232 research outputs found

    Greedy Forwarding in Dynamic Scale-Free Networks Embedded in Hyperbolic Metric Spaces

    Full text link
    We show that complex (scale-free) network topologies naturally emerge from hyperbolic metric spaces. Hyperbolic geometry facilitates maximally efficient greedy forwarding in these networks. Greedy forwarding is topology-oblivious. Nevertheless, greedy packets find their destinations with 100% probability following almost optimal shortest paths. This remarkable efficiency sustains even in highly dynamic networks. Our findings suggest that forwarding information through complex networks, such as the Internet, is possible without the overhead of existing routing protocols, and may also find practical applications in overlay networks for tasks such as application-level routing, information sharing, and data distribution

    An Experimental Investigation of Hyperbolic Routing with a Smart Forwarding Plane in NDN

    Full text link
    Routing in NDN networks must scale in terms of forwarding table size and routing protocol overhead. Hyperbolic routing (HR) presents a potential solution to address the routing scalability problem, because it does not use traditional forwarding tables or exchange routing updates upon changes in network topologies. Although HR has the drawbacks of producing sub-optimal routes or local minima for some destinations, these issues can be mitigated by NDN's intelligent data forwarding plane. However, HR's viability still depends on both the quality of the routes HR provides and the overhead incurred at the forwarding plane due to HR's sub-optimal behavior. We designed a new forwarding strategy called Adaptive Smoothed RTT-based Forwarding (ASF) to mitigate HR's sub-optimal path selection. This paper describes our experimental investigation into the packet delivery delay and overhead under HR as compared with Named-Data Link State Routing (NLSR), which calculates shortest paths. We run emulation experiments using various topologies with different failure scenarios, probing intervals, and maximum number of next hops for a name prefix. Our results show that HR's delay stretch has a median close to 1 and a 95th-percentile around or below 2, which does not grow with the network size. HR's message overhead in dynamic topologies is nearly independent of the network size, while NLSR's overhead grows polynomially at least. These results suggest that HR offers a more scalable routing solution with little impact on the optimality of routing paths

    Scalable Routing Easy as PIE: a Practical Isometric Embedding Protocol (Technical Report)

    Get PDF
    We present PIE, a scalable routing scheme that achieves 100% packet delivery and low path stretch. It is easy to implement in a distributed fashion and works well when costs are associated to links. Scalability is achieved by using virtual coordinates in a space of concise dimensionality, which enables greedy routing based only on local knowledge. PIE is a general routing scheme, meaning that it works on any graph. We focus however on the Internet, where routing scalability is an urgent concern. We show analytically and by using simulation that the scheme scales extremely well on Internet-like graphs. In addition, its geometric nature allows it to react efficiently to topological changes or failures by finding new paths in the network at no cost, yielding better delivery ratios than standard algorithms. The proposed routing scheme needs an amount of memory polylogarithmic in the size of the network and requires only local communication between the nodes. Although each node constructs its coordinates and routes packets locally, the path stretch remains extremely low, even lower than for centralized or less scalable state-of-the-art algorithms: PIE always finds short paths and often enough finds the shortest paths.Comment: This work has been previously published in IEEE ICNP'11. The present document contains an additional optional mechanism, presented in Section III-D, to further improve performance by using route asymmetry. It also contains new simulation result

    Robust geometric forest routing with tunable load balancing

    Get PDF
    Although geometric routing is proposed as a memory-efficient alternative to traditional lookup-based routing and forwarding algorithms, it still lacks: i) adequate mechanisms to trade stretch against load balancing, and ii) robustness to cope with network topology change. The main contribution of this paper involves the proposal of a family of routing schemes, called Forest Routing. These are based on the principles of geometric routing, adding flexibility in its load balancing characteristics. This is achieved by using an aggregation of greedy embeddings along with a configurable distance function. Incorporating link load information in the forwarding layer enables load balancing behavior while still attaining low path stretch. In addition, the proposed schemes are validated regarding their resilience towards network failures

