
Robust Geometric Forest Routing with Tunable
Load Balancing

Rein Houthooft, Sahel Sahhaf, Wouter Tavernier, Filip De Turck, Didier Colle, Mario Pickavet
Department of Information Technology (INTEC)

Ghent University - iMinds
Gaston Crommenlaan 8, B-9050 Ghent, Belgium

Email: {rein.houthooft, sahel.sahhaf, wouter.tavernier, filip.deturck, didier.colle, mario.pickavet}@intec.ugent.be

Abstract—Although geometric routing is proposed as a
memory-efficient alternative to traditional lookup-based routing
and forwarding algorithms, it still lacks: i) adequate mechanisms
to trade stretch against load balancing, and ii) robustness to cope
with network topology change.

The main contribution of this paper involves the proposal of
a family of routing schemes, called Forest Routing. These are
based on the principles of geometric routing, adding flexibility
in its load balancing characteristics. This is achieved by using
an aggregation of greedy embeddings along with a configurable
distance function. Incorporating link load information in the
forwarding layer enables load balancing behavior while still
attaining low path stretch. In addition, the proposed schemes are
validated regarding their resilience towards network failures.

I. INTRODUCTION

Geometric routing schemes are proposed as an alternative
for lookup-based routing algorithms. Although they were
initially designed for Unit Disk Graphs (UDGs)1 [1], their
application to scale-free2 complex networks has been demon-
strated [2]. This form of routing makes use of a graph
embedding, the assignment of coordinates in a mathematical
space to every network vertex. This embedding, together with
an appropriate distance function, forms the core of geometric
routing, allowing packets to be transmitted along a distance-
decreasing path towards their destination.

The main advantage of geometric routing is its low state
complexity. A node only requires information about its neigh-
bors, rather than being dependent on the state of the whole
network. In contrast to more traditional routing schemes based
on lookup tables, geometric routing thus restricts the required
router memory overhead. A large disadvantage, however, is
their lack of load balancing characteristics, which is essential
in avoiding traffic congestion in large-scale networks. Lookup-
based schemes can easily add this by incorporating multiple
alternative routes in their lookup tables. How load balancing
characteristics and stretch3 can be combined and traded off in
geometric routing is still an open research question.

1A graph G = (V,E) is a unit-disk graph if ∀u, v ∈ V : v ∈ N(u) ⇔
δ(u, v) ≤ 1 whenG is embedded into a Euclidean space, with δ the Euclidean
distance.

2In scale-free networks the degree distribution follows a power-law P (d) ∼
d−γ with a parameter γ ∈ R+ and d the vertex degree.

3The stretch of a path is its length (the number of hops along the path)
divided by the shortest path length between its source and destination nodes.

In this work we explore the possibilities in combining low
stretch with load balancing behavior. Our main contribution is
a family of routing schemes called Forest Routing (FR). These
algorithms are capable of adapting their routing behavior
to varying traffic intensities by using a generalized distance
function incorporating link load information. Additionally, in
the absence of network failures they attain a 100% success
ratio, while having a high resiliency to node and link failures.
Although designed for, Forest Routing is not restricted to
complex scale-free networks.

II. RELATED WORK

In general, load balancing mechanisms can be divided
into two classes: active and passive techniques. Passive load
balancing draws from the inherent structure of the routing
algorithm to spread traffic equally over the network. Active
load balancing, on the other hand, makes use of live traffic
information to steer traffic away from hotspots. As a result,
active load balancing techniques are able to adjust forwarding
to a changing traffic matrix.

Many load balancing techniques used in geometric routing
are designed for Wireless Sensor Networks (WSNs) and aim at
lowering the number of overloaded nodes to slow down battery
depletion. As such, most load balancing research is focused on
node load balancing rather than link load balancing. Another
issue is the focus on UDGs, which act as a model for WSNs,
rather than more general topologies. Zeng et al. [3] use a
routing scheme in which information about a node’s energy
level is used in the forwarding layer. In Curve-Based Greedy
Routing [4] traffic is guided by a B-spline which is calculated
by the source node and stored in the packet headers. By using
a selection mechanism based on the node distances to this B-
spline, and energy levels, there is more forwarding decision
freedom than there is in basic geometric routing mechanisms.

LBLSP [5] uses a non-Euclidean routing scheme based
on curves around obstacles, and targets wireless networks.
Traffic hotspots are modelled as virtual objects that are avoided
by the routing algorithm. How this can be implemented is,
however, not specified. Curveball Routing [6] and Circular
Sailing Routing [7] focus on passive load balancing. These
routing schemes make use of a stereographic projection of 2D
Euclidean coordinates onto a sphere. The authors report that
a common problem in UDG networks is traffic congestion at

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55784054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the center of the network under a uniform traffic matrix. Due
to the lack of a sphere center, these systems naturally avoid
this center hotspot.

Another way of balancing traffic passively is using multiple
spanning tree-based embeddings [8]. By using multiple trees,
the root hotspot effect, which is a common problem in
geometric routing with tree-based embeddings [9], is avoided.
However, as the authors target wireless networks, they do not
incorporate link load balancing. The tests are also limited to
small unit-disk networks. Virtual Polar Coordinate Routing [9]
makes use of smart routing to attain passive load balancing.
Smart routing is based on a spanning tree-based embedding
and requires the network to be a UDG. Furthermore, the
spanning tree has to be ordered according to an embedding
into the 2D Euclidean plane. This makes it difficult to apply
the routing scheme to non-UDG networks.

Other work focuses on geometric routing in scale-free
networks rather than UDG networks, however, none of it truly
aims for load balancing behavior. A hyperbolic embedding
based on a hyperbolic tiling in the Poincaré disk model was
originally proposed by Kleinberg [10]. Hyperbolic geometric
routing is able to achieve high success ratios in scale-free com-
plex networks [11], [12]. A recent work on routing complex
networks is the Practical Isometric Embedding Protocol [13]
in which Herzen et al. focus especially on the scalability of
their routing algorithm.

