377 research outputs found

    Traffic Control Strategy Formulation and Optimization Enabled by Homogenous Connected and Autonomous Vehicle Systems.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    GRAPH-BASED FOG COMPUTING NETWORK MODEL

    Get PDF
    IoT networks generate numerous amounts of data that is then transferred to the cloud for processing. Transferring data cleansing and parts of calculations towards these edge-level networks improves system’s, latency, energy consumption, network bandwidth and computational resources utilization, fault tolerance and thus operational costs. On the other hand, these fog nodes are resource-constrained, have extremely distributed and heterogeneous nature, lack horizontal scalability, and, thus, the vanilla SOA approach is not applicable to them. Utilization of Software Defined Network (SDN) with task distribution capabilities advocated in this paper addresses these issues. Suggested framework may utilize various routing and data distribution algorithms allowing to build flexible system most relevant for particular use-case. Advocated architecture was evaluated in agent-based simulation environment and proved its’ feasibility and performance gains compared to conventional event-stream approach

    An Emulation Framework for Evaluating V2X Communications in C-ITS Applications

    Get PDF
    C-ITS enhances transportation systems with advanced communication tech, enabling vehicle-to-vehicle and vehicle-to-infrastructure data exchange for real-time decision-making. The thesis explores C-ITS concepts, DSRC, and C-V2X tech, and proposes a versatile C-ITS framework for app prototyping and communication evaluation. Real-world tests and simulations validate its potential to improve road safety and efficiency, suggesting integration opportunities for stakeholders and promoting a smarter, sustainable transportation ecosystem

    Adaptive vehicular networking with Deep Learning

    Get PDF
    Vehicular networks have been identified as a key enabler for future smart traffic applications aiming to improve on-road safety, increase road traffic efficiency, or provide advanced infotainment services to improve on-board comfort. However, the requirements of smart traffic applications also place demands on vehicular networks’ quality in terms of high data rates, low latency, and reliability, while simultaneously meeting the challenges of sustainability, green network development goals and energy efficiency. The advances in vehicular communication technologies combined with the peculiar characteristics of vehicular networks have brought challenges to traditional networking solutions designed around fixed parameters using complex mathematical optimisation. These challenges necessitate greater intelligence to be embedded in vehicular networks to realise adaptive network optimisation. As such, one promising solution is the use of Machine Learning (ML) algorithms to extract hidden patterns from collected data thus formulating adaptive network optimisation solutions with strong generalisation capabilities. In this thesis, an overview of the underlying technologies, applications, and characteristics of vehicular networks is presented, followed by the motivation of using ML and a general introduction of ML background. Additionally, a literature review of ML applications in vehicular networks is also presented drawing on the state-of-the-art of ML technology adoption. Three key challenging research topics have been identified centred around network optimisation and ML deployment aspects. The first research question and contribution focus on mobile Handover (HO) optimisation as vehicles pass between base stations; a Deep Reinforcement Learning (DRL) handover algorithm is proposed and evaluated against the currently deployed method. Simulation results suggest that the proposed algorithm can guarantee optimal HO decision in a realistic simulation setup. The second contribution explores distributed radio resource management optimisation. Two versions of a Federated Learning (FL) enhanced DRL algorithm are proposed and evaluated against other state-of-the-art ML solutions. Simulation results suggest that the proposed solution outperformed other benchmarks in overall resource utilisation efficiency, especially in generalisation scenarios. The third contribution looks at energy efficiency optimisation on the network side considering a backdrop of sustainability and green networking. A cell switching algorithm was developed based on a Graph Neural Network (GNN) model and the proposed energy efficiency scheme is able to achieve almost 95% of the metric normalised energy efficiency compared against the “ideal” optimal energy efficiency benchmark and is capable of being applied in many more general network configurations compared with the state-of-the-art ML benchmark

