Improved Quantum Query Upper Bounds Based on
Classical Decision Trees

Arjan Cornelissen &4
Institute for Logic, Language, and Computation, University of Amsterdam, The Netherlands
QuSoft, Amsterdam, The Netherlands

Nikhil S. Mande 2 &
QuSoft, Amsterdam, The Netherlands
CWI, Amsterdam, The Netherlands

Subhasree Patro 24

QuSoft, Amsterdam, The Netherlands
CWI Amsterdam, The Netherlands
University of Amsterdam, The Netherlands

—— Abstract

We consider the following question in query complexity: Given a classical query algorithm in the
form of a decision tree, when does there exist a quantum query algorithm with a speed-up (i.e.,
that makes fewer queries) over the classical one? We provide a general construction based on the
structure of the underlying decision tree, and prove that this can give us an up-to-quadratic quantum
speed-up in the number of queries. In particular, our results give a bounded-error quantum query
algorithm of cost O(y/s) to compute a Boolean function (more generally, a relation) that can be
computed by a classical (even randomized) decision tree of size s. This recovers an O(y/n) algorithm
for the Search problem, for example.

Lin and Lin [Theory of Computing’16] and Beigi and Taghavi [Quantum’20] showed results of a
similar flavor. Their upper bounds are in terms of a quantity which we call the “guessing complexity”
of a decision tree. We identify that the guessing complexity of a decision tree equals its rank, a
notion introduced by Ehrenfeucht and Haussler [Information and Computation’89] in the context of
learning theory. This answers a question posed by Lin and Lin, who asked whether the guessing
complexity of a decision tree is related to any measure studied in classical complexity theory. We
also show a polynomial separation between rank and its natural randomized analog for the complete
binary AND-OR tree.

Beigi and Taghavi constructed span programs and dual adversary solutions for Boolean functions
given classical decision trees computing them and an assignment of non-negative weights to edges of
the tree. We explore the effect of changing these weights on the resulting span program complexity
and objective value of the dual adversary bound, and capture the best possible weighting scheme
by an optimization program. We exhibit a solution to this program and argue its optimality from
first principles. We also exhibit decision trees for which our bounds are strictly stronger than those
of Lin and Lin, and Beigi and Taghavi. This answers a question of Beigi and Taghavi, who asked
whether different weighting schemes in their construction could yield better upper bounds.

2012 ACM Subject Classification Theory of computation — Oracles and decision trees; Theory of
computation — Quantum complexity theory

Keywords and phrases Quantum Query Complexity, Decision Trees, Decision Tree Rank
Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2022.15
Related Version Full Version: https://arxiv.org/abs/2203.02968 [12]

Funding Nikhil S. Mande: Supported by the Dutch Research Council (NWO/OCW), as part of the
Quantum Software Consortium programme (project number 024.003.037), and through QuantERA
ERA-NET Cofund project QuantAlgo (project number 680-91-034, ended in December 2021).
Subhasree Patro: Mainly supported by the Robert Bosch Stiftung, also additionally supported
by NWO Gravitation grants NETWORKS and QSC, and through QuantERA ERA-NET Cofund
project QuantAlgo (project number 680-91-034, ended in December 2021).

© Arjan Cornelissen, Nikhil S. Mande, and Subhasree Patro;

licensed under Creative Commons License CC-BY 4.0
42nd TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2022).
Editors: Anuj Dawar and Venkatesan Guruswami; Article No. 15; pp. 15:1-15:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:arjan@cwi.nl
https://arriopolis.github.io/
mailto:Nikhil.Mande@cwi.nl
https://mande-nikhil.github.io/
mailto:Subhasree.Patro@cwi.nl
https://subhasree-patro.github.io/
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.15
https://arxiv.org/abs/2203.02968
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2

Improved Quantum Query Upper Bounds Based on Classical Decision Trees

Acknowledgements We thank Ronald de Wolf for useful comments.