III. THEORETICAL FOUNDATION

This section sets forth the theoretical foundation on which
the Forest Routing (FR) algorithms are built. As mentioned in
the introduction, geometric routing is based on the concept of a
graph embedding. This is a mapping between a mathematical
space and the vertices of a graph, formally defined by the
following definition.

Definition 1: Let S be a set and δ a metric function (see
Definition 3) over S. Let G = (V,E) be a graph, then an
embedding of G into S is a mapping f : V → S such that
∀u, v ∈ V : u 6= v ⇔ f(u) 6= f(v). [14]
In order to guarantee a 100% routing delivery success rate,
most geometric routing algorithms employ a greedy graph
embedding, defined by the following definition.

Definition 2: A greedy embedding of a graph G = (V,E)
into a metric space (S, δ) is a mapping f : V → S with
the following property: for every pair of distinct vertices
u,w ∈ V there exists a vertex v ∈ V adjacent to u such
that δ(f(v), f(w)) < δ(f(u), f(w)). [10]
A metric space is the double formed by the space S and its
complementary distance function δ, formally defined by the
next definition. Geometric routing requires this metric space
to send packets towards their target vertex along a distance-
decreasing path.

Definition 3: Assume a set S and a function δ : S×S → R
such that the following conditions hold ∀u, v, w ∈ S:

1) δ(u, v) ≥ 0 ∧ δ(u, v) = 0⇔ u = v
2) δ(u, v) = δ(v, u)
3) δ(u,w) ≤ δ(u, v) + δ(v, w),

a (0)

c

(0, 0)

g

(0, 0, 0)

x (0, 0, 0, 0)

h

(0, 0, 1)

i

(0, 0, 2)

b

(0, 1)

(a) Tree T (solid edges, root a)
forming embedding T into T by
labeling each node. Failure of dashed
edges (shortcut links), or nodes x or
h, does not result in packet loss.

ya

c

g

x

h

(b) Tree T1 (root a, dashed
edges) and T2 (root y, thick
edges) minimizing tree redun-
dancy, which is the overlap of
edges of the different trees.

Figure 1. Graph embeddings illustrated: shortcuts and labeling.

then δ is called a metric, or a distance function, and the double
(S, δ) is called a metric space.
The FR algorithms employ a spanning tree T = (V,E′) of
the underlying graph G = (V,E) to construct an embedding
by making use of the vertex labeling procedure described by
Korman et al. [15] and a metric representing the shortest path
length in T , in number of hops, as described by Chávez et
al. [16]. The embedding target space S is denoted as the tree
space T, defined as

T =
⋃
n∈N

(
(0)

_ Nn
)
, (1)

in which the function (_) : Nm × Nn → Nm+n represents
the concatenation of two tuples. Now, we can interpret the
assigned labels as coordinates in the space T. We say that these
coordinates form a greedy graph embedding [16], denoted as
T . As such, each vertex v ∈ V corresponds to a point in
T identified by the coordinates T (v).4 An illustration of an
embedded network can been found in Figure 1(a).

The distance function δ for T is defined as

δ(u, v) = |u|+ |v| − 2|φ(u, v)|, (2)

with φ : Nn × Nm → N∗ a function that returns the largest
common prefix of two tuples; |u| is the length of the coordinate
tuple of vertex u. This leads to a distance function δ : T×T→
R+ that, combined with the space T, forms the metric space5

(T, δ). Now, this metric space can be used according to the
principles of geometric routing. This means that every vertex
knows the coordinates of its neighbors and the coordinates
of the target vertex are encoded in each packet header. As
such, using this header, each node forwards packets along a
distance-decreasing path to their destination.

Note that this type of routing is not the same as routing
on the tree T = (V,E′) itself. Edges that are not part of T

4Rather than writing T (u), we will make no distinction between the point
a vertex represents in its embedding space and the node itself. The exact
meaning should be clear from the context.

5The properties of a metric space can easily be proven.

may be used as shortcut links, which are links for which holds
e ∈ E ∧ e 6∈ E′, in a graph G = (V,E). Such links are shown
in Figure 1(a) as dashed lines while edges in E′ are shown
as solid lines. The existence of these shortcut links allows for
more freedom in the routing decision making. They can help in
avoiding congestion at lower tree depths, which is a downside
of geometric routing based on tree-based graph embeddings
[9]. In general, congestion worsens as we go higher up in the
tree, because a node will forward traffic to its parent in case
no other neighor closer to the destination exists. Unless there
are many shortcut links, this is likely the case. An illustration
can be found in Figure 1(a). Say traffic is sent from x to b, the
routing path will be 〈x, c, a, b〉. Hence, all traffic will traverse
the root node a, congesting the links close to a. However, if
a shortcut link exists, e.g., (c, b), some of the traffic could be
offloaded to this link.

IV. MULTI-EMBEDDING

In order to achieve load balancing, we use k spanning trees
Ti = (V,E′i) with ∀i ∈ {0, 1, . . . , k − 1} : E′i ⊆ E to
form k different greedy embeddings of G = (V,E) into T, a
multi-embedding [8]. These different greedy embeddings are
denoted as Ti. The notation δ is now used to denote the k-
tuple of distances in each of the k embeddings. Hence, δi
represents the tree space distance for the i-th embedding Ti.
Using multiple embeddings suggest that we could alternate
between them as a packet is sent to its destination. As such,
for example, we can route a packet via geometric routing
based on the coordinates in embedding T1, until it encounters
a void6, created by node or link failures. At this void we
can switch to embedding T2, allowing the packet to reach its
destination, which is why routing with multiple embeddings is
more robust than with a single embedding. Similarly, a packet
may be routed via a different embedding when this allows for
an alternative less congested edge to achieve load balancing.

