96 research outputs found

    Improved Quantum Query Upper Bounds Based on Classical Decision Trees

    Get PDF
    We consider the following question in query complexity: Given a classical query algorithm in the form of a decision tree, when does there exist a quantum query algorithm with a speed-up (i.e., that makes fewer queries) over the classical one? We provide a general construction based on the structure of the underlying decision tree, and prove that this can give us an up-to-quadratic quantum speed-up in the number of queries. In particular, our results give a bounded-error quantum query algorithm of cost O(?s) to compute a Boolean function (more generally, a relation) that can be computed by a classical (even randomized) decision tree of size s. This recovers an O(?n) algorithm for the Search problem, for example. Lin and Lin [Theory of Computing\u2716] and Beigi and Taghavi [Quantum\u2720] showed results of a similar flavor. Their upper bounds are in terms of a quantity which we call the "guessing complexity" of a decision tree. We identify that the guessing complexity of a decision tree equals its rank, a notion introduced by Ehrenfeucht and Haussler [Information and Computation\u2789] in the context of learning theory. This answers a question posed by Lin and Lin, who asked whether the guessing complexity of a decision tree is related to any measure studied in classical complexity theory. We also show a polynomial separation between rank and its natural randomized analog for the complete binary AND-OR tree. Beigi and Taghavi constructed span programs and dual adversary solutions for Boolean functions given classical decision trees computing them and an assignment of non-negative weights to edges of the tree. We explore the effect of changing these weights on the resulting span program complexity and objective value of the dual adversary bound, and capture the best possible weighting scheme by an optimization program. We exhibit a solution to this program and argue its optimality from first principles. We also exhibit decision trees for which our bounds are strictly stronger than those of Lin and Lin, and Beigi and Taghavi. This answers a question of Beigi and Taghavi, who asked whether different weighting schemes in their construction could yield better upper bounds

    Introduction to local certification

    Full text link
    A distributed graph algorithm is basically an algorithm where every node of a graph can look at its neighborhood at some distance in the graph and chose its output. As distributed environment are subject to faults, an important issue is to be able to check that the output is correct, or in general that the network is in proper configuration with respect to some predicate. One would like this checking to be very local, to avoid using too much resources. Unfortunately most predicates cannot be checked this way, and that is where certification comes into play. Local certification (also known as proof-labeling schemes, locally checkable proofs or distributed verification) consists in assigning labels to the nodes, that certify that the configuration is correct. There are several point of view on this topic: it can be seen as a part of self-stabilizing algorithms, as labeling problem, or as a non-deterministic distributed decision. This paper is an introduction to the domain of local certification, giving an overview of the history, the techniques and the current research directions.Comment: Last update: minor editin

    Deciding and verifying network properties locally with few output bits

    Get PDF
    International audienceGiven a boolean predicate on labeled networks (e.g., the network is acyclic, or the network is properly colored, etc.), deciding in a distributed manner whether a given labeled network satisfies that predicate typically consists, in the standard setting, of every node inspecting its close neighborhood, and outputting a boolean verdict, such that the network satisfies the predicate if and only if all nodes output true. In this paper, we investigate a more general notion of distributed decision in which every node is allowed to output a constant number b≥1b\geq 1 of bits, which are gathered by a central authority emitting a global boolean verdict based on these outputs, such that the network satisfies the predicate if and only if this global verdict equals true. We analyze the power and limitations of this extended notion of distributed decision

    Learning for Graph Matching and Related Combinatorial Optimization Problems

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Certifying Correctness for Combinatorial Algorithms : by Using Pseudo-Boolean Reasoning

    Get PDF
    Over the last decades, dramatic improvements in combinatorialoptimisation algorithms have significantly impacted artificialintelligence, operations research, and other areas. These advances,however, are achieved through highly sophisticated algorithms that aredifficult to verify and prone to implementation errors that can causeincorrect results. A promising approach to detect wrong results is touse certifying algorithms that produce not only the desired output butalso a certificate or proof of correctness of the output. An externaltool can then verify the proof to determine that the given answer isvalid. In the Boolean satisfiability (SAT) community, this concept iswell established in the form of proof logging, which has become thestandard solution for generating trustworthy outputs. The problem isthat there are still some SAT solving techniques for which prooflogging is challenging and not yet used in practice. Additionally,there are many formalisms more expressive than SAT, such as constraintprogramming, various graph problems and maximum satisfiability(MaxSAT), for which efficient proof logging is out of reach forstate-of-the-art techniques.This work develops a new proof system building on the cutting planesproof system and operating on pseudo-Boolean constraints (0-1 linearinequalities). We explain how such machine-verifiable proofs can becreated for various problems, including parity reasoning, symmetry anddominance breaking, constraint programming, subgraph isomorphism andmaximum common subgraph problems, and pseudo-Boolean problems. Weimplement and evaluate the resulting algorithms and a verifier for theproof format, demonstrating that the approach is practical for a widerange of problems. We are optimistic that the proposed proof system issuitable for designing certifying variants of algorithms inpseudo-Boolean optimisation, MaxSAT and beyond

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    Quantum Algorithm Implementations for Beginners

    Full text link
    As quantum computers become available to the general public, the need has arisen to train a cohort of quantum programmers, many of whom have been developing classical computer programs for most of their careers. While currently available quantum computers have less than 100 qubits, quantum computing hardware is widely expected to grow in terms of qubit count, quality, and connectivity. This review aims to explain the principles of quantum programming, which are quite different from classical programming, with straightforward algebra that makes understanding of the underlying fascinating quantum mechanical principles optional. We give an introduction to quantum computing algorithms and their implementation on real quantum hardware. We survey 20 different quantum algorithms, attempting to describe each in a succinct and self-contained fashion. We show how these algorithms can be implemented on IBM's quantum computer, and in each case, we discuss the results of the implementation with respect to differences between the simulator and the actual hardware runs. This article introduces computer scientists, physicists, and engineers to quantum algorithms and provides a blueprint for their implementations
    • …
    corecore