
Born to Trade: a Genetically Evolved Keyword Bidder
for Sponsored Search

Michael Munsey, Jonathan Veilleux, Sindhura Bikkani, Ankur Teredesai, and Martine De Cock

Abstract— In sponsored search auctions, advertisers choose
a set of keywords based on products they wish to market.
They bid for advertising slots that will be displayed on the
search results page when a user submits a query containing
the keywords that the advertiser selected. Deciding how much
to bid is a real challenge: if the bid is too low with respect to
the bids of other advertisers, the ad might not get displayed in
a favorable position; a bid that is too high on the other hand
might not be profitable either, since the attracted number of
conversions might not be enough to compensate for the high
cost per click.

In this paper we propose a genetically evolved keyword
bidding strategy that decides how much to bid for each query
based on historical data such as the position obtained on the
previous day. In light of the fact that our approach does not
implement any particular expert knowledge on keyword auc-
tions, it did remarkably well in the Trading Agent Competition
at IJCAI2009.

I. INTRODUCTION

The use of sponsored search auctions is one of the key
mechanisms by which search engines generate profit. Adver-
tisers can buy space on the web pages produced by popular
search engines and place advertisements to promote their
products alongside the regular algorithmic search results.
The allocation of these advertising slots and their pricing
is done via auctions. Since the introduction of this concept
in 1998, sponsored search has evolved into a major source of
revenue for internet giants such as Google, Yahoo!, Bing and
others. Its success can be attributed partly to its effectiveness
as a form of highly targeted advertising, and partly to the
appealing framework that allows even small-scale advertisers
to use it easily and effectively while only paying when their
ad is clicked upon. When a user enters a keyword query into
a search engine, he gets back a page with results, containing
both the links most relevant to the query and the sponsored
links, i.e., paid advertisements. When a user clicks on a
sponsored link, he is sent to the respective advertiser’s web
page. The advertiser then pays the search engine for sending
the user to his web page.

As Figure 1 illustrates, sponsored links are typically
clearly distinguishable from the actual search results. How-
ever, the visibility of a sponsored search link depends on
its location (slot) on the result page. Typically, a number
of advertisers naturally prefer a slot with higher visibility,

All authors are with the Institute of Technology, University of Washing-
ton, 1900 Commerce Street, Tacoma, WA-98402, USA (email: {munseym,
veillj, sindhub, ankurt, mdecock}@u.washington.edu).

Martine De Cock is on leave from the Department of Applied Mathe-
matics and Computer Science, Ghent University, Krijgslaan 281 (S9), 9000
Gent, Belgium (email: martine.decock@ugent.be).

Fig. 1. Result of a search performed on Google for the query spain vaca-
tion. The sponsored search results (on the right) are clearly distinguishable
from the algorithmic search results (on the left).

i.e., towards the top of the list of sponsored links. Hence,
search engines need a system for allocating the slots to
advertisers and deciding on a price to be charged to each
advertiser. Due to increasing demands for advertising space,
most search engines are currently using auction mechanisms
for this purpose. These auctions are called sponsored search
auctions. In a typical sponsored search auction, advertisers
are invited to submit bids on keywords, i.e., the maximum
amount they are willing to pay for a user clicking on the
advertisement displayed on the search results page when a
user submits a query containing those keywords. Based on
the bids submitted by the advertisers, the search engine picks
a subset of advertisements along with the order in which to
display them. The actual price charged, i.e., the cost per click
(CPC), also depends on the bids submitted by the advertisers.

Due to the limited budget of each advertiser, strategic
bidding behavior plays a crucial role in sponsored search auc-
tions. From an advertiser’s perspective, an ideal strategy has
to prevent the advertiser from overbidding, while at the same
time bidding enough to obtain his favorite position, thereby
beating competing advertisers. To encourage the research
community to develop such bidding strategies, in 2009 a
new game was introduced in the Trading Agent Competition
(TAC), a series of international research tournaments to
promote research and education in the technology underlying
trading agents [8]. Agents in the TAC Ad Auctions game1

(TAC/AA), representing internet advertisers, bid for search
engine advertisement placement over a range of interrelated
keyword combinations. A back-end search user model trans-

1http://aa.tradingagents.org/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55827515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


lates placement over each simulated day to impressions,
clicks, and sale conversions (purchases), yielding revenue for
the advertiser. Advertiser strategies need to combine online
data analysis and bidding tactics to compete for maximum
profit over the simulated campaign horizon.

In this paper we describe an approach with which we
participated in the final tournament of the game, held at the
workshop on Trading Agent Design and Analysis (TADA-09)
at IJCAI2009. In our approach, we model an agent as a finite
state machine. At any given time the agent is in a particular
state, defined by a set of parameters that we believe are most
crucial in making a decision about a bid. When asked for a
new bid for a particular query, the agent decides to either
stick to, or to adapt the previous bid for that query, and, if
it deems a change of the bid is needed, by how much. The
decisions that an agent makes are controlled by the state that
the agent is in; this state is in turn determined by the agent’s
past behavior and the reaction of the market to that behavior.
In that sense, the bid that an agent makes indirectly transi-
tions it into another, typically different, state of the finite state
machine. We use an evolutionary approach to develop finite
state machines (agents) that perform well. The performance
of agents in intermediate generations is evaluated by letting
them compete in game instances which are run specifically
for the fitness computation. Agents that accumulate a higher
average profit are more likely to contribute offspring to the
next generation.

