18,752 research outputs found

    Graph labeling games

    Get PDF
    We propose the study of many new variants of two-person graph labeling games. Hardly anything has been done in this wide open field so far. © 2017 Elsevier B.V

    Graph labeling games

    Full text link

    On the Graceful Game

    Get PDF
    A graceful labeling of a graph GG with mm edges consists of labeling the vertices of GG with distinct integers from 00 to mm such that, when each edge is assigned as induced label the absolute difference of the labels of its endpoints, all induced edge labels are distinct. Rosa established two well known conjectures: all trees are graceful (1966) and all triangular cacti are graceful (1988). In order to contribute to both conjectures we study graceful labelings in the context of graph games. The Graceful game was introduced by Tuza in 2017 as a two-players game on a connected graph in which the players Alice and Bob take turns labeling the vertices with distinct integers from 0 to mm. Alice's goal is to gracefully label the graph as Bob's goal is to prevent it from happening. In this work, we study winning strategies for Alice and Bob in complete graphs, paths, cycles, complete bipartite graphs, caterpillars, prisms, wheels, helms, webs, gear graphs, hypercubes and some powers of paths

    Permutation graphs and unique games

    Get PDF
    We study the value of unique games as a graph-theoretic parameter. This is obtained by labeling edges with permutations. We describe the classical value of a game as well as give a necessary and sufficient condition for the existence of an optimal assignment based on a generalisation of permutation graphs and graph bundles. In considering some special cases, we relate XOR games to EDGE BIPARTIZATION, and define an edge-labeling with permutations from Latin squares

    Permutation graphs and unique games

    Get PDF
    We study the value of unique games as a graph-theoretic parameter. This is obtained by labeling edges with permutations. We describe the classical value of a game as well as give a necessary and sufficient condition for the existence of an optimal assignment based on a generalisation of permutation graphs and graph bundles. In considering some special cases, we relate XOR games to EDGE BIPARTIZATION, and define an edge-labeling with permutations from Latin squares

    On Iterated Dominance, Matrix Elimination, and Matched Paths

    Get PDF
    We study computational problems arising from the iterated removal of weakly dominated actions in anonymous games. Our main result shows that it is NP-complete to decide whether an anonymous game with three actions can be solved via iterated weak dominance. The two-action case can be reformulated as a natural elimination problem on a matrix, the complexity of which turns out to be surprisingly difficult to characterize and ultimately remains open. We however establish connections to a matching problem along paths in a directed graph, which is computationally hard in general but can also be used to identify tractable cases of matrix elimination. We finally identify different classes of anonymous games where iterated dominance is in P and NP-complete, respectively.Comment: 12 pages, 3 figures, 27th International Symposium on Theoretical Aspects of Computer Science (STACS

    The Complexity of Subgame Perfect Equilibria in Quantitative Reachability Games

    Get PDF
    We study multiplayer quantitative reachability games played on a finite directed graph, where the objective of each player is to reach his target set of vertices as quickly as possible. Instead of the well-known notion of Nash equilibrium (NE), we focus on the notion of subgame perfect equilibrium (SPE), a refinement of NE well-suited in the framework of games played on graphs. It is known that there always exists an SPE in quantitative reachability games and that the constrained existence problem is decidable. We here prove that this problem is PSPACE-complete. To obtain this result, we propose a new algorithm that iteratively builds a set of constraints characterizing the set of SPE outcomes in quantitative reachability games. This set of constraints is obtained by iterating an operator that reinforces the constraints up to obtaining a fixpoint. With this fixpoint, the set of SPE outcomes can be represented by a finite graph of size at most exponential. A careful inspection of the computation allows us to establish PSPACE membership

    Hardness of Vertex Deletion and Project Scheduling

    Full text link
    Assuming the Unique Games Conjecture, we show strong inapproximability results for two natural vertex deletion problems on directed graphs: for any integer k≥2k\geq 2 and arbitrary small ϵ>0\epsilon > 0, the Feedback Vertex Set problem and the DAG Vertex Deletion problem are inapproximable within a factor k−ϵk-\epsilon even on graphs where the vertices can be almost partitioned into kk solutions. This gives a more structured and therefore stronger UGC-based hardness result for the Feedback Vertex Set problem that is also simpler (albeit using the "It Ain't Over Till It's Over" theorem) than the previous hardness result. In comparison to the classical Feedback Vertex Set problem, the DAG Vertex Deletion problem has received little attention and, although we think it is a natural and interesting problem, the main motivation for our inapproximability result stems from its relationship with the classical Discrete Time-Cost Tradeoff Problem. More specifically, our results imply that the deadline version is NP-hard to approximate within any constant assuming the Unique Games Conjecture. This explains the difficulty in obtaining good approximation algorithms for that problem and further motivates previous alternative approaches such as bicriteria approximations.Comment: 18 pages, 1 figur
    • …
    corecore