Definitions & Preliminaries

An instance of the GSP Auction game has a set of n players (bidders), a set of
k slots and a tuple 〈{θj}kj=1, {ρi}ni=1, {vi}ni=1〉. θj ∈ [0, 1] is the probability that
a link displayed in slot j is clicked (Click-Through Rate - CTR), ρi ∈ [0, 1] is
the probability that an advertisement by player i is clicked (relevance of i) and
vi is the valuation of i. We use v̂i for ρivi, the expected revenue of i. Assume
θ1 ≥ · · · ≥ θk > 0, v̂1 ≥ · · · ≥ v̂n and define γj = θj/θj−1, γ = maxj γj for j ≥ 2.

The GSP Mechanism. Players issue collectively a bid vector b = (b1, . . . , bn);

they are ranked in order of non-increasing declared expected revenue b̂i = ρibi and
matched to slots in order of non-increasing CTR. This is the Rank-By-Revenue

(RBR) rule. When all bidders’ relevances are equal, the players are ranked by
non-increasing bid bi (Rank-By-Bid rule - RBB). Under RBB, a player i receiving
a slot j pays the bid of the (j + 1)-th player. Under RBR, i pays the declared
expected revenue of the bidder i′ receiving slot j +1 divided by ρi, i.e. ρi′bi′/ρi.

Given a bid configuration b, we denote by b(j), ρ(j), v(j), the bid, relevance
and valuation of the player occupying slot j. b−i is the strategy profile b without
the bid of player i and b−(j) denotes exclusion of the bid of the player occupying
slot j. Define b(j) = b(j), and b−i(j), b−(i)(j) will be the bid of the player

occupying slot j in b−i and b−(i) respectively. We use b̂ for the vector of declared
expected revenues as above. The utility of a player occupying slot j under b is:

u(j)(b) = θjρ(j)

(

v(j) −
ρ(j+1)b(j+1)

ρ(j)

)

= θj(v̂(j) − b̂(j+1)).

The social welfare SW (b) of b is SW (b) =
∑k

j=1 θj v̂(j) =
∑k

j=1 θjρ(j)v(j). We
assume a deterministic tie-breaking rule in case there are ties in the ranking.
Edelman et al. [4] identified a PNE configuration b∗ for the GSP auction game
with optimum social welfare SW (b∗) =

∑

j θjρjvj and payments equal to the
ones in the efficient dominant strategy equilibrium of the VCG mechanism. This
equilibrium is also locally envy-free, i.e. every bidder i under b∗ is indifferent of
receiving at price ρib

∗

i the slot right above the one he occupies under b∗.



Local Stability. In Section 4, motivated by the costs incurred to players for
learning the competitors’ bids, we assume that a player only learns the price
of the slots right above/below the slot he currently occupies and only considers
these local deviations. In case of ties, i.e., other players above/below him bidding
the same, we assume that he learns the price of the first slot below the ties. This
inspires a definition of local stability, which is a relaxation of Nash equilibrium.

Definition 1. Let b be a bid configuration of the Generalized Second Price

Auction game with k slots and n ≥ k players. Fix any slot j0 ∈ {1, . . . , k}
and let j1 = j0 + 1, j2 = j0 − 1. Define j′1 = min

(

{n} ∪ {j|b̂(j) < b̂(j1)}
)

and

j′2 = max
(

{1} ∪ {j|b̂(j) > b̂(j2)}
)

. The bid configuration b is locally stable if:

1. For any slot j0

if j0 6= k and j′1 ≤ k + 1, θj0(v̂(j0) − b̂(j0+1)) ≥ θj′
1
−1(v̂(j0) − b̂(j′

1
)), (1)

if j0 6= 1, θj0(v̂(j0) − b̂(j0+1)) ≥ θj′
2
+1(v̂(j0) − b̂(j′

2
+2)), (2)

2. For any player i who does not win a slot under b, v̂i ≤ b̂(k).

The definition states that no player has an incentive to move to the next feasible
slot upwards or downwards under b. j′1 and j′2 determine the slot that the bidder
at slot j0 can target, in case that due to ties he cannot aim for the one right
above/below him. The condition j′1 ≤ k+1 in (1) states that a bidder may not be
able to deviate downwards if all the remaining bidders have equal score. For non-
winning players, we assume they know the bidding entry level to competition,
b̂(k) = ρ(k)b(k). The last constraint prescribes that no such bidder has incentive to
target slot k. In analogy to the Price of Anarchy [6], we quantify the inefficiency
of locally stable configurations by the following worst-case ratio:

Definition 2. The Local Stability Ratio of a GSP Auction game is defined as

Λ = supb

∑

j
θj v̂j

SW (b) , where the supremum is over all locally stable configurations.