1 Introduction

In this paper, we address the following question: given a classical algorithm performing
a task, along with a description of the algorithm, when can one turn it into a quantum
algorithm and obtain a speed-up in the process? Of specific interest to us in this paper is
the case when the classical algorithm can be efficiently represented by a decision tree. For
instance, consider the problem of identifying the first marked item in a list, say x of n items,
each of which may or may not be marked. The input is initially unknown, and one has
access to it via an oracle. On being queried ¢ € [n], the oracle returns whether or not x;
is marked. Moreover, queries can be made in superposition. The goal is to minimize the
number of queries in the worst case and output the correct answer with high probability for
every possible input list. This problem is closely related to the Search problem, and is known
to admit a quadratic quantum speed-up (its classical query complexity is ©(n) and quantum
query complexity is ©(y/n)) [16, 21, 23]. It is easy to construct a classical decision tree (in
fact, a decision list) of depth n and size (which is the number of nodes) 2n + 1 that solves the
above-mentioned problem. In view of the quadratic speed-up that quantum query algorithms
can achieve for this problem, this raises the following natural question: Given a classical
decision tree of size s that computes a function, is there a bounded-error quantum query
algorithm of cost O(y/s) that solves the same function? Among other results, we answer
this in the affirmative (see Corollary 9). We obtain our quantum query upper bounds by
constructing explicit span programs and dual adversary solutions by exploiting structure of
the initial classical decision tree. In the discussions below, let Q.(f) be the e-error quantum
query complexity of f. When e = 1/3, we drop the subscript and call Q(f) the bounded-error
quantum query complexity of f.

1.1 Span Programs

Span programs are a computational model introduced by Karchmer and Wigderson [20].
Roughly speaking, a span program defines a function depending on whether or not the
“target vector” of an input is in the span of its associated “input vectors”. Span programs
were first used in the context of quantum query complexity by Reichardt and Spalek [30],
and it is known that span programs characterize bounded-error quantum query complexity
of Boolean functions up to a constant factor [29, 22]. Span programs have been used to
design quantum algorithms for various graph problems such as st-connectivity [9], cycle
detection and bipartiteness testing [3, 11], graph connectivity [18], and has been also used
for problems such as formula evaluation [30, 28, 19]. Recently, Beigi and Taghavi [4] defined
a variant of span programs (non-binary span programs with orthogonal inputs, abbreviated
NBSPwOI) for showing upper bounds on the quantum query complexity of non-Boolean
input/output functions f : [¢]* — [m]. Moreover in a follow-up work [5], they also use
non-binary span programs for showing upper bounds for a variety of graph problems, for
example, the maximum bipartite matching problem.

1.2 Dual Adversary Bound

The general adversary bound for Boolean functions f was developed by Hgyer, Lee and
Spalek [17], and they showed that this quantity gives a lower bound on the bounded-
error quantum query complexity of f. It was eventually shown that this bound actually

A. Cornelissen, N. S. Mande, and S. Patro

characterizes the bounded-error quantum query complexity of f up to a constant factor [29, 22].
The general adversary bound can be expressed as a semidefinite program that admits a dual
formulation. Thus, feasible solutions to the dual adversary program yield quantum query
upper bounds. Quantum query algorithms have been developed by explicitly constructing
dual adversary solutions, for example for the well-studied k-distinctness problem [7], S-
isomorphism and hidden subgroup problems [8], gapped group testing [2], etc.

1.3 Related Works

Lin and Lin [23] showed how a classical algorithm computing a function f : Dy — R with
Dy C {0,1}™ and R as an arbitrarily large finite set, equipped with an efficient “guessing
scheme”, could be used to construct a faster quantum query algorithm computing f. Moreover,
their results apply to the setting where f C {0,1} x R is a relation. A deterministic algorithm
computing a relation f takes an input = € {0,1}™ and outputs a value b such that (x,b) € f.
More precisely, they showed the following:!

» Theorem 1 (Lin and Lin [23, Theorem 5.4]). Let f C {0,1}" X R be a relation. Let A be a
deterministic algorithm computing f that makes at most T queries. Let zp,, ... T be
the query results of A on an apriori unknown input string x. For x € {0,1}", let T(z) < T
denote the number of queries that A makes on input x. Suppose there is another deterministic
algorithm G which takes as input by, ..., by_1 € {0,171 for any t € [T), and outputs a guess
for the next query result of A. Assume that G makes at most G mistakes for all x. That is,
T(x)
Vo € {0,1}", ‘g(xl,...,mptfl)—xpt‘ <d@.

Then Q(f) = O(VTG).

Lin and Lin provided two proofs of the above theorem, one of which involved constructing
an explicit quantum query algorithm. This algorithm is iterative, and works as follows: In
the ¢’th iteration, use a modified version of Grover’s search algorithm to find the next mistake
that G makes. Since the algorithm uses at most 7" queries and makes at most G mistakes on
any input, the quantum query complexity of the final algorithm can be shown to be O(v/TG)
using the Cauchy-Schwarz inequality.?

