1,800 research outputs found

    A Digital-to-Analog Converter Architecture for Multi-Channel Applications

    Get PDF
    Systems-on-chip with the capability of driving multiple analog voltages are useful for a variety of applications, including multiple actuator control for robotics applications, automated test equipment systems, industrial automation, programmable logic controllers, and satellite ywheel motor control. Such applications require a DAC for each analog output. A multi-channel architecture that saves power and area by sharing hardware is needed. This work introduces a new single-ramp multi-channel 12-bit DAC architecture. The architecture includes a low power Gray code counter, ramp generator, digital comparator, analog memory units, and control logic. The new multi-channel DAC architecture allows hardware sharing between multiple channels, and enables Systems-on-Chip to have multiple analog outputs for stimulating transducers or motors. The DAC architecture is to be used in a variety of space and defense applications as part of the BAE Systems RAD6000 microcontroller project

    Time-based, Low-power, Low-offset 5-bit 1 GS/s Flash ADC Design in 65nm CMOS Technology

    Get PDF
    Low-power, medium resolution, high-speed analog-to-digital converters (ADCs) have always been important block which have abundant applications such as digital signal processors (DSP), imaging sensors, environmental and biomedical monitoring devices. This study presents a low power Flash ADC designed in nanometer complementary metal-oxide semiconductors (CMOS) technology. Time analysis on the output delay of the comparators helps to generate one more bit. The proposed technique reduced the power consumption and chip area substantially in comparison to the previous state-of-the-art work. The proposed ADC was developed in TSMC 65nm CMOS technology. The offset cancellation technique was embedded in the proposed comparator to decrement the static offset of the comparator. Moreover, one more bit was generated without using extra comparators. The proposed ADC achieved 4.1 bits ENOB at input Nyquist frequency. The simulated differential and integral non-linearity static tests were equal to +0.26/-0.17 and +0.22/-0.15, respectively. The ADC consumed 7.7 mW at 1 GHz sampling frequency, achieving 415 fJ/Convstep Figure of Merit (FoM)

    From analog to digital

    Get PDF
    Analog-to-digital conversion and its reverse, digital-to-analog conversion, are ubiquitous in all modern electronics, from instrumentation and telecommunication equipment to computers and entertainment. We shall explore the consequences of converting signals between the analog and digital domains and give an overview of the internal architecture and operation of a number of converter types. The importance of analog input and clock signal integrity will be explained and methods to prevent or mitigate the effects of interference will be shown. Examples will be drawn from several manufacturers' datasheets

    Design, analysis and optimization of a dynamically reconfi gurable regenerative comparator for ultra-low power 6-bit TC-ADCs in 90nm CMOS technology

    Get PDF
    In this work the threshold configurable regenerative comparator on which TC-ADCs are based is optimized to further reduce the power consumption for use in battery-less biomedical sensor applications.\nMoreover, the effect of device mismatches on the offset, gain and linearity errors of the ADC is analyzed by means of Monte Carlo simulations.\nThis optimized comparator reduces the power consumption from 13uW to 3uW, while maintaining the same full scale rang

    A built-in self-test technique for high speed analog-to-digital converters

    Get PDF
    Fundação para a Ciência e a Tecnologia (FCT) - PhD grant (SFRH/BD/62568/2009
    corecore