As more embeddings are available, the chances of a link or
node failure disrupting all of them decreases. Let G = (V,E)
be a graph in which a spanning tree T = (V,E′) has been
constructed. For a link e ∈ E, either e ∈ E′, which means that
e is a critical link (solid lines in Figure 1(a)), or e 6∈ E′, which
means that e is a shortcut link (dashed lines in Figure 1(a)).
When a shortcut link—or a leaf node—fails, routing is still
possible for all source-destination pairs since the underlying
spanning tree T is still intact. On the other hand, when a
critical link or non-leaf node fails, voids may occur for certain
node pairs.

To illustrate with an example: link (x, c) in Figure 1(b) is a
critical parent-child link in embedding T2, while being a non-
essential shortcut link in T1. The same holds for the network
nodes: non-leaf node g in T1 is a leaf node in T2. If either (x, c)
or g fails, routing in T2 and T1 respectively may fail because
T2 or T1 loses its greedy property, but it is still guaranteed in
the other embedding.

6A void is a node along a routing path by which the packet can no longer
be send on, according to geometric routing, to the destination because no
distance-decreasing neighbor exists [1].

Additionally, by using a multi-embedding it is possible to
avoid traffic congestion at nodes and links residing at lower
depths in the tree. The reason is two-fold:

1) Because of the existence of k different root nodes, the
traffic bottleneck is now divided amongst them.

2) The chances of having shortcuts available increases,
which leads to a less crowded root and an overall lower
stretch.

As such, we attain passive load balancing. Active load bal-
ancing can be acquired by actively switching between the
different embeddings by using link load information, which
will be explained in Section V-B. The sacrifice made here
is the increased storage requirements of the packet headers
and the increased computational complexity of the forwarding
layer. This latter can however be mitigated by the high
parallelizability of the forwarding decision making procedure,
namely, the different distances δi can be calculated in parallel.

To conclude, the benefits of using multiple embeddings over
a single embedding are: i) passive load balancing behavior,
ii) the possibility of active load balancing behavior, and
iii) increased robustness towards routing failures. The exact
embedding procedure, focusing on reducing the redundancy
of the different spanning trees by making sure that their edges
overlap as little as possible, can be found in [17].

V. ROUTING VARIANTS

A. Greedy Forest Routing (GFR)

A straightforward way of routing with multiple embeddings
is to allow each vertex to alternate freely between them,
making use of their individual greediness. However, this naive
forwarding mechanism is unreliable because it can introduce
routing cycles. Routing along a distance-decreasing path in
Ti may increase the distance in a different embedding Tj .
At a certain vertex along a packet’s routing path, it may be
sent back to its origin, resulting in a routing cycle. A cycle
avoidance solution requires that each vertex along the routing
path decreases the packet’s minimum distance (over the k
embeddings) to the destination. This way of working is similar
to the TCGR mechanism [8]. For this reason a new distance
function ε : Tk × Tk → R+ is defined as

ε(u, v) = min
0≤i<k

{δi(u, v)} ∀u, v ∈ V, (3)

which replaces the original distance function δ [17]. The
k embeddings into T can now be treated as a single k-
dimensional embedding into Tk. This allows us to adhere
to the principles of geometric routing by using a semimetric
space (Tk, ε).7 As such, each node u will forward packets
to the neighbor with the lowest distance ε(u, d), with d the
destination node. Therefore, it is a form of greedy routing,
which is geometric routing in which a node always forwards
to the neighbor leading to the largest decrease in distance. In
case multiple neighbors have an equal ε-distance, a random
choice is made among them.

7This double cannot be regarded as a true metric space as the triangle-
inequality (property 3 of Definition 3) does not hold.

This mechanism is called Greedy Forest Routing (GFR), the
greedy variant in the Forest Routing (FR) family. Though GFR
focuses solely on attaining a low stretch, the embedding into
Tk leads to increased passive load balancing when compared
to a single embedding into T.

B. Load Balanced Forest Routing (LBFR)

To supplement the passive load balancing behavior emerg-
ing from GFR, an active load balancing approach was de-
veloped called Load Balanced Forest Routing (LBFR). This
system can be seen as a special case of the final HFR
routing scheme. In LBFR, vertices u ∈ V make use of
traffic load information about their incident edges e ∈ I(u).
This information is used to select the neighbor v for which
the edge (u, v) has the lowest load8. Solely using local link
information is advantageous as it is scalable by nature and
therefore fitting for a large-scale distributed setting. LBFR
relaxes the greedy requirements of GFR by allowing routing
alternately via different embeddings Ti independently. Because
naive switching between embeddings may introduce cycles,
routing is guided by an auxiliary function κ. This function acts
as a routing restriction by requiring that its value decreases
at each hop, similarly to how the δ-distance must decrease
in standard geometric routing (or ε in GFR). All neighbors
fulfilling this requirement are added to a set S(u), the set of
nodes that can be considered as next hops.