Recently, Beigi and Taghavi [5] gave an alternate proof of Theorem 1 using the framework
of non-binary span programs introduced by them in [4]. Using this they showed that a similar
statement also holds for functions f : [¢]"* — R with non-binary inputs and outputs. A sketch
of their proof is as follows: Given an assignment of real weights to the edges of the given
decision tree computing f, they construct a dual adversary solution and span program. The
complexity of the resultant query algorithm is a function of the weights assigned to the edges.
They propose a particular weighting scheme based on an edge-coloring (guessing algorithm)
of the given decision tree. For Boolean functions, the quantum query complexity upper
bound they obtain matches the bound of Lin and Lin (Theorem 1), which is O(v/T'G), where
T denotes the depth and G the guessing complezity (see Definition 11) of the underlying
decision tree, respectively.

For ease of readability, we state the theorem for deterministic decision trees. Lin and Lin actually
showed a stronger statement that holds even if one considers randomized decision trees and randomized
guessing algorithms.

We skip some crucial details here, such as the cost of the modified Grover’s search algorithm, and an
essential step that uses span programs to avoid a logarithmic overhead that error reduction would have
incurred. Techniques that address both of the above-mentioned steps are due to Kothari [21].

15:3

FSTTCS 2022

15:4

Improved Quantum Query Upper Bounds Based on Classical Decision Trees

In a follow-up work [6], conditional on some constraints, Beigi, Taghavi and Tajdini
implement the span-program-based algorithm of [5] in a time-efficient manner. In another
work [32], Taghavi uses non-binary span programs to give a tight quantum query algorithm
for the oracle identification problem, simplifying an earlier algorithm due to Kothari [21].

1.4 Qur Contributions

The rank of a decision tree is a combinatorial measure introduced by Ehrenfeucht and
Haussler [14] in the context of learning theory, formally defined as follows.

» Definition 2 (Decision tree rank and randomized rank). Let T be a binary decision tree.
Define the rank of T recursively as follows: For a leaf node a, define rank(a) = 0. For an
internal node u with children v, w, define

rank(u) = max {rank(v), rank(w)} if rank(v) # rank(w)
rank(v) + 1 if rank(v) = rank(w).

Define rank(T) to be the rank of the root of T. Define the randomized rank of a randomized
decision tree to be the maxzimum rank of a deterministic decision tree in ils support.

» Definition 3 (Rank of a Boolean function). Let f:{0,1}" — {0,1} be a Boolean function.
Define the rank of f, which we denote by rank(f), by
k(f) = i k(T).
ran (f) TT cIoIrlr{gutes fran (T)

Analogously define the randomized rank of f, which we denote by rrank(f), to be the minimum
randomized rank of a randomized decision tree that computes f to error 1/3.

We observe here that the guessing complexity of a deterministic decision tree equals
its rank (see Claim 12). This answers a question of Lin and Lin [23, page 4], where the
authors asked if G is related to any combinatorial measure studied in classical decision-tree
complexity. The rank of a function (which is the minimum rank of a decision tree computing
it) can be exponentially smaller than the function’s certificate complexity, sensitivity, block
sensitivity, and even (exact or approximate) polynomial degree, as can be easily witnessed
by the OR function. See, for example, [13] for more relationships between rank and other
combinatorial measures of Boolean functions. In view of the above-mentioned equivalence of
G and decision tree rank, Theorem 1 has a clean equivalent formulation as follows.

» Theorem 4. Let T be a decision tree computing a relation f C {0,1}™ x R with depth T.
Then Q(f) = O(\/rank(T)T).

Randomized rank, which we denote by rrank, is a natural probabilistic analog of rank. This
exactly captures the notion of the randomized analog of the value of G in Theorem 1. It
is easy to show with this definition that our proof of Theorem 4 also holds with respect to
randomized decision trees and randomized rank: sample a decision tree from the support of
T according to its underlying distribution, and run a (1/10)-error® quantum query algorithm
of cost O(y/rank(7T)T) from Theorem 4 on the resultant tree. The success probability is at
least (9/10) - (2/3) = 3/5. Thus we obtain the following easy-to-state reformulation of [23,
Theorem 5.4].

3 The success probability of the algorithm in Theorem 4 can be boosted by repeating the algorithm a
large constant number of times and then outputting the majority of the outcomes.

A. Cornelissen, N. S. Mande, and S. Patro

» Theorem 5. Let T be a randomized decision tree computing a relation f C {0,1}" x R
with depth T. Then Qq5(f) = O(y/rrank(T)T).

