1,622 research outputs found

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Towards Real-time, On-board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    Get PDF
    Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and advanced on the- fly temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software due to instrumentation. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual data from the NASA Swift UAS, an experimental all-electric aircraft

    PRIMJENA NAPREDNIH RAČUNALNIH TEHNOLOGIJA U MODELIRANJU I UPRAVLJANJU POMORSKIH SUSTAVA

    Get PDF
    The paper deals with some application possibilities of advanced computing technologies in marine systems modelling and control. New computing technologies and techniques like fuzzy logic (FL), expert systems (ES), artificial neural networks (ANN), genetic algorithms (GA), object oriented programming (OOP) offer new, extended possibilities to identification, modelling and control of dynamic systems. This paper presents some possibilities of practical use of advanced computing technologies applied to the modelling and control of marine diesel engines. The emphasis is put on two well recognised techniques, fuzzy logic and expert systems. Some application examples are illustrated in the paper to show effectivness of using such methods and techniques in marine diesel engine modelling and control.U radu se daju neke mogućnosti primjena novih računalnih tehnologija u modeliranju i upravljanju sustava u pomorstvu. Nove računalne tehnologije i tehnike kao: neizrazita logika (FL), ekspertni sustavi (ES), umjetne neuronske mreže (ANN), genetički algoritmi (GA), objektno orjentirano programiranje (OOP) pružaju nove proširene mogućnosti za identifikaciju, modeliranje i upravljanje dinamičkih sustava. U ovom radu prezentiraju se neke od mogućnosti praktičnog iskorištenja naprednih računalnih tehnologija s primjenom u svrhe modeliranja i upravljanja drodskih dizelskih strojeva. Naglasak se u radu daje na dvije priznate i dobro prihvaćene tehnike, neizrazite logike i ekspertnih sustava. U radu se daje nekoliko primjera primjene ovih tehnika i metoda, te pokazuje njihova učinkovitost

    The Role of Semantic Technologies in Diagnostic and Decision Support for Service Systems

    Get PDF
    In this research, we utilize semantic technology for robust early diagnosis and decision support. We present a light-weight platform that provides the end-user with direct access to the data through an ontology, and enables detection of any forthcoming faults by considering the data only from the reliable sensors. Concurrently, it indicates the actual sources of the detected faults, enabling mitigation action to be taken. Our work is focused on systems that require only real-time data and a restricted part of the historic data, such as fuel cell stack systems. First, we present an upper-level ontology that captures the semantics of such monitored systems and then we present the structure of the platform. Next, we specialize on the fuel cell paradigm and we provide a detailed description of our platform’s functionality that can aid future servicing problem reporting applications

    A Bayesian Approach to Sensor Placement and System Health Monitoring

    Get PDF
    System health monitoring and sensor placement are areas of great technical and scientific interest. Prognostics and health management of a complex system require multiple sensors to extract required information from the sensed environment, because no single sensor can obtain all the required information reliably at all times. The increasing costs of aging systems and infrastructures have become a major concern, and system health monitoring techniques can ensure increased safety and reliability of these systems. Similar concerns also exist for newly designed systems. The main objectives of this research were: (1) to find an effective way for optimal functional sensor placement under uncertainty, and (2) to develop a system health monitoring approach with both prognostic and diagnostic capabilities with limited and uncertain information sensing and monitoring points. This dissertation provides a functional/information --based sensor placement methodology for monitoring the health (state of reliability) of a system and utilizes it in a new system health monitoring approach. The developed sensor placement method is based on Bayesian techniques and is capable of functional sensor placement under uncertainty. It takes into account the uncertainty inherent in characteristics of sensors as well. It uses Bayesian networks for modeling and reasoning the uncertainties as well as for updating the state of knowledge for unknowns of interest and utilizes information metrics for sensor placement based on the amount of information each possible sensor placement scenario provides. A new system health monitoring methodology is also developed which is: (1) capable of assessing current state of a system's health and can predict the remaining life of the system (prognosis), and (2) through appropriate data processing and interpretation can point to elements of the system that have or are likely to cause system failure or degradation (diagnosis). It can also be set up as a dynamic monitoring system such that through consecutive time steps, the system sensors perform observations and send data to the Bayesian network for continuous health assessment. The proposed methodology is designed to answer important questions such as how to infer the health of a system based on limited number of monitoring points at certain subsystems (upward propagation); how to infer the health of a subsystem based on knowledge of the health of the main system (downward propagation); and how to infer the health of a subsystem based on knowledge of the health of other subsystems (distributed propagation)

    Bayesian Network Approach to Assessing System Reliability for Improving System Design and Optimizing System Maintenance

    Get PDF
    abstract: A quantitative analysis of a system that has a complex reliability structure always involves considerable challenges. This dissertation mainly addresses uncertainty in- herent in complicated reliability structures that may cause unexpected and undesired results. The reliability structure uncertainty cannot be handled by the traditional relia- bility analysis tools such as Fault Tree and Reliability Block Diagram due to their deterministic Boolean logic. Therefore, I employ Bayesian network that provides a flexible modeling method for building a multivariate distribution. By representing a system reliability structure as a joint distribution, the uncertainty and correlations existing between system’s elements can effectively be modeled in a probabilistic man- ner. This dissertation focuses on analyzing system reliability for the entire system life cycle, particularly, production stage and early design stages. In production stage, the research investigates a system that is continuously mon- itored by on-board sensors. With modeling the complex reliability structure by Bayesian network integrated with various stochastic processes, I propose several methodologies that evaluate system reliability on real-time basis and optimize main- tenance schedules. In early design stages, the research aims to predict system reliability based on the current system design and to improve the design if necessary. The three main challenges in this research are: 1) the lack of field failure data, 2) the complex reliability structure and 3) how to effectively improve the design. To tackle the difficulties, I present several modeling approaches using Bayesian inference and nonparametric Bayesian network where the system is explicitly analyzed through the sensitivity analysis. In addition, this modeling approach is enhanced by incorporating a temporal dimension. However, the nonparametric Bayesian network approach generally accompanies with high computational efforts, especially, when a complex and large system is modeled. To alleviate this computational burden, I also suggest to building a surrogate model with quantile regression. In summary, this dissertation studies and explores the use of Bayesian network in analyzing complex systems. All proposed methodologies are demonstrated by case studies.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    Establishment of a novel predictive reliability assessment strategy for ship machinery

    Get PDF
    There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme.There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme

    Third Conference on Artificial Intelligence for Space Applications, part 2

    Get PDF
    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed
    corecore