This function κ makes use of an additional function δ∗

that outputs a k-tuple storing the minimal distance to the
destination d attained by a packet so far along its routing path
Pu, before arriving at the current node u, for each of the k
embeddings. We denote the i-th element of δ∗ as δ∗i and the
union of all possible paths in the network as P . Assuming a
packet has been routed along a path P = 〈p0, p1, . . . , pn〉 to-
wards a destination vertex d, then κ is of the type P×Tk → N
and is defined as

κ(Ppn , d) =

k−1∑
i=0

δ∗i (Ppn , d) , (4)

with δ∗(Ppn , d) a function of the type P × Tk → Nk that is
defined recursively ∀i ∈ {0, . . . , k − 1} as

δ∗i (Pp0
, d) = δi(p0, d) (5)

∀n > 0 : δ∗i (Ppn
, d) = min{δ∗i (Ppn−1

, d), δi(pn, d)}. (6)

Herein Pu represents the path P until u has been reached, con-
sisting of the vertices that a packet arriving at u has reached.
Furthermore, p0 is the source vertex of the path P . The mini-
mum distances of each of the k embeddings is thus represented
by an element δ∗i (Pu, d). The LBFR system will enforce the
restriction that κ has to decrease strictly monotonically along
the routing path: κ(Ppn

, d) < κ(Ppn−1
, d) < . . . < κ(Pp0

, d).
When forwarding, a node u will select those neighboring
nodes which have a strictly decreasing κ-value and add them
to the previously mentioned set S(u). Next, u will select a

8The representation of the load may be arbitrarily chosen but should be
consistent for all network links.

s

n3

n1 n2
d

s

n3

n1 n2

n′3

d

Figure 2. Top: Naive routing with multiple embeddings, a routing cycle is
introduced. Bottom: LBFR avoids the introduction of routing cycles.

vertex v ∈ S(u) as the next hop for which the current traffic
load of the link (u, v) is minimal compared to its other incident
links I(u). The LBFR forwarding procedure is described in
Algorithm 1 and an example is given next.

Example: To illustrate the LBFR system, an example is
given for a multi-embedding consisting of three embeddings,
thus k = 3, which is depicted in Figure 2 (top). This is the
equivalent of saying that there is a single embedding into T3.
Thus, every vertex has three sets of coordinates, one for each
embedding. Assume a source node s and a destination node d
for which δ(s, d) = (3, 5, 7). This means that the δ-distance
is 3 in embedding T0, 5 in embedding T1 and 7 in embedding
T2. When routing naively the following scenario can occur:
• δ(n1, d) = (3, 4, 7), s routes to n1 in embedding T1.
• δ(n2, d) = (3, 6, 6), n1 routes to n2 in embedding T2.

However, the distance in embedding T1 now increases
from 4 to 6.

• δ(n3, d) = (3, 5, 7), n2 routes to n3 in embedding T1.
The distance in embedding T2 increases from 6 to 7.

• δ(n1, d) = (3, 4, 7), n3 routes to n1 in embedding T1.
In this scenario a cycle is introduced because although the

packet is routed greedily in each embedding individually, this
does not hold for their aggregation. When routing intelligently
restricted by the κ-function, the following happens, see Fig-
ure 2 (bottom). At the source node, δ∗(〈s〉, d) = δ(s, d) =
(3, 5, 7), thus κ(〈s〉, d) = 3 + 5 + 7 = 15.
• δ(n1, d) = (3, 4, 7), s checks n1 to route on T1, thus

δ∗(〈s, n1〉, d) =

(min{3, 3},min{5, 4},min{7, 7}) = (3, 4, 7),

which means that κ(〈s, n1〉, d) = 3+4+7 = 14. Because
κ(〈s, n1〉, d) < κ(〈s〉, d) the next hop n1 is accepted.

• δ(n2, d) = (3, 6, 6), n1 checks n2 to route on T2, thus

δ∗(〈s, n1, n2〉, d) =

(min{3, 3},min{4, 6},min{7, 6}) = (3, 4, 6),

which means that κ(〈s, n1, n2〉, d) = 3 + 4 + 6 = 13.
Because κ(〈s, n1, n2〉, d) < κ(〈s, n1〉, d) the next hop
n2 is accepted.

Algorithm 1: LBFR: forwarding decision making
in : A graph G = (V,E); a vertex v ∈ V receiving a

packet packet from vertex u ∈ V ; v knows the
coordinates of its neighbors N(v) ⊆ V and the
current load of its incident edges I(v) ⊆ E; all
vertices have been embedded into Ti for 0 ≤ i < k.

out: packet is forwarded to a vertex n ∈ N(v)

1 δ∗(u)← packet.getMinDistances()
2 δ∗(v), S(v)← ∅ and κ(v)← 0
3 foreach i ∈ {0, 1, . . . , k − 1} do
4 δ∗i (v)← min{δ∗i (u), δi(v, d)}
5 κ(v)← κ(v) + δ∗i (v)
6 end
7 foreach i ∈ {0, 1, . . . , k − 1} do
8 foreach w ∈ N(v) do
9 if κ(w) < κ(v) then // calculation of

κ(w) based on δ∗(v) is not shown
10 S(v) ← S(v) ∪ {w}
11 end
12 end
13 end
14 minLoad ← +∞ and R(v)← ∅
15 foreach w ∈ S(v) do
16 if L(v, w) < minLoad then // L(v, w) is the

load of link (u,w)
17 R(v)← {w}
18 minLoad ← L(v, w)
19 else if L(v, w) = minLoad then
20 R(v)← R(v) ∪ {w}
21 end
22 end
23 packet.setMinDistances(δ∗(v))
24 send packet to random vertex in R(v)

• δ(n3, d) = (3, 5, 7), n2 checks n3 to route on T1, thus

δ∗(〈s, n1, n2, n3〉, d) =

(min{3, 3},min{4, 5},min{6, 7}) = (3, 4, 6),

which means that κ(〈s, n1, n2, n3〉, d) = 3 + 4 + 6 = 13.
Because κ(〈s, n1, n2, n3〉, d) = κ(〈s, n1, n2〉, d) the next
node n3 is rejected as a potential next hop.