We note that the notion of a locally stable configuration and hence the notion
of the Local Stability Ratio can be defined for a much wider context. They are
applicable to any game where the outcome is a ranking, and for every action
profile b any player is allowed, in a well defined manner, to deviate upwards
or downwards in the ranking and determine his new payoff. Ranking Games [1]
constitute one such interesting class of games. (GSP Auctions differ from games
studied in [1] in that a player’s payoff does not depend only on his rank).

3 Discrete Bidding Strategies

We focus on conservative bidders [8] that never outbid their valuation vi in fear
of receiving a negative payoff. Our discussion throughout the paper is in terms



of equal relevances and the RBB ranking rule. All results extend for RBR. We
assume a discretization of the continuous strategy space [0, vi] of player i, in mul-
tiples of bidding step ǫ > 0; i.e., the strategy space of i is Σi = {0, ǫ, 2ǫ, . . . , ⌊vi⌋ǫ},
where ⌊x⌋ǫ will henceforth denote the maximum multiple of ǫ that is at most x.

We view sponsored search auctions as repeated games, and we study the
bidding strategies AB and CB in the context of iterative best response procedures.
In each iteration, given a current configuration b = (b1, . . . , bn), a player i is
chosen at random to respond to b−i by choosing a bid b′i, so as to optimize
his utility ui(b−i, b

′

i). To do so, player i aims for the most profitable slot, j∗(i),
which he may win by a bid b′i ∈ (b−i(j

∗(i)),b−i(j
∗(i)− 1)]; i.e., b′i strictly beats

b−i(j
∗(i)) and equals at most b−i(j

∗(i)−1), the bid issued by a player occupying
slot j∗(i)−1. Due to discretization and possible ties, it may occur that no b′i ∈ Σi

grants the desired slot to i. Hence we define j∗(i) = argmaxj [θj(vi − b−i(j))],
where the max is taken over slots j for which Σi∩ (b−i(j(i)),b−i(j(i)− 1)] 6= ∅.
If there is no such slot, then the bidder does not alter his bid. If bidder i is not
occupying any slot under the current configuration b, it may be the case that
there is no slot giving him positive utility, in which case the bidder does not
alter his bid either. Finally, if j∗(i) equals the currently occupied slot by i, then
i does not alter his bid. We consider two simple ways of selecting an extremal
bid in this range, namely Altruistic Bidding (AB) and Competitor Busting (CB).

Altruistic Bidding. AB [3] dictates that player i first computes his optimal
slot j∗(i) and then submits the most altruistic bid that is feasible and beats
b−i(j

∗(i)). Hence if j∗(i) = 1, he issues the bid b−i(j
∗(i))+ ǫ, otherwise he bids:

b′i = min[(Σi ∩ {b−i(j
∗(i)) + ǫ, . . . ,b−i(j

∗(i)− 1)}) \ {bi}]

Competitor Busting. CB expresses competitive behavior of player i, in that i
incurs the highest possible payment to the player receiving the slot right above
j∗(i). We define the bid b′i issued by i to be the maximum feasible bid that grants
i slot j∗(i), except if j∗(i) = 1. In this case set b′i = b−i(1) + ǫ, otherwise:

b′i = max[(Σi ∩ {b−i(j
∗(i)) + ǫ, . . . ,b−i(j

∗(i)− 1)}) \ {bi}]
Generally, b′i equals (if feasible) b−i(j

∗(i)−1), except for when b−i(j
∗(i)−1) = bi,

in which case b′i = b−i(j
∗(i)− 1)− ǫ. This definition of CB differs from the one

in [3], where b′i = b−i(j
∗(i)−1)−ǫ always. Note that, assuming that j∗(i) differs

from currently occupied slot by i under b, we forbid b′i = bi.

We need a tie-breaking rule, for when a newly submitted bid ties with an existing
bid of another player. If bidder i best-responds by b′i = b−i(j

′) for slot j′ then
bidding b′i grants i slot j

′ +1 (or lower if there are more ties). For iterative best
response this rule facilitates dynamic temporal tie-breaking, i.e. bidding the same
bid as some player i′, but later than i′, may only grant a lower slot than i′.

Discretization of the players’ strategy spaces in multiples of ǫ may introduce
stable configurations that are not PNE in continuous strategies. Although AB

and CB have seen experimental study in the recent literature [3], it is not known
whether their induced state spaces maintain any PNE of the original game in



continuous strategies. By conditioning on ǫ, we establish existence of a socially
optimum locally envy-free PNE, which is a discretized version of the PNE iden-
tified by Edelman et al. in [4]. Our result is additionally strengthened by the fact
that, if our iterative best response procedures converge to a socially optimum
configuration b, then b is a PNE of the game even with continuous strategies3

Let ∆v denote the minimum among the distances between two valuations or the
distance of a valuation from 0: ∆v = min{{|vi − vj | : i, j ∈ N} ∪ {|vi| : i ∈ N}}.