Thus, up to a small loss in the success probability, upper bounds obtained from Theorem 5
are strictly stronger than those obtained from Theorem 4 for relations whose randomized
rank is much smaller than their rank. Hence a natural question is if this can be the case.
It is easy to exhibit maximal separations between rank and randomized rank for partial
functions. One such separation is witnessed by the Approximate-Majority function, which is
the function that outputs 0 if the Hamming weight of an n-bit input is less than n/3 and
outputs 1 if the Hamming weight of the input is more than 2n/3. It is easy to show an Q(n)
lower bound on its rank and an O(1) upper bound on its randomized rank. Whether or not
such a separation holds for total Boolean functions is not so clear. We show a polynomial
separation for the complete binary AND-OR tree. This is the first of our main theorems.

» Theorem 6. For the complete binary AND-OR tree f : {0,1}"™ — {0,1},
rrank(f) = O (rank(f)log HF)
To prove this theorem, we show a rank lower bound of (n) using known connections between

rank and Prover-Delayer games [27], and the randomized-rank upper bound immediately
1+

~ 0 (rank(f)'753“') .

Ve
follows from an upper bound of O (nlog 4 33) on its randomized decision-tree complexity [31].

We conjecture that rank and randomized rank are polynomially related for all total
Boolean functions. Note that techniques used to prove the analogous polynomial equivalence
for deterministic and randomized query complexities [26] (also see [10]) cannot work since
they use intermediate measures such as certificate complexity, sensitivity and block sensitivity,
all of which are maximal for the OR function even though its rank is 1.

Beigi and Taghavi [5, Section 6] asked if one could improve their results by using different
choices of weights in their constructions of span programs and dual adversary vectors. We
answer this question in the affirmative by providing a weighting scheme that improves upon
their bounds. By a careful analysis, we argue that the optimizing the dual adversary bound
and the witness complexity of Beigi and Taghavi’s span program with variable weights is a
minimization program with constraints linear in the variables and inverses of the variables.

» Definition 7 (Weight optimization program). For a decision tree T, define its weight
optimization program by the minimization problem with constraints outlined in Program 1
(see Appendiz A.1 for relevant definitions). Let OPTr denote the optimum of this program.

Program 1 The weight optimization program capturing the weight assignment to edges of 7 that
optimizes the witness complexity of the NBSPwOI and dual adversary vector constructions of Beigi
and Taghavi (see Section 3).

Variables {W. :eisanedgein 7},q,f

Minimize +/of

s.t. ZEEF We < a, for all paths P € P(T)
Yecr W < B, for all paths P € P(T)
We >0, for all edges e in T
o B > 0.

For a relation f C {0,1}™ x R and a deterministic decision tree 7 computing it, let f
be the function that takes an n-bit string = as input, and outputs the leaf of T reached on
input z. The following is our second main theorem.

15:5

FSTTCS 2022

15:6

Improved Quantum Query Upper Bounds Based on Classical Decision Trees

» Theorem 8. Let f C {0,1}" x R be a relation and let T be a decision tree computing f.

Then Q(f) = O(OPT7).

We give a recursively-defined weighting scheme that achieves equality for all the constraints
in Program 1 and argue from first principles that our solution is optimal (see Theorem 26),
thus subsuming Theorem 1. Combined with the earlier results from Beigi and Taghavi and
using our recursive expression for OPT, this gives us the following corollary, giving a new

way to bound OPT7 and thus Q(f) from above.

» Corollary 9. Let f C{0,1}" X R be a relation and let T be a deterministic decision tree
computing it, weighted with the canonical weight assignment as defined in Definition 23.
Then, the quantum query complezity of f (in fact OPTy) satisfies the following two bounds:
1. The rank-depth bound: Q(f) = O (\/rank(T)depth(T)>.

2. The size bound: Q(f) = 0O (DTSize(T)) where DTSize(T) denotes the number of nodes
inT.

Using standard arguments to deal with the case when 7 is a randomized decision tree,
this gives an upper bound on the bounded-error quantum query complexity of a function in
terms of its randomized decision-tree size complexity, as well as in terms of its randomized
rank and depth (see Corollary 27).

It was shown by Reichardt [29] that the quantum query complexity of evaluating Boolean
formulas of size s is O(y/s). In particular, this implies the size bound in Corollary 9 for
Boolean functions f since the formula size of a Boolean function is bounded above by a
constant times its decision-tree size (see the full version of this paper [12, Claim A.2]). Not
only does our bound also hold for relations, but the query algorithm we obtain is actually an
algorithm for f when the underlying tree is deterministic. While this yields trivial bounds
for most relations (since almost all Boolean functions have super-polynomial decision-tree
size complexity, for example, while Q(f) is at most n), it recovers the O(y/n) bound for the
Search problem [16], for example. We also exhibit a family of decision trees for which the
size bound is strictly stronger than the rank-depth bound of Lin and Lin, and Beigi and
Taghavi (see Figure 3).