The remainder of this paper is structured as follows: in
Section II, we provide more details about sponsored search
and the ad auctions game. In Section III we describe our
approach, while in Section IV we present empirical results,
including results about the performance of our agent at the
final tournament of the TAC Ad Auctions game held at the
TADA-09 workshop at IJCAI2009. Finally, in Sections V
and VI, we respectively present related work and ideas for
future research.

II. PROBLEM DESCRIPTION

A. Sponsored Search

Advertisers spend billions of dollars every year on search
engine marketing (SEM), a form of internet marketing that
seeks to promote web sites by increasing their visibility
in search engine result pages. In contrast to search engine
optimization (SEO), which is the process of improving the
volume or quality of traffic to a web site from search engines
via pure search results (also known as organic or algorithmic
search results), SEM deals with paid inclusion. The largest
SEM vendors are Google AdWords2, Yahoo! Search Mar-
keting3, and Microsoft adCenter4, all of which provide cost
per click (CPC) advertisements through sponsored search
auctions.

There are three entities involved in a sponsored search
scenario: a user who generates queries, clicks ads, and

2http://adwords.google.com
3http://searchmarketing.yahoo.com
4https://adcenter.microsoft.com/

purchases products; a publisher (search engine) who receives
queries from users, matches queries to ads, and holds position
auctions for display; and an advertiser who bids for position
ranking and selects ads for display. The relationship between
these entities can be beneficial to all involved. Because of
the cost of a click, an advertiser does not want a user to
see or click an advertisement that is not likely to lead to
a conversion, likewise a user does not want to be bothered
by advertisements that they are not interested in. Both the
advertisers and the users must have a level of trust with
the publisher, or they may leave the system in favor of an
alternate publisher.

Given the bids of all advertisers for a particular query, it is
up to the publisher to decide which slot to allocate to which
advertiser. Ranking advertisements in response to a query
is a complicated task that involves ideas from information
retrieval as well as insights from microeconomics. Indeed, it
is in the interest of a search engine to give more visibility to
advertisements from higher bidders because this will lead to
a higher short term CPC revenue for the search engine. At the
same time however, the top ranked ads should be sufficiently
relevant to the query to please users who have come to
expect highly relevant search results; irrelevant sponsored
search results might disappoint users who will then leave
the system in favor of another, thereby jeapordizing the long
term revenue of the search engine.

Another decision to be made by the publisher is how much
to charge advertisers for a click on an advertisement in a
particular slot. The most straightforward way is to set the
CPC for a slot at the price bid by the winner of that slot
(called the generalized first price rule). The major search
engines are however known to employ a generalized second
price rule, a generalized variant of a Vickrey auction in which
the CPC for a slot is determined by the price bid of the
winner of the next-best position [4].

In this paper however, we look at the sponsored search
problem from the perspective of an advertiser. For any
mechanism followed by the publisher, advertisers face the
problem of how to generate bids over time in a competitive
and highly dynamic ad market. We assume that the advertiser
has already selected a set of keyword queries that he wishes
to place bids on. Our contribution and focus is on solving the
problem of coming up with the best bids for these selected
keywords. Specifically, we focus on the genetic encoding of
the profit maximization problem to ensure optimal return on
investment accounting for historical bid patterns. Note that
this problem is different from identifying the most profitable
set of keywords among millions of available keywords as
is done e.g. in [12]. In an actual search engine marketing
campaign, both problems need to be solved.

B. The Ad Auctions Game

The TAC/AA scenario is designed to include many of the
interesting strategic aspects of sponsored search auctions,
while being repeatable and computationally amenable to em-
pirical analysis. Recall that there are three entities involved
in a sponsored search scenario: users, advertisers, and a



—, — (F0) Lioneer, Audio (F2)
Lioneer, — (F1) Lioneer, DVD (F2)
PG, — (F1) PG, TV (F2)
Flat, — (F1) PG, Audio (F2)
—, TV (F1) PG, DVD (F2)
—, Audio (F1) Flat, TV (F2)
—, DVD (F1) Flat, Audio (F2)
Lioneer, TV (F2) Flat, DVD (F2)

Fig. 2. There are 16 distinct query kinds in the TAC/AA game environment.

publisher (or search engine) that brings them together. The
game environment simulates the behavior of the users and
the search engine: the search users and the publisher follow
fixed (stochastic) policies built into the game environment.
The advertiser agents, on the other hand, follow policies
implemented by competition entrants.

In the game, participating advertisers have an interest
in the keywords Lioneer, PG, Flat, TV, Audio, and DVD.
The first three correspond to the names of manufacturers,
while the others are components in the home entertainment
market. The game environment simulates users who launch
queries that contain one, two, or none of these keywords.
Mentioning neither a component nor manufacturer is called
an F0 level query. Mentioning one or the other, but not both,
is denoted an F1 level query. Mentioning both component
and manufacturer is called an F2 level query. In total, there
are 16 distinct kinds of queries, as illustrated in Figure 2.