• A node n′3 with δ(n′3, d) = (2, 5, 7) would be accepted
by n2 because

δ∗(〈s, n1, n2, n′3〉, d) =

(min{3, 2},min{4, 5},min{6, 7}) = (2, 4, 6),

which means that κ(〈s, n1, n2, n′3〉, d) = 2 + 4 + 6 = 12,
which is lower than κ(〈s, n1, n2〉, d).

To ensure that LBFR correctly routes traffic between all
source-destination combinations, we introduce the following
theorems.

Theorem 1: Let G = (V,E) be a graph with k embeddings
Ti for 0 ≤ i < k into the metric space (T, δ). Let d be the

destination node. Then, for every path P ∈ P (in G) with a
last element v ∈ V , for which d has not yet been reached,
thus d 6∈ P , the set of neighbors S(v) for which the value of
the κ-function strictly decreases is not empty.

Proof: Assume a packet arriving at a vertex v by fol-
lowing a path P = 〈. . . , u, v〉. Assume this packet has to be
forwarded to a destination vertex d and that d 6∈ P . This means
that S(u) 6= ∅. Therefore κ(v) < κ(u). Because of the defini-
tion of κ as the sum defined by Eq. (4): ∃i ∈ {0, 1, . . . , k−1} :
δ∗i (Pv, d) < δ∗i (Pu, d). Combining the definition of δ∗ in
Eq. (6) with the definition of the min-function gives δi(v, d) <
δ∗i (Pu, d) and δ∗i (Pu, d) ≤ δi(u, d). Therefore, again because
of Eq. (6), δ∗i (Pv, d) = δi(v, d). Also, δi(v, d) < δi(u, d),
which means that the distance towards d in embedding Ti has
decreased. Because Ti is a greedy embedding and because
of Definition 2: ∃w ∈ N(v) : δi(w, d) < δi(v, d). Thus,
because of Eq. (6), δ∗i (P_

v 〈w〉, d) = δ(w, d), and therefore,
δ∗i (P_

v 〈w〉, d) < δ∗i (Pv, d). Combining this with Eq. (4) leads
to κ(P_

v 〈w〉, d) < κ(Pv, d) based on the fact that δ∗i never
increases along a routing path (due to the min-function in
its definition, see above). From this follows: S(v) 6= ∅. As
such, any element from S(v) is a suitable next vertex without
violating the LBFR restrictions.

This also holds for a source vertex s: S(s) 6= ∅. Because
of Eq. (5), in s, every value δ∗i is equal to the distance
δi. Therefore, any vertex for which the distance towards the
destination decreases—and such a vertex exists because each
Ti is a greedy embedding—leads a decrease in κ.

Theorem 2: The path followed by a packet routed on a graph
G = (V,E) by LBFR is never a cycle.

Proof: Assume d is the destination vertex and a packet has
traveled along P = 〈. . . , u, v, . . . , w〉, arriving at w ∈ N(v).
When arriving at v for the first time, δ∗i (Pv, d) ≤ δi(v, d)
because of Eq. (6). Since the values of δ∗ can never increase
due to the definition of the min-function, upon calculating
κ for the second time for vertex v (this time from w):
6 ∃i ∈ {0, 1, . . . , k− 1} : δi(v, d) < δ∗i (Pw, d) because if there
would exists such an i, δ∗ would already have been updated
to this value the first time the packet arrived at v. Thus, the κ-
value cannot decrease the second time v is reached. Therefore,
no vertex appears twice along the path followed by a packet
routed according to LBFR which enforces κ to be strictly
monotonically decreasing along a routing path.

Theorem 3: A packet routed according to the principles of
LBFR on a graph G = (V,E) will arrive at its destination.

Proof: Because κ outputs values in N and it is strictly
monotonically decreasing, while the initial κ-value at the
source vertex is finite (assuming |V | is finite), it will become
0 after the traversal of a finite number of vertices, unless it is
routed along a cycle or it encounters a void. These two cases
are impossible due to Theorems 1 and 2. When for a vertex
v ∈ V and a destination d holds κ(Pv, d) = 0, this means
that ∀i ∈ {0, 1, . . . , k − 1} : ∃w ∈ Pv : δi(w, d) = 0. Thus
the destination was reached along the routing path because of
property 1 in Definition 3 which defines a metric space.
According to these theorems, LBFR is always able to route a

packet to its destination without encountering cycles or voids.

C. Hybrid Forest Routing (HFR)

In terms of stretch and load balancing, GFR and LBFR
are two opposites: GFR attains low stretch, but has no load
balancing technique, while LBFR achieves load balancing, but
pays no attention to stretch. We combine the best of both
worlds into one algorithm called Hybrid Forest Routing (HFR).
HFR makes a trade-off between stretch and load balancing
by replacing the GFR distance function ε by a cost function
that combines link load information with the ε-distance to the
destination. This cost function C : V 3 → R+ is defined as

C(u, n, d) = γ · L̂(u, n) + (1− γ) · ε(n, d) (7)

for n ∈ N(u), with the ε-function defined by Eq. (3). The
function L̂(u, v) represents the normalized traffic load of the
edge between u and v. This is the traffic load of link (u, v)
divided by the average load of all the node’s incident links
I(u). This normalized load is defined as

L̂(u, n) =
dG(u) · L(u, n)∑
v∈N(u)

L(u, v)
, (8)

with dG(u) the degree of vertex u. The factor γ ∈ [0, 1]
is a weight factor which allows scaling between greedy and
load balanced routing. As can be seen, HFR also uses the
semimetric space (Tk, ε), but because the cost function is an
extension of the ε-function, HFR is not greedy routing. Even
more, it is not necessarily distance-decreasing in ε.

To guarantee packet delivery, the κ-function from LBFR
is used to steer packets towards their destination, relying on
the LBFR theorems from the previous section. HFR attains
strong load balancing while keeping the stretch down, which
is shown in the following section.