    Network Slicing for Wireless Networks Operating in a Shared Spectrum Environment

    Get PDF
    Network slicing is a very common practice in modern computer networks. It can serve as an efficient way to distribute network resources to physical groups of users, and allows the network to provide performance guarantees in terms of the Quality of Service. Physical links are divided logically and are assigned on a per-service basis to accomplish this. Traditionally, network slicing has been done mostly in wired networks, and bringing these practices to wireless networks has only been done recently. The main contribution of this thesis is network slicing applied to wireless environments where multiple adjacent networks are forced to share the same spectrum, namely in LTE and 5G. Spectrum in the sub-6GHz range is crowded by a wide range of services, and managing interference between networks is often challenging. A modified graph coloring technique is used both as a means to identify areas of interference and overlap between two networks, as well as assign spectrum resources to each node in an efficient manner. A central entity, known as the ”Overseer”, was developed as a bridge to pass interference-related information between the two coexisting networks. Performance baselines were first gathered for network slicing in a single-network scenario, followed by the introduction of a second network and the evaluation of the efficacy of the graph coloring approach. In the cases of highest interference from the secondary network, the modified graph coloring approach provided more than 22.3% reduction in median user delay, and more than 36.0% increase in median single-user and slice-aggregate throughput across all three network slices compared to the non-graph coloring scenario

    Provision Quality-of-Service Controlled Content Distribution in Vehicular Ad Hoc Networks

    Get PDF
    By equipping vehicles with the on-board wireless facility, the newly emerged vehicular networking targets to provision the broadband serves to vehicles. As such, a variety of novel and exciting applications can be provided to vehicular users to enhance their road safety and travel comfort, and finally raise a complete change to their on-road life. As the content distribution and media/video streaming, such as Youtube, Netflix, nowadays have become the most popular Internet applications, to enable the efficient content distribution and audio/video streaming services is thus of the paramount importance to the success of the vehicular networking. This, however, is fraught with fundamental challenges due to the distinguished natures of vehicular networking. On one hand, the vehicular communication is challenged by the spotty and volatile wireless connections caused by the high mobility of vehicles. This makes the download performance of connections very unstable and dramatically change over time, which directly threats to the on-top media applications. On the other hand, a vehicular network typically involves an extremely large-scale node population (e.g., hundreds or thousandths of vehicles in a region) with intense spatial and temporal variations across the network geometry at different times. This dictates any designs to be scalable and fully distributed which should not only be resilient to the network dynamics, but also provide the guaranteed quality-of-service (QoS) to users. The purpose of this dissertation is to address the challenges of the vehicular networking imposed by its intrinsic dynamic and large-scale natures, and build the efficient, scalable and, more importantly, practical systems to enable the cost-effective and QoS guaranteed content distribution and media streaming services to vehicular users. Note that to effective- ly deliver the content from the remote Internet to in-motion vehicles, it typically involves three parts as: 1.) an infrastructure grid of gateways which behave as the data depots or injection points of Internet contents and services to vehicles, 2.) protocol at gateways which schedules the bandwidth resource at gateways and coordinates the parallel transmissions to different vehicles, and 3.) the end-system control mechanism at receivers which adapts the receiver’s content download/playback strategy based on the available network throughput to provide users with the desired service experience. With above three parts in mind, the entire research work in this dissertation casts a systematic view to address each part in one topic with: 1.) design of large-scale cost-effective content distribution infrastructure, 2.) MAC (media access control) performance evaluation and channel time scheduling, and 3.) receiver adaptation and adaptive playout in dynamic download environment. In specific, in the first topic, we propose a practical solution to form a large-scale and cost-effective content distribution infrastructure in the city. We argue that a large-scale infrastructure with the dedicated resources, including storage, computing and communication capacity, is necessary for the vehicular network to become an alternative of 3G/4G cellular network as the dominating approach of ubiquitous content distribution and data services to vehicles. On addressing this issue, we propose a fully distributed scheme to form a large-scale infrastructure by the contributions of individual entities in the city, such as grocery stores, movie theaters, etc. That is to say, the installation and maintenance costs are shared by many individuals. In this topic, we explain the design rationale on how to motivate individuals to contribute, and specify the detailed design of the system, which is embodied with distributed protocols and performance evaluation. The second topic investigates on the MAC throughput performance of the vehicle-to- infrastructure (V2I) communications when vehicles drive through RSUs, namely drive-thru Internet. Note that with a large-scale population of fast-motion nodes contending the chan- nel for transmissions, the MAC performance determines the achievable nodal throughput and is crucial to the on-top applications. In this topic, using a simple yet accurate Marko- vian model, we first show the impacts of mobility (characterized by node velocity and moving directions) on the nodal and system throughput performance, respectively. Based on this analysis, we then propose three enhancement schemes to timely adjust the MAC parameters in tune with the vehicle mobility to achieve the maximal the system throughput. The last topic investigates on the end-system design to deliver the user desired media streaming services in the vehicular environment. In specific, the vehicular communications are notoriously known for the intermittent connectivity and dramatically varying throughput. Video streaming on top of vehicular networks therefore inevitably suffers from the severe network dynamics, resulting in the frequent jerkiness or even freezing video playback. To address this issue, an analytical model is first developed to unveil the impacts of network dynamics on the resultant video performance to users in terms of video start-up delay and smoothness of playback. Based on the analysis, the adaptive playout buffer mechanism is developed to adapt the video playback strategy at receivers towards the user-defined video quality. The proposals developed in the three topics are validated with the extensive and high fidelity simulations. We believe that our analysis developed in the dissertation can provide insightful lights on understanding the fundamental performance of the vehicular content distribution networks from the aspects of session-level download performance in urban vehicular networks (topic 1), MAC throughput performance (topic 2), and user perceived media quality (topic 3). The protocols developed in the three topics, respectively, offer practical and efficient solutions to build and optimize the vehicular content distribution networks