A game instance corresponds to a period of 60 days5.
At the beginning of each day, each participating advertiser
submits a bid for each of the 16 query kinds from Figure 2.
In addition, each advertiser also informs the publisher of the
kind of ad to display for each of the 16 query kinds: either a
targeted ad mentioning a particular product, or a generic ad.
Finally, advertisers may also submit individual daily spend
limits for each of the 16 query kinds, as well as a limit for
the aggregate spend across queries. When a spend limit is
reached, the affected ads will no longer be shown to users
for the rest of the current day.

After all advertisers have submitted their bids for the
day, the publisher executes an ad auction for each query
kind to determine the ad rankings and click prices. Users
then issue queries, receive results, and consider clicking
on ads. When a user clicks on an ad, the user is taken
to the respective advertiser’s landing page. In addition, the
advertiser is charged a cost per click that was determined by
the publisher when the ad auction was run. When a user visits
an advertiser’s landing page, he determines whether or not to
purchase a product from that advertiser. If the user purchases,
the event is termed a conversion, and the advertiser earns a
profit. As new queries are launched throughout the day, the
publisher monitors the spend limits of the advertisers and
reruns ad auctions as necessary.

For a more detailed description of the stochastic policies

5In the game environment, the length of such a “day” takes only a few
seconds in real time.

governing the behavior of the publisher and the users, we
refer to the game specifications [7]. An interesting fact to
point out is that every simulated user in the game has
a particular product preference (say Lioneer, TV). A user
is more likely to click on a targeted ad that matches its
preference than on a generic ad, but a user is also more
likely to click on a generic ad than on a targeted ad that
does not match its preference. Hence an advertiser needs to
decide with care whether it wants a generic or a targeted ad
to be displayed for a given query kind.

Although every advertiser sells every product, there are
two differences between individual advertisers, assigned
by the game environment at the beginning of each game
instance. First, each advertiser specializes in a particular
manufacturer and a particular component (say PG, TV). The
specialization affects conversion probability and sales profit.
Users with a component preference matching the advertiser’s
specialization (e.g. TV) are more likely to purchase once
they reach the advertiser’s landing page, i.e., the odds of
converting are increased. Furthermore, an advertiser receives
a manufacturer specialist bonus for every sale of a product
from the manufacturer matching its specialization (e.g. PG).
Second, each advertiser is assigned a distribution capacity of
low, medium, or high. This is used to model the phenomenon
that if advertisers sell too much products in a short period,
their inventories run short and they have to put items on
backorder. As a result, shoppers will be less inclined to
purchase, and conversions suffer, i.e. the odds for converting
decrease. Roughly speaking, the distribution capacity of an
advertiser directly relates to the number of products he can
sell in a sliding aggregation window of W = 5 days without
risking a backorder penalty. For more details, we refer to [7].

Finally, at the beginning of each day, each advertiser
receives three reports based on events from the previous
day, namely a daily query report from the publisher, a daily
account status report from the bank, and a daily sales report
from the sales analyst enumerating the sales for each of
the 16 query kinds. For the full details of the contents of
these reports, we refer again to the game specifications [7].
Important for the approach we describe in the next section, is
that the daily query report for an advertiser contains, among
other information, the average position of the slot obtained
by that advertiser for each of the 16 query kinds. The reports
about day d−1 are only made available after advertisers have
placed their bids for day d. As a result, information about
events that took place on day d−1 can be used at the earliest
to influence bids for day d+ 1.

III. EVOLVING A BIDDING STRATEGY

Recall that at the start of day d, an advertiser needs to
submit a bid bundle specifying its CPC offer and ad choice
for each of the 16 query kinds, to be applied on that day.
Furthermore, advertisers may also submit individual daily
spend limits for each of the 16 query kinds, as well as a
limit for the aggregate spend across queries. This section
is almost entirely devoted to how to decide the CPC offer,
which is the heart of our approach. In Section III-A, we



explain how the bidding behavior of an advertiser can be
encoded as a real valued chromosome, while in Section III-
B we describe the details of our genetic algorithm, including
fitness computation and reproduction. Finally, in Section III-
C we briefly address the issues of ad choice and spend limits,
which are not part of our genetic algorithm.

A. Encoding

In our approach, the bidding behavior of an advertiser is
governed by a finite state machine with 7 different states.
The state that an advertiser x is in at the beginning of day d
depends on its backorder on day d − 1, which we compute
as

Bd−1(x) =
d−2∑

i=d−W

ci(x)− C(x) (1)

with C(x) the distribution capacity of the advertiser and W
the length of the aggregation window. In the game environ-
ment, at the beginning of a game instance, an advertiser is
assigned a distribution capacity of either C(x) = 300 units
(low), 400 units (medium), or 500 units (high), corresponding
to the number of units he can sell in a sliding window of
W = 5 days without the risk of a backorder penalty. The
more an advertiser exceeds his distribution capacity within
an aggregation window, the smaller the odds that users will
place additional orders. In (1), ci(x) denotes the total number
of conversions of advertiser x on day i. This information is
readily available from the daily report of the sales analyst.
For values of i smaller than 1, we set ci(x) = 0, indicating
that no units have been sold before day 1, which is the start
of a game instance. Note that the summation in (1) does not
include the number cd−1(x) of conversions on day d−1. As
explained above, the report for day d− 1 becomes available
only after the bids for day d have been placed. In that sense,
the formula on the right hand side of (1) only provides a
lower bound for the true backorder at the end of day d− 1.