GFR and LBFR can now be seen as two special instances of
HFR on opposite sides of the spectrum. On the one hand, when
γ = 1, the LBFR mechanism is recreated. On the other hand,
when γ = 0, the HFR reverts to GFR. The HFR forwarding
procedure can be created by replacing L(v, w) in Algorithm 1
on lines 16, 18 and 19, with C(v, w, d) as defined in Eq. (7).

VI. RESULTS AND DISCUSSION

To test our routing algorithms we have built a routing simu-
lator on top of the open source graph manipulation framework
Gephi [18]. This simulator is capable of generating a high
number of parallel routing paths in a multi-threaded environ-
ment. Due their size and time requirements, all experiments
were run on a High Performance Computer. In this simulation
framework, each edge is assigned a weight we, initially set to
0, which represents the traffic load. Random source-destination
node pairs are generated with a given frequency during the
simulation, corresponding to a uniform traffic matrix. Between
these pairs traffic is simulated by generating routing paths.
Whenever a routing path is generated, the weights of its links
are increased. For example if traffic f is sent through link e,
having a current weight we, its new weight becomes we + f .

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1 5 10 15 20 25 30

ρ-

k

500 nodes

2k nodes

8k nodes

0.00

0.20

0.40

0.60

0.80

1.00

1 5 10 15 20 25 30

β
E

k

Figure 3. GFR: average stretch ρ̄ (top) and link load balancing metric
βE (bottom) in function of the dimension k of the embedding space Tk .
The shaded background represents the average, plus and minus the standard
deviation.

The algorithms are tested on scale-free networks generated
according to the Barabási-Albert model [19] with a degree
distribution of P (k) ∝ k−2.2. The running time of the different
experiments is largely dependent on the graph size, ranging
from minutes to days.

A. Stretch and load balancing

The different routing algorithms, GFR, LBFR, and HFR,
are analyzed regarding their average stretch ρ̄ and link load
balancing behavior. We define the stretch of a path between
source node s and destination node d as the path length
(number of hops) divided by the length of the shortest path
between s and d. The load balancing behavior is measured by
the βE-metric [20], defined as

βE =

(∑
e∈E we

)2
|E|
∑

e∈E w
2
e

, (9)

with we the weight of edge e ∈ E. Note that ρ ≥ 1 (1: shortest
path routing) and 1

|E| < βE ≤ 1 (βE ≈ 0: no load balancing;
βE = 1: traffic is equal on all links).

In Figure 3 the effect of changing the number of embeddings
k (or the dimension of the space Tk) on the average stretch
ρ̄ (top) and the βE-ratio (bottom) is plotted for GFR. The
measurements for each k-value are averaged over 10 runs, and

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 5 10 15 20 25 30

ρ-

k

0.00

0.20

0.40

0.60

0.80

1.00

1 5 10 15 20 25 30

β
E

k

500 nodes

2k nodes

8k nodes

Figure 4. LBFR: average stretch ρ̄ (top) and link load balancing metric
βE (bottom) in function of the dimension k of the embedding space Tk .
The shaded background represents the average, plus and minus the standard
deviation.

for each run 105 routes are generated. Asymptotic behavior of
ρ̄ → 1 can be observed as k → +∞. This can be explained
by the availability of more embeddings, which allows more
routing forwarding freedom. As a result, there is an increased
chance that some combination of embeddings will lead to
a short path between two nodes. As the number of vertices
increases, k also needs to increase to maintain the same stretch
because the relative number of embeddings per node or edge
decreases. This is consistent with larger graphs having a later
convergence towards ρ̄ = 1.

In Figure 3 (bottom) the link load balancing behavior is
plotted. Though there is no active mechanism steering for
traffic load balancing in GFR, load balancing improves as k
increases. This may be due to the existence of multiple root
nodes, splitting the root hotspot—a problem in single tree-
based geometric routing schemes [9]—over k roots. Also, the
existence of additional short paths between different source
and destination nodes reduces the reliance on the root node to
act as a transit hub for traffic between different parts of the
network. This illustrates the passive load balancing effect of
a multi-embedding. βE decreases as the graph size increases,
meaning that the passive load balancing behavior—remember
that GFR focuses solely on stretch—weakens. However, the
observed trend is similar for all sizes. Furthermore, it can be

1.00

1.50

2.00

2.50

3.00

3.50

4.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ-

γ

500 nodes

2k nodes

8k nodes

0.00

0.20

0.40

0.60

0.80

1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β
E

γ

Figure 5. HFR: average stretch ρ̄ (top) and link load balancing metric βE
(bottom) in function of a varying γ-value. The solid horizontal lines in the
bottom figure represent the load balancing βE -value of shortest path routing
with lookup tables. The shaded background represents the average, plus and
minus the standard deviation.

noticed that the convergence of βE is delayed for larger graphs,
indicating that larger graphs require more embedding.

Figure 4 shows the previous experiment applied to LBFR.
In Figure 4 (top) a steep increase in stretch can be observed as
k increases. Because more embeddings are available, there are
more forwarding candidates that respect the κ-restriction (i.e.,
κ must be strictly monotonically decreasing along the routed
path). Every node focuses entirely on balancing the load of its
outgoing links, sacrificing the stretch while doing so.

In Figure 4 (bottom) the βE-ratio is depicted. As k goes up,
βE converges to 1 very quickly, which indicates near-perfect
load balancing behavior. Although the βE-ratio indicates that
the traffic is spread equally over all links, this does not mean
that the sum of the traffic over all network links is at its lowest
point. Because the stretch increases by a large factor, the total
network traffic goes up as well. For this reason, a good practice
could be to prioritize stretch in order to avoid overloading the
network links. As with GFR, we see that the βE-convergence
happens at higher k-values for larger graphs.