1.5 Organization

In Section 2, we discuss the rank of decision trees, and prove that it is equal to guessing
complexity. Furthermore, we prove a separation between rank and randomized rank for the
complete binary AND-OR tree. In Appendix B we discuss how to construct a span program
and a dual adversary solution for a relation f by assigning weights to edges of a classical
decision tree computing f, and we capture the weighting scheme in an optimization program.
In Section 3 we prove Theorem 8. Finally, in Section 4, we exhibit a solution to Program 1
and argue its optimality from first principles. We refer the reader to the appendices for
preliminaries and missing proofs.

2 Decision Tree Rank

In this section, we first rephrase Theorem 1 in terms of a measure of decision trees which we
term “guessing complexity”. This reformulation was essentially done by Beigi and Taghavi [5,
Section 3]. We then show that the guessing complexity of a decision tree equals its rank,
proving Theorem 4. Finally, we show a polynomial separation between rank and randomized
rank for the complete binary AND-OR tree.

A. Cornelissen, N. S. Mande, and S. Patro

2.1 Guessing Complexity and Rank

» Definition 10 (G-coloring [5, Definition 1]). A G-coloring of a decision tree T is a coloring
of its edges by two colors black and red, in such a way that any vertex of T has at most one
outgoing edge with black color.

» Definition 11 (Guessing Complexity). Let T be a decision tree and let P(T) denote the set
of root to leaf paths in T. Define the guessing complexity of T, which we denote by G(T),
by G(T) = ming.colorings of 7 MaxX pe p(7) number of red edges on P.

> Claim 12. Let 7 be a decision tree. Then G(T) = rank(T).

Proof. Let v, vy and vy be the root of 7, and the left and right children of v, respectively.

Let 77, and Ti denote the subtrees of 7 rooted at vy, and vg, respectively.
Consider a G-coloring of 7. This naturally induces a G-coloring of 7;, and Tr. We
consider two cases:
G(Tr) = G(Tr) = k, say. One of the edges (v,vr) or (v,vgr) must be colored red. Assume
without loss of generality that (v,vy) is the red edge. Since we assumed G(T.) = k,
T contains a path with at least k& red edges under the G-coloring induced from the
given G-coloring of 7. But this induces a path in 7 with k£ + 1 red edges, and hence
G(T) > G(Ty) + 1.
If G(T1) # G(Tr), we have G(T) > max {G(TL), G(Tr)}, witnessed by the G-colorings
induced on 7Ty, and Tr by the G-coloring of T .
In the other direction, we construct an optimal G-coloring of 7 given optimal G-colorings
of 71, and Tg. The edges of 71, and Tr in T are colored exactly as they are in the given
optimal G-colorings of them. It remains to assign colors to the two remaining edges (v, vr)
and (v,vg). We again have two cases:
G(Tr) = G(Tr) = k, say. Arbitrarily color one of the edges (v,vr) and (v,vg) (say,
(v,vr)) red, and color the other edge black. The maximum number of red edges on a
path has increased by 1. Thus, G(T) < G(T.) + 1.
G(Tr) > G(Tgr), say (the other case follows a similar argument). Color the edge (v, vr)
black and (v,vg) red. Thus, the maximum number of red edges on a path in T equals

max {G(T.), G(Tr) + 1} = G(T1).

Thus, we have

G(T) = max{G(T.),G(Tr)} if G(T) # G(Tr)
G(Te) +1 it G(T1) = G(Tr),

The measure rank(7") is defined exactly as the above (Definition 2), proving the claim. <

The guessing algorithm G in Theorem 1 corresponds to a natural G-coloring of T of cost
G: for each internal vertex, color the guessed edge black and the other edge red. Thus,
Theorem 4 immediately follows from Claim 12 and Theorem 1.

Proof of Theorem 5. An algorithm for f is as follows: sample a decision tree from the
support of T according to its underlying distribution, and run a 9/10-error quantum query
algorithm from Theorem 4 on the resultant tree.* The cost of this algorithm is O(y/rrank(T)T)
and the success probability is at least (9/10) - (2/3) = 3/5 for all inputs « € Dy. <

4 This is possible since the deterministic decision trees in the support of 7 compute functions, which
admit efficient error reduction with a constant overhead in query complexity by standard techniques
(run the algorithm from Theorem 4 a large constant many times and return the majority output).