The backorder computed according to (1) can be positive
or negative. A positive value indicates that more conversions
have been made than the distribution capacity allows, re-
sulting in a true backorder. A negative value means that
there is room for more conversions before the distribution
capacity over the aggregation window is reached. To facilitate
encoding, we discretize the range for backorder into 7
intervals over the integers, each corresponding to a state in
the finite state machine. The state Sd(x) of advertiser x at
the beginning of day d is defined as:

Sd(x) =



s1, if Bd−1(x) ≤ −101
s2, if − 100 ≤ Bd−1(x) ≤ −51
s3, if − 50 ≤ Bd−1(x) ≤ −26
s4, if − 25 ≤ Bd−1(x) ≤ −11
s5, if − 10 ≤ Bd−1(x) ≤ 0
s6, if 1 ≤ Bd−1(x) ≤ 10
s7, if 11 ≤ Bd−1(x)

(2)

Next, every state contains an action table that tells the
advertiser which bid bx(q, d) to place for each query q on day
d. This decision depends on the previous bid of the advertiser

for that query q, the average slot position previously obtained
for query q, as well as how well query q matches the
advertiser’s specialization.

The average slot position obtained for a query on a given
day is stated in the daily report from the publisher as a
double in the range [1, 8]. For instance, if an advertiser has a
position value of 2 for query —, Audio, this means that the
advertiser’s ad, on average, was in the second position of the
search results page for query —, Audio on that day. It is an
average because the position of the advertiser’s ad may vary
during the course of a day for each query, as advertisers
might opt out because their spending limit is reached. In
the game, a better position generates more impressions. For
our purposes, we distinguish between 6 possible values for
position: 1, 2, 3, 4, 5, and > 5. Value > 5 means that the ad
did not get a slot position in the top 5, which might mean
that it got a lower ranked slot, or no slot at all. We do not
distinguish further between the cases comprised by > 5 in
order to keep the size of the action table manageable.

Specialty matching represents the degree to which a query
matches the advertiser’s specialization. A keyword from the
query that occurs in the advertiser’s specialization is called a
hit; e.g. Lioneer is a hit in Lioneer, Audio. A keyword from
the query that does not occur in the advertiser’s specialization
is called a miss. The level of matching between a query and
the advertiser’s specialization is defined as follows:

2 misses: VERY BAD
1 miss, 0 hits: BAD
1 miss, 1 hit: WEAK
0 hits, 0 misses: NEUTRAL
1 hit, 0 misses: GOOD
2 hits: PERFECT

For example, if our advertiser’s specialization is Lioneer,
Audio, then query PG, — is considered a BAD match, while
Lioneer, TV and PG, Audio are WEAK matches. The query
—, Audio on the other hand is considered to be a GOOD
match. The queries —, — and Lioneer, Audio are respectively
the only NEUTRAL match and PERFECT match. PG, TV
would be an example of a VERY BAD match.

An action table is a two dimensional array in which
the rows correspond to slot positions, and the columns
correspond to speciality matchings. As an example, Table I
depicts the action table contained in state s6 of the agent with
which we participated in the 2009 TAC/AA competition. The
entries in the table are numbers in the interval ]− 1, 1] that
dictate how the previous bid bx(q, d− 1) for query q should
be adjusted to obtain the new bid bx(q, d). In particular,

bx(q, d) = (1 +As
i,j) · bx(q, d− 1) (3)

where As
i,j is the number on row i and column j of the

action table of advertiser’s x current state s. The relevant i
is determined based on the average slot position previously
obtained for query q, while j corresponds to the match
between query q on one hand, and the specialization of
advertiser x on the other hand.



TABLE I
ACTION TABLE FOR BACKORDER Bd−1(x) ∈ [1, 10].

VERY BAD BAD WEAK NEUTRAL GOOD PERFECT
1 −0.2411 −0.3492 0.6218 0.3053 0.2174 0.0054
2 −0.0767 0.0969 −0.2324 −0.2929 0.1425 0.0722
3 0.0233 0.2947 0.1039 0.0412 −0.2582 0.0524
4 0.0549 −0.2146 −0.1124 0.1133 0.0028 0.4546
5 −0.1486 0.2938 −0.0737 −0.0257 −0.4715 −0.0873

> 5 0.1214 −0.1931 0.2013 0.1824 −0.0449 −0.0769

The strategy described above relies on knowing in which
state the advertiser is at any given moment, which is de-
termined with (1). Note that the first time that (1) uses any
information about the market, other than the advertiser’s own
distribution capacity C(x), is for d = 3. Recall that the
daily reports for day d = 1 only become available after
the advertisers have placed their bids for day d = 2, so day
d = 3 is the earliest point in the game at which advertisers
can make some sort of informed decision. In other words,
CPC offers for days d = 1 and d = 2 can be considered shots
in the dark. In Section IV we mention the CPC offers that our
agent in the 2009 TAC/AA competition used for the first two
days, applying the heuristic of bidding more for queries that
are good matches w.r.t. the advertiser’s specialization, than
for queries that are bad matches. After day 2, adjustments
are made to these bids through the procedure outlined above.