    Hyperbolic Geometry of Complex Networks

    Full text link
    We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and statistical mechanics of complex networks. This mapping interprets edges in a network as non-interacting fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of these energies or distances. The geometric network ensemble subsumes the standard configuration model and classical random graphs as two limiting cases with degenerate geometric structures. Finally, we show that targeted transport processes without global topology knowledge, made possible by our geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure

    Navigability of temporal networks in hyperbolic space

    Get PDF
    Information routing is one of the main tasks in many complex networks with a communication function. Maps produced by embedding the networks in hyperbolic space can assist this task enabling the implementation of efficient navigation strategies. However, only static maps have been considered so far, while navigation in more realistic situations, where the network structure may vary in time, remain largely unexplored. Here, we analyze the navigability of real networks by using greedy routing in hyperbolic space, where the nodes are subject to a stochastic activation-inactivation dynamics. We find that such dynamics enhances navigability with respect to the static case. Interestingly, there exists an optimal intermediate activation value, which ensures the best trade-off between the increase in the number of successful paths and a limited growth of their length. Contrary to expectations, the enhanced navigability is robust even when the most connected nodes inactivate with very high probability. Finally, our results indicate that some real networks are ultranavigable and remain highly navigable even if the network structure is extremely unsteady. These findings have important implications for the design and evaluation of efficient routing protocols that account for the temporal nature of real complex networks.Comment: 10 pages, 4 figures. Includes Supplemental Informatio

    Sustaining the Internet with Hyperbolic Mapping

    Full text link
    The Internet infrastructure is severely stressed. Rapidly growing overheads associated with the primary function of the Internet---routing information packets between any two computers in the world---cause concerns among Internet experts that the existing Internet routing architecture may not sustain even another decade. Here we present a method to map the Internet to a hyperbolic space. Guided with the constructed map, which we release with this paper, Internet routing exhibits scaling properties close to theoretically best possible, thus resolving serious scaling limitations that the Internet faces today. Besides this immediate practical viability, our network mapping method can provide a different perspective on the community structure in complex networks

    Distance-Dependent Kronecker Graphs for Modeling Social Networks

    Get PDF
    This paper focuses on a generalization of stochastic Kronecker graphs, introducing a Kronecker-like operator and defining a family of generator matrices H dependent on distances between nodes in a specified graph embedding. We prove that any lattice-based network model with sufficiently small distance-dependent connection probability will have a Poisson degree distribution and provide a general framework to prove searchability for such a network. Using this framework, we focus on a specific example of an expanding hypercube and discuss the similarities and differences of such a model with recently proposed network models based on a hidden metric space. We also prove that a greedy forwarding algorithm can find very short paths of length O((log log n)^2) on the hypercube with n nodes, demonstrating that distance-dependent Kronecker graphs can generate searchable network models

    Generalizing Kronecker graphs in order to model searchable networks

    Get PDF
    This paper describes an extension to stochastic Kronecker graphs that provides the special structure required for searchability, by defining a “distance”-dependent Kronecker operator. We show how this extension of Kronecker graphs can generate several existing social network models, such as the Watts-Strogatz small-world model and Kleinberg’s latticebased model. We focus on a specific example of an expanding hypercube, reminiscent of recently proposed social network models based on a hidden hyperbolic metric space, and prove that a greedy forwarding algorithm can find very short paths of length O((log log n)^2) for graphs with n nodes

    Overlay Addressing and Routing System Based on Hyperbolic Geometry

    Get PDF
    International audienceLocal knowledge routing schemes based on virtual coordinates taken from the hyperbolic plane have attracted considerable interest in recent years. In this paper, we propose a new approach for seizing the power of the hyperbolic geometry. We aim at building a scalable and reliable system for creating and managing overlay networks over the Internet. The system is implemented as a peer-to-peer infrastructure based on the transport layer connections between the peers. Through analysis, we show the limitations of the Poincaré disk model for providing virtual coordinates. Through simulations, we assess the practicability of our proposal. Results show that peer-to-peer overlays based on hyperbolic geometry have acceptable performances while introducing scalability and flexibility in dynamic peer-to-peer overlay networks
    corecore