15:7

FSTTCS 2022

15:8

Improved Quantum Query Upper Bounds Based on Classical Decision Trees

The rank of a decision tree essentially captures the largest depth of a binary subtree of
the original tree. Thus, the rank of a tree is bounded from above by the logarithm of the
size of the tree.

» Observation 13 ([14, Lemma 1]). Let T be a deterministic decision tree of size s. Then
rank(7) <log(s+1) — 1.

Along with this observation and the simple observation that the depth of a decision tree is
at most its size, Theorem 5 yields the following statement.

» Theorem 14. Let T be a randomized decision tree of size s that computes a relation

F€{0,1}" x R. Then Qa/5(f) = O(v/slogs).

Note here that it suffices to prove that Q(f) = O(y/slogs) where s is the size of a
deterministic decision tree computing f, since standard techniques and error reduction yield
the required bound for randomized trees. In the full version of this paper [12, Appendix B],
we show an explicit NBSPwOI and dual adversary solution witnessing the same bound. In
Sections 3 and 4 we show an explicit NBSPwOI and dual adversary solution witnessing a
stronger bound without the logarithmic factor. We choose to still give the weaker bound in
[12, Appendix B] as the weighting scheme seems considerably different from that in Section 4,
and the weights are also efficiently computable.

We note here the equivalence of the rank of a Boolean function and the value of an
associated Prover-Delayer game introduced by Pudldk and Impagliazzo [27]. We use this
equivalence in the next part of this section to show that the rank of the complete binary
AND-OR tree is polynomially larger than its randomized rank.

The game is played between two players: the Prover and the Delayer, who construct a
partial assignment, say p € {0,1, L}", in rounds. To begin with the assignment is empty,
ie.,, p= 1" In a round, the Prover queries an index i € [n] for which the value z; is not
set in p (i.e., p; = L). The Delayer either answers z; = 0 or z; = 1, or defers the choice to
the Prover. In the latter case, the Delayer scores a point. The game ends when the Prover
knows the value of the function, i.e., when f|, is a constant function. The value of the game,
val(f), is the maximum number of points the Delayer can score regardless of the Prover’s
strategy. The following result is implicit in [27] (also see [13, Theorem 3.1] for an explicit
statement and proof).

> Claim 15. Let f : {0,1}"™ — {0,1} be a (possibly partial) Boolean function. Then
rank(f) = val(f).

2.2 A Separation Between Rank and Randomized Rank

We first note that there can be maximal separations between rank and randomized rank if
we consider partial functions, i.e., functions defined only on a subset of all possible inputs.
This is witnessed by the well-studied Approximate-Majority function, for example.

> Claim 16. Let f:{0,1}™ — {0,1} be a partial function defined as follows:

) = {0 |z] < n/3

1 |z| > 2n/3.

Then, rank(f) = ©(n) and rrank(f) = ©(1).

A. Cornelissen, N. S. Mande, and S. Patro

Xy T2 &3 T4 x5 Tg X7 &g Tg Ti0 T11 Ti2 T13 Ti14 T15 Ti6

Figure 1 Complete AND-OR tree of depth 4.

Proof. Clearly rank(f) = O(n). For the lower bound, we use the equivalence from Claim 15.

A valid Delayer strategy is as follows: allow the Prover to choose input values for their first
n/3 queries. It is easy to see that no matter what values the Prover chooses, the function
can never be restricted to become a constant after these n/3 queries. Thus, val(f) > n/3
(and this can be easily seen to be tight). The randomized rank upper bound follows from the
easy fact that R(f) = O(1) and rrank(f) < R(f) for all f. <

When we restrict f to be a total function, it is no longer clear whether or not randomized
rank can be significantly smaller than rank. In view of the example above, one might
be tempted to consider functions that witness maximal separations between deterministic
and randomized query complexity. The current state-of-the-art separation of D(f) = Q(n)
vs. R(f) = O(y/n) is witnessed by variants of “pointer jumping” functions [15, 1, 24]. One
might hope to use a similar argument as in the proof of Claim 16 to show that rank(f) = Q(n)
(and a randomized rank upper bound of O(,/n) immediately follows from the randomized
query upper bound). However, it is easy to show that the rank of these functions is actually

O(y/n), rendering this approach useless for these variants of pointer jumping functions.

Nevertheless, we are able to use such an approach to show a separation between rank and
randomized rank for another function whose deterministic and randomized query complexities
are polynomially separated.