B. Training

As became clear above, the behavior of an advertiser in
our approach is governed by a finite state machine with 7
states, each of which contains a 6 by 6 action table. The 252
values (= 7 · 6 · 6) needed to fill the action tables are learned
through an evolutionary process, in which an advertiser is
encoded as a real valued chromosome of length 252.

a) Fitness function: The fitness of a chromosome is
defined as the average profit earned by the chromosome in
the game. Hence determining the fitness of a chromosome
requires running one or more game instances, which makes
evaluating the fitness a time consuming process. In practice,
we compute the fitness of a chromosome based on at least
two rounds of the game.

b) Initial population: To start, we create a population
of size 16. Since in the standard game setting the number of
advertisers per game instance is 8, a population size of 16
allows us to have every chromosome compete exactly twice
in a total of 4 game instances (in a training scenario where we
evolve our advertiser agents by making them compete against
each other, and no external agents are involved). All genes in
15 of the chromosomes are initialized with uniformly random
values in the range ] − 1, 1]. The remaining chromosome is
initialized as a constant bidder, i.e., all of its genes are set
to 0.0. The motivation behind seeding the initial population
with a constant bidder is to allow the population to learn

from and become at least as good as an agent that bids the
same amount for the duration of a game.

c) Selection: The fittest chromosome is carried over
automatically to the next generation. Furthermore, we use
roulette wheel selection to pick 15 pairs of chromosomes for
reproduction. In our implementation, a chromosome may be
picked more than once and may even be in a pair with itself.

d) Reproduction: Each pair of chromosomes produces
a single child. Because our alleles are real values, we use
BLX-α crossover, an extension of flat crossover [6] in which
each child allele is chosen as a uniformly distributed random
value from the interval

[min(x1, x2)− I · α,max(x1, x2) + I · α] (4)

where x1 is the corresponding first parent’s allele, x2 is the
corresponding second parent’s allele, and I = max(x1, x2)−
min(x1, x2). The value of α determines how far outside the
interval between the parents’ alleles the child’s allele can be.
In our case, α = 0.25 was chosen so that the majority of new
alleles are within the parent’s interval, while still maintaining
diversity in the population.

e) Mutation: Next, we mutate each gene in the newly
created pool of children with probability 0.02. When a gene
is mutated, its allele is replaced with a new random value
in the interval ] − 1, 1]. Note that we carefully avoid −1
as a bid adjustment value both when setting up the initial
population and when mutating. The reason is that bx(q, d)
becomes 0 when As

i,j = −1 in (3). This means that advertiser
agent x would bid 0 for query q, not only on day d, but
permanently from then on, because there is no way to alter
a zero bid into a different bid by multiplication. Therefore,
we do not introduce bid adjustments of −1 in the initial
population nor through mutation; the crossover process will
also not introduce the value of −1.

f) Generations and termination: The fittest chromo-
some and the 15 children become the new population. The
algorithm then proceeds to the next iteration, or generation,
starting with evaluation of fitness. The algorithm runs for
a specified number of generations. The time to process one
generation is most affected by the time to run a tournament,
which on an Intel Quad Core Q9550 2.83 Ghz CPU with 8
Gb DDR2 RAM is approximately 4 minutes for a tournament
consisting of 4 games. For 200 generations, this is more than
13 hours.



C. Ad Choice and Spend Limits

While considering advertisements sequentially, the prob-
ability that a user will click on a particular advertisement
is modified by a targeting factor in the game environment.
The targeting factor ftarget gives a bonus to a targeted
advertisement that matches the user’s preference, and a
penalty if it does not (TE is given as 0.5, see [7]):

ftarget =


1 + TE, if targeted ad, matches

1 if generic ad
1

1 + TE
if targeted ad, does not match.

There are 9 possible user preferences, one for each
product-manufacturer combination. A user only queries for
his preference, e.g. a user with preference Lioneer, DVD only
launches the queries Lioneer, DVD; Lioneer,—; —, DVD;
and —, —. For an F2 query, we know precisely the user’s
preference, and use a targeted advertisement that matches
it. For an F0 query, we know nothing about the user’s
preference. Random guessing would be correct 1/9 of the
time, which would incur more penalty than bonus. For an F1
query random guessing would be correct 1/3 of the time, but
with both bonuses and penalties applied, on average would
only yield 17/18 of the targeting factor that we would get
with a generic advertisement. Without further modeling and
prediction of users’ preferences, it is not profitable to use
targeted advertisements for either F0 or F1 queries, therefore
our advertiser agents use the generic advertisement in both
cases.

Finally, an advertiser in our approach does not set any
daily spend limits, i.e. we do not specify a limit to the
maximum CPC that can be accumulated for an ad, after
which the affected ad will no longer be shown to users for
the current day. Instead, our advertiser agent achieves the
effect of spending less money on advertisements or getting
less conversions (which might be desirable in case of a high
backorder) by decreasing its bids.