    Development and evaluation of advanced traveler information system (ATIS) using vehicle-to-vehicle (V2V) communication system

    Get PDF
    This research develops and evaluates an Advanced Traveler Information System (ATIS) model using a Vehicle-to-Vehicle (V2V) communication system (referred to as the GATIS-V2V model) with the off-the-shelf microscopic simulation model, VISSIM. The GATIS-V2V model is tested on notional small traffic networks (non-signalized and signalized) and a 6X6 typical urban grid network (signalized traffic network). The GATIS-V2V model consists of three key modules: vehicle communication, on-board travel time database management, and a Dynamic Route Guidance System (DRGS). In addition, the system performance has been enhanced by applying three complementary functions: Autonomous Automatic Incident Detection (AAID), a minimum sample size algorithm, and a simple driver behavior model. To select appropriate parameter ranges for the complementary functions a sensitivity analysis has been conducted. The GATIS-V2V performance has been investigated relative to three underlying system parameters: traffic flow, communication radio range, and penetration ratio of participating vehicles. Lastly, the enhanced GATIS-V2V model is compared with the centralized traffic information system. This research found that the enhanced GATIS-V2V model outperforms the basic model in terms of travel time savings and produces more consistent and robust system output under non-recurrent traffic states (i.e., traffic incident) in the simple traffic network. This research also identified that the traffic incident detection time and driver's route choice rule are the most crucial factors influencing the system performance. As expected, as traffic flow and penetration ratio increase, the system becomes more efficient, with non-participating vehicles also benefiting from the re-routing of participating vehicles. The communication radio ranges considered were found not to significantly influence system operations in the studied traffic network. Finally, it is found that the decentralized GATIS-V2V model has similar performance to the centralized model even under low flow, short radio range, and low penetration ratio cases. This implies that a dynamic infrastructure-based traffic information system could replace a fixed infrastructure-based traffic information system, allowing for considerable savings in fixed costs and ready expansion of the system off of the main network corridors.Ph.D.Committee Chair: Hunter, Michael; Committee Member: Fujimoto, Richard; Committee Member: Guensler, Randall; Committee Member: Leonard, John; Committee Member: Meyer, Michae

    On the Design of Sidelink for Cellular V2X: A Literature Review and Outlook for Future

    Get PDF
    Connected and fully automated vehicles are expected to revolutionize our mobility in the near future on a global scale, by significantly improving road safety, traffic efficiency, and traveling experience. Enhanced vehicular applications, such as cooperative sensing and maneuvering or vehicle platooning, heavily rely on direct connectivity among vehicles, which is enabled by sidelink communications. In order to set the ground for the core contribution of this paper, we first analyze the main streams of the cellular-vehicle-to-everything (C-V2X) technology evolution within the Third Generation Partnership Project (3GPP), with focus on the sidelink air interface. Then, we provide a comprehensive survey of the related literature, which is classified and critically dissected, considering both the Long-Term Evolution-based solutions and the 5G New Radio-based latest advancements that promise substantial improvements in terms of latency and reliability. The wide literature review is used as a basis to finally identify further challenges and perspectives, which may shape the C-V2X sidelink developments in the next-generation vehicles beyond 5G
    • 

    corecore