In the remainder of this section, let F' : {0,1}" — {0,1} be defined as the function
evaluated by a complete (logn)-depth binary tree as described below. Assume logn to be an
even integer, and the top node of this tree to be an OR gate. Nodes in subsequent layers
alternate between AND’s and OR’s, and nodes at the bottom layer contain variables. We call
this the complete AND-OR tree of depth logn. See Figure 1 for a depiction of the complete
depth-4 AND-OR tree.

It is easy to see via an adversarial argument that D(F') = n. Saks and Wigderson [31]

showed that R(F') = @(nlog@) ~ ©(n0 733,

» Theorem 17 ([31, Theorem 1.5]). Let F : {0,1}" — {0,1} be the complete AND-OR tree
of depth logn. Then

~ @(n04753...).

D(F)=n, R(F)=0 (n5)

We show that the rank of F' equals (n + 2)/3.

15:9

FSTTCS 2022

15:10

Improved Quantum Query Upper Bounds Based on Classical Decision Trees

» Theorem 18. Let F : {0,1}" — {0,1} be the complete AND-OR tree of depth logn. Then

2
rank(F) = n;— .

For a proof we refer the reader to the full version [12, Proof of Theorem 3.9]. Since randomized
rank is at most randomized decision tree complexity, F' witnesses a separation between rank
and randomized rank. This proves Theorem 6.

3 Proof of Theorem 8

In order to give a proof of Theorem 8, we require some useful properties of the non-binary

span program with orthogonal inputs (NBSPwOI) and dual adversary solution constructed by

Beigi and Taghavi [5]. For details of these constructions, we refer the reader to Appendix B.
The main result of Beigi and Taghavi [4] that we need is stated in the theorem below.

» Theorem 19 ([4]). Let f: Dy — [m] be a function with Dy C [€]™, and let (P, w,W) be a
NBSPwOI computing f. Then,

Q(f) = O(wsize(P,w,w)).

The main results of this section provide a characterization of the optimal witness com-
plexity and objective value of the dual adversary bound, based on the weighting scheme in
Beigi and Taghavi’s construction, in terms of the objective value of Program 1.

» Theorem 20. Let f C {0,1}" X R be a relation, let T be a decision tree computing f and
let OPT denote the optimal value of Program 1. Then, for the construction of (P, w,w)
with variable weights as in Appendix B,

wsize(P, w, w) < OPT7.

Similarly, it is known that solutions to the dual adversary program (Program 2) yield
quantum query upper bounds.

» Theorem 21 ([22]). Let f : Dy — [m] be a function with Dy C [£]", let C' denote the
optimal value of Program 2 for f. Then

Q(f) =0(0). (1)

» Theorem 22. Let f C {0,1}" x R be a relation, and let T be a decision tree computing it.
Let C' denote the optimal value of Program 2 with variable weights as in Appendiz B, and let
OPT denote the optimal value of Program 1. Then C = OPTr.

We now prove Theorem 8, using these results.

Proof of Theorem 8. We give two proofs, one via span program witness complexity, and
another via the dual adversary bound.
1. Counsider the NBSPwOI (P, w, w) for f as constructed in Sections B.1 and B.2. Theorem 20

implies wsize(P, w,w) < OPTy . Theorem 19 implies Q(f) = O(OPT).
2. Consider the dual adversary solution for f as constructed in Appendix B.3. Theorems 21

and 22 imply Q(f) = O(C) = O(OPT7). <

A. Cornelissen, N. S. Mande, and S. Patro

4 An Optimal Weight Assignment

It now remains to investigate how we can assign weights to edges in a decision tree so
as to optimize the objective value of Program 1. Beigi and Taghavi gave an explicit
weighting scheme by coloring the edges decision tree with two colors, and then assigning
weights depending on the color that the edge is colored by [5, Section 3]. They raise
the question whether their scheme can be significantly improved upon. We answer this
question affirmatively, by giving an optimal solution to the weight optimization program
from Definition 7, and providing a constructive algorithm to compute the optimal weights in
this section. We also give an alternative, albeit sub-optimal, assignment of weights in the
full version of this paper [12, Appendix B].

The construction we present is recursive, in the sense that we first assign weights to the
edges connected to the leaves, and subsequently work our way up the tree until we reach
the root node. More precisely, in the ¢’th iteration, we assign weights to all edges that have
maximum distance ¢ from a leaf.

First, we define the weight assignment, which we will refer to as the canonical weight
assignment, in Definition 23. Then, we prove its optimality, resulting in Theorem 26. Finally,
we prove Corollary 9, which gives some upper bounds on the optimal objective value, in
terms of natural measures of the decision tree.