Because the finite state machine described in Section III-A
does not decide on an exact bid, but rather on a bid change
which can be at most 100% different from the previous bid,
we decided to set some common sense limits to bid amounts.
It is easy to reach a small bid in only one day with a large
negative bid adjustment, but it could take several days to
return to the original value because a bid can at most double
in one day (e.g. a bid of 5 can be decreased by 90% to arrive
at a bid of 0.5 in one day, after which it will take at least 3
days to bring the bid back up to 4). This makes extremely
low bids undesirable because it is very hard to recover from
them in a timely manner. Extremely high bids can also be
detrimental because the delay between bid submission and
reports on the results of the bid can cause the advertiser
agent to not reduce the bid as quickly as it should, potentially
loosing a lot of money in the process. For these reasons, we
set a lower and upper limit on the bid amounts. The limits
used by our agent in the 2009 TAC/AA competition are given
in Section IV.

TABLE II
NUMBER OF TIMES, AS A PERCENTAGE, THAT AGENTS FROM AN

EVOLVED POPULATION OBTAINED A PARTICULAR SLOT POSITION FOR A

PARTICULAR SPECIALIZATION MATCHING.

1 2 3 4 5 > 5
PERFECT 4.33 2.12 0.82 0.30 0.17 0.23

GOOD 2.09 2.05 2.14 1.87 1.47 2.03
NEUTRAL 0.08 0.14 0.17 0.21 0.38 2.98

WEAK 1.75 1.68 1.81 2.05 2.78 12.78
BAD 2.30 3.44 3.75 3.76 4.17 11.22

VERY BAD 1.53 2.17 2.75 3.49 3.71 11.26

IV. RESULTS

As described in Section III-B, we evolve a population of
16 advertiser agents by having them compete against each
other. We compute the fitness of an agent as its average
profit over two game instances, requiring 4 game instances
per generation.

Table II shows, as a percentage, how many times agents
from an evolved population obtained a particular slot po-
sition for a particular specialization matching. The data is
generated from games played by the agents in generation
15 through 20. Table II clearly shows that over time agents
learn to prefer and obtain higher positions for queries that
provide bonuses, and lower positions for queries that do
not. For instance, as the first row indicates, in 7.97% (=
4.33+2.12+0.82+0.30+0.17+0.23) of the situations consid-
ered, the agent needed to place a CPC offer to obtain a
slot position for a query that is a PERFECT match with its
specialization. In more than half of these occasions, the agent
obtained first position, and in more than 4 out of 5 of these
occasions, the agent obtained either first or second position.
For WEAK, BAD, and VERY BAD specialization matches,
we observe the opposite phenomenon, i.e., the agent is most
likely to not be in the top five positions.

Note that the agents learned to behave like this through
the evolutionary process, and that they have not been told in
advance for which specialization matchings they should try
to obtain top ranked slot positions. The labels we gave to the
different specialization matchings in Section III-A might be
misleading in this sense as they seem to indicate a preference
of the different specialization matchings, suggesting that
e.g. a NEUTRAL match is potentially more profitable than
a BAD match. While it is indeed very reasonable to assume
that a PERFECT match can lead to more profit than a
VERY BAD match, and hence we should expect an agent to
really try to achieve a top ranked position for a PERFECT
match while making less efforts for a VERY BAD match,
the picture is not so clear in advance for some of the
other specialization matchings. It is interesting to observe for
instance that the agents learned that queries corresponding
NEUTRAL matchings are not very profitable.

In early runs of our genetic algorithm, the initial bid of
each agent for each query was set to .75. With the initial
bids all equal, we discovered that by the end of games agents



TABLE III
OUR APPROACH (DNAGENT) OBTAINED 3TH PLACE AMONG THE 15
TEAMS PARTICIPATING IN THE SEMIFINALS OF THE 2009 TAC/AA

COMPETITION.

Semifinal Results
Place Agent Average Profit

1 TacTex 70,690
2 Schlemazl 68,928
3 DNAgent 68,273
4 epflagent 68,224
5 AstonTAC 66,452
6 UMTac09 65,574
7 QuakTAC 64,136
8 MetroClick 63,043
9 Mertacor 62,533

10 UWTAgent 62,323
11 Merlion 61,274
12 Bishop 59,310
13 McCon 41,728
14 CrocodileAgent 34,554
15 WayneAd 19,185

TABLE IV
OUR APPROACH (DNAGENT) OBTAINED 5TH PLACE AMONG THE 8

TEAMS THAT ADVANCED TO THE FINALS OF THE 2009 TAC/AA
COMPETITION.

Final Results
Place Agent Average Profit

1 TacTex 79,886
2 AstonTAC 76,281
3 Schlemazl 75,408
4 QuakTAC 74,462
5 DNAgent 71,777
6 epflagent 71,693
7 MetroClick 70,632
8 UMTac09 66,933

learned to bid more for queries matching their specialization
and less for queries corresponding to poor matches (which
is in line with the observations described above). Based on
this information, we made a one-time adjustment, setting
the initial bids for queries in each specialty matching group
to match the average ending bid for those queries over
several games. In particular, we used the following initial
bid values for our agent in the 2009 TAC/AA competition:
0.33 for VERY BAD, 0.50 for BAD, 0.75 for WEAK, 0.50
for NEUTRAL, 1.25 for GOOD, and 1.50 for PERFECT.