Previously it was shown that GFR enables low stretch
while LBFR is able to attain great load balancing behavior.
Now HFR, which unites both GFR and LBFR, is evaluated.
When the parameter γ in Eq. (7) is shifted towards 0, the

1.00

1.20

1.40

1.60

1.80

2.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ-

γ

k=2

k=5

k=10

k=30

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β
E

γ

Figure 6. HFR: average stretch ρ̄ (top) and link load balancing metric βE
(bottom) in function of a varying γ-value for different k-values on a scale-free
graph with 500 nodes. The shaded background represents the average, plus
and minus the standard deviation.

GFR system is recreated, while shifting γ to 1 results in
LBFR. Therefore, in Figure 5 a sensitivity analysis of the γ-
parameter is conducted for k = 15. For each value of γ, 10
runs consisting of 105 generated routing paths are executed.
Figure 5 (top) shows that at low γ-values ρ̄ becomes equally
low as with GFR. Afterwards, ρ̄ starts to incline as γ → 1,
consistent with HFR approximating LBFR.

The βE-values in Figure 5 (bottom) indicate that shifting γ
between its two extremes gives the expected results regarding
load balancing. However, something interesting can be noticed
at the right side of γ = 0. A step occurs such that βE suddenly
rises. Although, when inspecting Figure 5 (top) we see no such
step in the ρ̄-curve. This can be explained as follows. Upon
a node’s forwarding decision, many potential candidates will
have an equal distance to the destination. So within this set it
does not matter which node to forward to in terms of stretch.
When taking into account load balancing, a huge improvement
can be made by prioritizing those links with a low current load.

Figure 5 (bottom) also shows the load balancing behavior of
routing with lookup-tables for the different scale-free graphs,
which is depicted by the horizontal solid lines. It can be
noticed that HFR offers much better load balancing with only
a minor increase in stretch.

Figure 6 shows the influence of γ for different dimensions

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

0% 5% 10% 15% 20% 25% 30%

s
u

c
c
e
s
s
 r

a
ti
o

link failure rate

b

nb

nb k=1

Figure 7. Fault-tolerance: the horizontal axis depicts the fraction of links
removed from the total number of links that can be removed (|E| − |V |+ 1)
without disconnecting the graph G = (V,E). HFR (γ = 0.1, k = 15)
with (b) and without (nb) backup mechanism is tested, along with a single
tree-based geometric routing algorithm (RTP [16]). The shaded background
represents the average success ratio, plus and minus the standard deviation.

k on a scale-free graph with 500 nodes. For each γ-value, 10
runs are executed consisting of 105 generated routing paths,
over which the average and standard deviation of ρ and βE are
taken. Here it is clearly noticeable that the effect of tuning γ
increases with k. This can be explained by the higher number
of embeddings, allowing for more emphasis on load balancing
behavior. However, above a certain k-value, we experience
diminishing returns as the trend of the γ-curve stabilizes.

B. Fault-tolerance

In this section the fault-tolerance of HFR is evaluated. We
restrict ourselves to link failures, although, node failures lead
to very similar results. When more embeddings are used, the
chances of a link failure disrupting each of them lower. A link
that is a critical parent-child link in one embedding may be
a non-essential shortcut link in another one (see Section IV).
Hence HFR should be more resilient to failures than routing
with a single embedding.

In Figure 7 the routing success rate of the HFR system with
γ = 0.1 and k = 15 is shown, alongside HFR combined with
the backup routing system Gravity-Pressure (GP) routing [12],
and the single tree-based geometric routing algorithm RTP
[16], exercised on a scale-free graph with 500 nodes. Links are
removed probabilistically such that link failures are spread out
evenly over the network to avoid random failure concentration
in a certain area. This shows that HFR can be easily equipped
with a backup routing mechanism, allowing it to achieve a
100% success rate even in severe failure scenarios. However,
even without the GP mechanism, HFR attains a success rate of
over 97% when 30% of the removable links are deleted. This
is a huge improvement over more basic tree-based geometric
routing algorithms based on a single tree where the success
ratio quickly declines as the number of failed links increases
(a success ratio of less than 50% at a 30% link failure rate).

This inherent fault-tolerance can be explained by the avail-
ability of more embeddings which results in more alternate

pathways between source and destination. Therefore, it is less
likely that a routing void will occur, a situation in which
no new neighbor respecting the κ-restrictions can be found.
From this can be concluded that HFR is very fault-tolerant
by its very nature, which is essential in a large-scale network
where link or node failures are common. However, in case
failures are not resolved, the network and its embeddings will
deteriorate, which requires coordinate recomputation to avoid
large stretch increases. Estimating the exact computation time
requires network complexity analysis as well as an analysis of
the protocol implementation, which remains future work.

The choice of an appropriate value for k is a multifaceted
question. On the one hand, k should be chosen high enough
to achieve low stretch, high fault-tolerance, and high load
balancing. On the other hand, it should be chosen low enough
to avoid extensive routing overhead. The parameter γ should
be set to a value corresponding to the desired stretch-load
balancing trade-off, which depends on the use case, the graph
size, the topology, etc. Although higher γ-values do not affect
routing overhead, they do affect the total amount of traffic in
the network, as mentioned earlier. Furthermore, k and γ both
influence each other and should therefore be tuned in concert.
One approach for fitting these parameters would be to inject
test traffic into the network for different parameter combina-
tions, while monitoring the routing performance. Parameter
estimation, however, remains future work.

VII. CONCLUSION

In this work a theoretical framework is built which serves
as a foundation for the developed family of geometric routing
systems, called Forest Routing (FR). Combining a strictly
greedy approach, Greedy Forest Routing (GFR), with a load
balanced routing scheme, Load Balanced Forest Routing
(LBFR), results in Hybrid Forest Routing (HFR).