Theorem 1. For any bidding step ǫ ≤ ǫ∗ = (γ−1−1)∆v, the configuration space

of the GSP Auction game with discrete strategies contains at least one config-

uration b, that is socially optimum and locally envy-free pure Nash equilibrium

for the GSP Auction game even with continuous strategies, given by:

bj =







b2 + ǫ, if j = 1
⌊(1− γj)vj + γjbj+1⌋ǫ , if 2 ≤ j ≤ k
⌊vj⌋ǫ, if j ≥ k + 1

Also, if iterative AB or CB converges to a socially optimum configuration, then this

is a pure Nash equilibrium of the GSP Auction game in continuous strategies.

Regarding the convergence of iterative AB/CB, we found examples showing that
AB does not always converge, even for bidding step ǫ ≤ ǫ∗ and geometrically
decreasing (well separated) CTRs. We were not able to prove or disprove con-
vergence of CB, despite extensive experimentation (reported in the full version).
Resolving convergence for CB is therefore an interesting open problem. Conver-
gence of local versions of these strategies – discussed next – also remains open.

4 Locally Aware Bidders & Local Stability

It is commonly assumed in the literature that bids of other players are observable.
In principle one could apply learning techniques to estimate all the other bids
as shown in [2]. Such a practice incurs however costs in time and money and,
given the dynamic nature of these games, the game may have switched to a
different bid vector by the time one estimates all remaining bids. Modeling the
uncertainty about other bidders’ offers is one approach to this issue [11]. Here
we take a different approach and assume that bidders have only local knowledge
about the bid vector and make only local moves, adhering to the following rules:

1. They estimate the prices only for the slots right above or below their current
slot and – in the absence of ties – will only move one slot upwards or downwards.
In case of ties, a bidder learns the price of the first slot above or below him that
he can actually target. If none of these moves are beneficial, no deviation occurs.

2. Bidders not receiving a slot only learn the price of the last slot or – in case
of ties – the price of the first slot from the end that they can target.

3 More accurately, there is a tie-breaking rule for the one-shot game in continuous
strategies that renders b a PNE. However, the socially optimum locally envy-free
PNE described in Theorem 1 is independent of choice of tie-breaking rules.



The restrictions of AB/CB for such locally aware bidders (L-AB/L-CB) are natural
strategies in this setting. If iterative L-AB or L-CB converge, they will converge to
a locally stable configuration (in ǫ-discrete strategies), as in Definition 1. We ana-
lyze first the inefficiency of locally stable configurations in continuous strategies.
Subsequently, we consider the performance of iterative L-AB and L-CB.

Theorem 2. The GSP Auction game in continuous strategies with conservative

bidders has Local Stability Ratio at least Ω(
√
αk), for any constant α > 1.

In the proof of this result we used a game instance with γ = 1. However, fitting of
real data in previous works [5] has shown that CTRs are well separated (γ < 1),
by following a power law distribution. Geometrically decreasing CTRs θj ∝
α1−j for α = 1.428, were observed in [5]. Other authors [10] have used a Zipf
distribution, where θj = j−α, for α ≥ 1. For such cases with γ < 1 we obtain:

Theorem 3. The GSP Auction game in continuous strategies with conservative

bidders has Local Stability Ratio at most (1− γ)−1, assuming γ < 1.

Corollary 1. For geometrically decreasing click through rates with decay factor

α > 1 and conservative bidders, Λ ≤ α
α−1 . For click-through rates following the

Zipf distribution with θj = j−α, for α ≥ 1, Λ ≤ [1− (1− 1/k)α]−1 ≤ k.

Corollary 1 and empirical observations [5] imply a constant upper bound on Λ

for geometrically decreasing CTRs. We were not able to find matching lower
bounds for Theorem 3 or Corollary 1. We give experimental results in figure 1,
for the inefficiency of “reverse” assignments of players to slots, in games with
k = n slots, n = 2, 3, . . . , 20. The depicted results were found by solving non-
linear programs (one for each curve), that express local stability of the reverse
assignment and have Λ as objective function. Tightness of Λ ≤ k is evident
for Zipf-distributed CTRs. Finally, our analysis for Theorem 3 can be used in
bounding the inefficiency of stable configurations of iterative L-AB and L-CB:

Theorem 4. For γ < 1 and ǫ ≤ ǫ∗, the Local Stability Ratio of stable config-

urations with respect to iterative L-AB and L-CB is at most (1 − γ)−1 + γ−1.

Moreover, this bound applies to stable configurations with respect to AB and CB.
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