For reasons explained in Section III-C, we imposed a
lower and upper limit on the bids placed by our agent. We
set the lower limit to 0.02, which is the lowest possible
value of the regular slot reserve score according to the game
specifications, meaning that bids under 0.02 are never taken
into account anyway in the ad ranking process. We allowed
bids up to 2.54 for PERFECT matches, 0.8 for NEUTRAL
matches (since the typically low number of conversions
makes it hard to make money out of these) and 1.5 for all
the rest. We found that in more than 90% of the cases our
trained agents spontaneously bid in between these limits.

To select an agent for participation in the 2009 TAC/AA
competition, we ran our genetic algorithm until it reached
termination based on the shrinking diversity of the popula-
tion. We repeated this process 8 times, thereby producing 8
candidate agents, i.e. the winners of each of those 8 runs
of the genetic algorithm. Finally we had these 8 candidate
agents compete in a single tournament against each other
to determine which one to enter in the 2009 TAC/AA
competition.

Tables III and IV show the performance of our agent6

at the 2009 TAC/AA competition. Notice how our profit
increased between the semifinals and the finals, while our
position decreased. One explanation could be that the agents
who did not advance to the finals may have tended to bid too
high, and it is possible that our agent might do particularly
well against those agents. Another explanation could be that
the remaining teams modified their agents to bid lower in the
final round or made other improvements after seeing how the
competition reacted to their agent. Unlike some of the other
teams, we did not take advantage of the opportunity to alter
our agent between the semifinals and the finals.

V. RELATED WORK

Although genetic algorithms have been used before in
other types of auction mechanisms (see e.g. [11], [13], [14]),
to the best of our knowledge, we are the first to propose
the use of evolutionary computation techniques to keyword
bidding for sponsored search. The rapid growth in the online
advertising industry and its relationship with search engines
is attracting a growing research interest in the topic of online
keyword based ad auctions, particularly towards per-click
pricing rather than per-impression strategies [5]. Ongoing
research efforts include the study of sponsored search auction
mechanisms with ranking of advertisements as a whole (see
e.g. [1], [2]) as well as the proposal of different strategies
to optimize the advertiser’s profit. Kitts and Leblanc [9] for
instance treat the problem of finding CPC offers that will
optimize the profit as a linear programming problem with
unknown parameters that need to be estimated, such as the
expected number of clicks generated by users overall, and
the slot position that can be expected for a specific CPC
offer. Cary et. al. [3] study the revenue, convergence and
robustness of greedy bidding strategies, while Liang and Qi
[10] investigate cooperative and vindictive strategies.

Not much is publicly known yet about the agents par-
ticipating in the 2009 TAC/AA competition, because most
participants have not yet disclosed their approaches. In fact,
in this current paper we disclose our approach for the first
time. The TacTex agent from the University of Texas used
particle filters to predict the bid necessary to achieve a certain
position, and the number of clicks and conversions for a
given position. Shlemazl, a Brown University agent, was
based largely on mathematical modeling using rule based
techniques. Aston University’s agent was based on case-
driven logic to handle individual conditions in the auction. It

6Available for download at http://www.sics.se/tac/showagents.php?id=132



used a combination of strategies depending on current profit
and average position for each query.

VI. CONCLUSION AND FUTURE WORK

Web search engines have advertising platforms that allow
advertisers to bid for visible ad space based on the key-
words entered as queries by search engine users. From an
advertiser’s perspective, devising an optimal bidding strategy
to maximize profits by keeping costs per click down and
achieving high conversion rates from the potential customers
is an extremely challenging task. Thus automated bidding
agent frameworks have a tremendous role to play in the com-
ing years to help advertisers manage their ad campaigns to
generate revenue. Such automation frameworks are therefore
key to the next generation of electronic commerce.

In this paper we have presented the first ever genetic
algorithm based solution to learn to optimize bid bundles
in sponsored search auctions. Even though the results are
presented in the context of the TAC Ad Auctions competition
hosted at IJCAI 2009, the solution is fairly generic since the
competition itself strongly mimics real-world search engine
keyword based ad auction scenarios. The main merit of our
DNAgent (3rd in the semifinals, see Table III) and (5th in the
finals, see Table IV) is its simplicity in terms of design effort
compared to other approaches requiring a deep knowledge of
the application field.

Given the novelty of the domain for evolutionary com-
puting, there are a few notable areas for future work that
can be explored. Performing feature selection to determine
key input features that result in optimal slot positions is
an interesting area of exploration. Deciding on the param-
eters to encode in the chromosome is particularly difficult
considering the multitude of information available in the
daily reports given to the agent. Ideally, one would want
to include all available information since this would best
equip the agent to choose the best action. Unfortunately,
the more information included, the larger the chromosome
length, leading to greater learning complexity. We chose to
use slot position because it is easily encoded into a small
number of discrete values and it also strongly correlates
with other features such as number of impressions, number
of clicks, and cost per click. Specialization matching is
easily discretized, and offers a way of categorizing queries in
terms of their revenue generation capabilities. Finally, taking
into account the backorder quantity is helpful to keep an
advertiser from spending money on top ranked slot positions
when he does not have enough products in stock to fulfill
potential orders anyway.