In HFR, path stretch can be traded against load balancing
behavior, two features until now not perceived to be compat-
ible. Due to its local routing decision making procedure it is
highly scalable regarding router memory requirements, making
it robust towards network growth.

Furthermore, the HFR system has favorable characteristics
such as inherent fault-tolerance and guaranteed packet de-
livery. It can deal even with a highly deteriorated network
topology, and is as such able to guarantee success ratios as
high as 97% at link failure rates of 30%.

Future work will encompass the incorporation of routing
policies into Forest Routing, a detailed Forest Routing com-
plexity analysis, and experiments by emulation.

ACKNOWLEDGMENT

This work was carried out using the Stevin Supercomputer
Infrastructure at Ghent University, funded by Ghent Univer-
sity, the Hercules Foundation and the Flemish Government –
department EWI. This work is partly funded by the European
Commission through the EULER project (grant 258307), part
of the Future Internet Research and Experimentation (FIRE)
objective of the Seventh Framework Programme (FP7). This

project was partly funded by the UGent BOF/GOA project
“Autonomic Networked Multimedia Systems”. This work was
partly funded by Flamingo, an FP7 Network of Excellence
project (318488) supported by the European Commission.

REFERENCES

[1] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing
for wireless networks,” in Proceedings of the 6th annual international
conference on Mobile computing and networking, ser. MobiCom ’00,
2000, pp. 243–254.

[2] M. Boguñá, F. Papadopoulos, and D. Krioukov, “Sustaining the Internet
with hyperbolic mapping,” Nature Communications, vol. 1, no. 62, 2010.

[3] K. Zeng, K. Ren, W. Lou, and P. J. Moran, “Energy aware efficient
geographic routing in lossy wireless sensor networks with environmental
energy supply,” Wireless Networks, vol. 15, no. 1, pp. 39–51, 2009.

[4] J. Zhang, Y.-p. Lin, M. Lin, P. Li, and S.-w. Zhou, “Curve-based greedy
routing algorithm for sensor networks,” in Proceedings of the Third
international conference on Networking and Mobile Computing, ser.
ICCNMC’05, 2005, pp. 1125–1133.

[5] N. Carlsson and D. L. Eager, “Non-Euclidian geographic routing in
wireless networks,” Ad Hoc Networks, vol. 5, no. 7, pp. 1173–1193,
2007.

[6] L. Popa, A. Rostamizadeh, R. Karp, C. Papadimitriou, and I. Stoica,
“Balancing traffic load in wireless networks with curveball routing,” in
Proceedings of the 8th ACM international symposium on Mobile ad hoc
networking and computing, ser. MobiHoc ’07, 2007, pp. 170–179.

[7] F. Li, S. Chen, and Y. Wang, “Load balancing routing with bounded
stretch,” EURASIP Journal on Wireless Communications and Network-
ing, vol. 2010, pp. 10:1–10:16, 2010.

[8] M. Tang, H. Chen, G. Zhang, and J. Yang, “Tree cover based geographic
routing with guaranteed delivery,” in Communications (ICC), 2010 IEEE
International Conference on, 2010, pp. 1–5.

[9] J. Newsome and D. Song, “Gem: graph embedding for routing and
data-centric storage in sensor networks without geographic information,”
in Proceedings of the 1st International Conference on Embedded Net-
worked Sensor Systems, ser. SenSys ’03, 2003, pp. 76–88.

[10] R. Kleinberg, “Geographic routing using hyperbolic space,” in INFO-
COM 2007. 26th IEEE International Conference on Computer Commu-
nications. IEEE, 2007, pp. 1902–1909.

[11] F. Papadopoulos, D. Krioukov, M. Boguñá, and A. Vahdat, “Greedy
forwarding in dynamic scale-free networks embedded in hyperbolic
metric spaces,” in Proceedings of the 29th Conference on Information
Communications, ser. INFOCOM’10, 2010, pp. 2973–2981.

[12] A. Cvetkovski and M. Crovella, “Hyperbolic embedding and routing for
dynamic graphs,” in INFOCOM 2009, IEEE, 2009, pp. 1647–1655.

[13] J. Herzen, C. Westphal, and P. Thiran, “Scalable routing easy as PIE:
A practical isometric embedding protocol,” in Proceedings of the 19th
annual IEEE International Conference on Network Protocols, ICNP,
2011, pp. 49–58.

[14] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic routing without location information,” in Proceedings of
the 9th annual international conference on Mobile computing and
networking, ser. MobiCom ’03, 2003, pp. 96–108.

[15] A. Korman, D. Peleg, and Y. Rodeh, “Labeling schemes for dynamic
tree networks,” in STACS 2002, ser. Lecture Notes in Computer Science,
2002, vol. 2285, pp. 76–87.

[16] E. Chávez, N. Mitton, and H. Tejeda, “Routing in wireless networks
with position trees,” in Ad-Hoc, Mobile, and Wireless Networks, ser.
Lecture Notes in Computer Science, 2007, vol. 4686, pp. 32–45.

[17] R. Houthooft, S. Sahhaf, W. Tavernier, F. De Turck, D. Colle, and
M. Pickavet, “Fault-tolerant greedy forest routing for complex net-
works,” in RNDM’14 - 6th International Workshop on Reliable Networks
Design and Modeling (RNDM 2014), Barcelona, Spain, Nov. 2014.

[18] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source
software for exploring and manipulating networks,” in ICWSM, 2009,
pp. 361–362.

[19] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[20] H. Velayos, V. Aleo, and G. Karlsson, “Load balancing in overlapping
wireless LAN cells,” in Communications, 2004 IEEE International
Conference on, vol. 7, 2004, pp. 3833–3836.