One particular kind of features that we have not yet
explored are those that capture competitor behavior. In the
real world, advertiser strategies are a function of both private
and public information. Though the search engine weights
each advertiser for its preference to show the ad in a given
slot, the advertisers themselves can also gather information
about competitor behavior and position history, such as the
type of ads displayed by each advertiser for a query and the
average positions of all of advertisers given by the ad auction

for a query. All this information can be readily utilized to
optimize CPC offers. In this paper, we did not use any
explicit information about other advertisers.

Similarly as in [14], we discovered that co-evolving a
population by running internal competitions with no exter-
nal agents involved can have some negative side effects.
Occasionally multiple members of the population appeared
to develop cooperative strategies, such as all bidding low.
This kept the overall market price for slot positions low,
allowing each agent to achieve a higher profit. This is
an interesting phenomenon, but it is outside the scope of
TAC/AA competition, because agents are not allowed to
intentionally cooperate. In the future, we intend to train our
agents through competition against external agents, such as
the strongest agents from the 2009 TAC/AA competition.
We expect that a definition of the fitness function based
on average profit obtained while competing against other
strategies will give rise to even stronger genetically evolved
agents.

REFERENCES

[1] G. Aggarwal, A. Goel, and R. Motwani, ”Truthful Auctions for Pricing
Search Keywords”, Proceedings of the 7th ACM Conference on Elec-
tronic Commerce (EC’06), pp. 1-7, 2006.

[2] C. Borgs, J. Chayes, O. Etesami, N. Immorlica, K. Jain, and M.
Mahdian. “Dynamics of Bid Optimization in Online Advertisement
Auctions”, Proceedings of the 16th International World Wide Web
Conference (WWW2007), pp. 531-540, 2007.

[3] M. Cary, A. Das , B. Edelman, I. Giotis, K. Heimerl, A. R. Karlin, C.
Mathieu, and M. Schwarz. “Greedy Bidding Strategies for Keyword
Auctions”, Proceedings of the 8th ACM Conference on Electronic
Commerce (EC’08), pp. 262-271, 2007.

[4] B. Edelman, M. Ostrovsky, and M. Schwarz. “Internet Advertising
and the Generalized Second-Price Auction: Selling Billions of Dollars
Worth of Keywords”, American Economic Review, vol. 97, pp. 242-259,
2007.

[5] D.L. Hoffman and T.P. Novak, “How to Acquire Customers on the
Web”, Harvard Businesses Review, vol. 78(3), pp. 179-188, 2000.

[6] F. Herrera, M. Lozano, and J. L. Verdegay. “Tackling Real-Coded
Genetic Algorithms: Operators and Tools for Behavioural Analysis”,
Artificial Intelligence Review, vol. 12, pp. 265-319, 1998.

[7] P. R. Jordan, B. Cassell, L. F. Callender, and M. P. Wellman, “The
Ad Auctions Game for the 2009 Trading Agent Competition”, Speci-
fication Version 0.9.6, 2009, http://aa.tradingagents.org/documentation/,
accessed on Jan 15, 2009.

[8] P. R. Jordan and M. P. Wellman, “Designing an Ad Auctions Game for
the Trading Agent Competition”, IJCAI-09 Workshop on Trading Agent
Design and Analysis (TADA-09), 2009.

[9] B. Kitts and B. Leblanc. “Optimal Bidding on Keyword Auctions”,
Electronic Markets, vol. 14(3), 2004.

[10] L. Liang and Q. Qi. “Cooperative or Vindictive: Bidding Strategies in
Sponsored Search Auction”, Lecture Notes in Computer Science, vol.
4858, pp. 167-178, 2007.

[11] S. Phelps, K. Cai, P. McBurney, J. Niu, S. Parsons, and E. Sklar.
“Auctions, Evolution, and Multi-agent Learning”, Lecture Notes in
Computer Science, vol. 4865, pp. 188-210, 2008.

[12] P. Rusmevichientong and D. P. Williamson, “An Adaptive Algorithm
for Selecting Profitable Keywords for Search-based Advertising Ser-
vices”, Proceedings of the 7th ACM conference on Electronic Commerce
(EC’06), pp.260–269, 2006.

[13] Y. Saez, D. Quintana and P. Isasi. “Effects of a Rationing Rule on
the Ausubel Auction: A Genetic Algorithm Implementation”, Compu-
tational Intelligence, vol.23(2), pp. 221-235, 2007.

[14] I. Walter and F. Gomide. “Multiagent Coevolutionary Genetic Fuzzy
System to Develop Bidding Strategies in Electricity Markets: Com-
putational Economics to Assess Mechanism Design”, Evolutionary
Intelligence, vol. 2, pp. 53-71, 2009.