» Definition 23 (Canonical weight assignment). Let T be a non-trivial decision tree with root
node r. Let L and R be the two children nodes of r, connected to r by the edges ey, and ep,
respectively. Let T, and Tr be the subtrees of T rooted at L and R, respectively. Then, we
assign weights to er, and er, by setting

_ OPTy, — OPT7, + /(OPTy, — OPTr,)2 +4

WEL 2 k)
W, — OPTTR — OPTTL + \/(OPTTR — OPTTL)2 +4
er — 2 .

In order to define the weights W,, and W,,,
Program 1 for the subtrees 7;, and 7. We now proceed to show how one can compute these

optimal values via a recurrence relation.

we need to know the optimal values of

» Lemma 24. Let T be a non-trivial decision tree, and let L and R be the two children nodes
of the root node. Let T, and Tg be the subtrees of T rooted at L and R, respectively. Then,

OPT7, + OPT7, + /(OPT7, — OPT7;,)2 +4

PT+ <
OPTr < 5

Proof. Suppose we have weight assignments Wy and Wpg on the subtrees 71, and Tg,
and positive parameters ar,ar and (g, 8r such that they form feasible solutions to the
optimization programs for the left and right subtrees 7;, and 7g, and such that they attain
the optimal values var3;, = OPTy, and agBr = OPTr,. Now, let the weighting
scheme W on T be defined such that W, = /fr/ar(Wy), for all edges e in T and

Wer = /Br/ar(Wg),, for all edges €’ in Tr, and choose W,, and W,,, as in Definition 23.

Furthermore, let

o :=max {OPT1, + We,,OPT 71, +W,, }, B := max {OPTTL + L,OPTTR + VVl} .
€R

We,,
(2)

15:11

FSTTCS 2022

15:12

Improved Quantum Query Upper Bounds Based on Classical Decision Trees

For every path P € P(T) containing e, (essentially the same calculation also shows the
same upper bound for paths containing eg), we have

1 1 ag, 1 1 1
— = + /22 ——— < VarfL + = OPTy, + —— < f3,
Z We WeL BL eEI%eL} (WL)e LIBL W, T W B

ecP eL eL

For every path P € P(T) containing ey, (essentially the same calculation also shows the
same upper bound for paths containing egr), we have

> W= ,/g—L > (Wo)e+Wep < VarBr + We, = OPTy, +We, <a,

e€P e€P\{er}

Thus all constraints of Program 1 for 7 are satisfied with these values of «, 3 and the
weighting scheme W. Hence,

1

OPTr < y/af = 4/max {OPTTL + W
er

1
OPTy, + W} - max {OPT, + We,, OPTr, + We,}. (3)
€R

Finally, observe from our choices of W,, and W, from Definition 23 that

1 2
We, OPTy, — OPTr, + /(OPTy, — OPT,) + 4
_ 2(OPTy, — OPTy;, — /(OPT7, — OPTr,)2 +4)
(OPT1, — OPT7,)2 — (OPT7, — OPTr,)% — 4
_ OPTTR — OPTTL + \/(OPTTL — OPTTR)2 +4 - W
2 o

Hence Equation (3) implies

OPT7, + OPT7, + /(OPT7, — OPTr,)? +4

2)
where the last equality follows from our choices of W,, and W, from Definition 23. This
completes the proof. <

OPT7 < max {OPTy, + We,,,OPTy, + W, } =

We next show that this weight assignment is optimal.

» Lemma 25. Let T be a non-trivial decision tree, and let L and R be the two children nodes
of the root node. Let T and Tr be the subtrees of T rooted at L and R, respectively. Then,

OPTr, + OPT7, +/(OPT, — OPTry,)2 +4
5 .

OPTr >

Proof. Suppose we have a weight assignment W and variables «, 8 > 0, such that W, « and
S form a feasible solution to the optimization program on 7T, and attain optimality. We
define

1
ap = max We, Br = max ,
PEP(TL) “—~. PeP(TL) We
ecP eeP
W, I3 !
arp = Imax R = Inax .
PeP(Tr) “—~ PeP(Tr) <~ W,
eeP ecP

Observe that W/, , ar, and Sz, give a feasible solution to Program 1 for 7. Similarly, W|r,,
ag and Bg give a feasible solution to Program 1 for 7r. This implies that

V aLﬁL > OPTTLa V O[RBR > OPTTR (4)

A. Cornelissen, N. S. Mande, and S. Patro 15:13

Furthermore, we have

o = max W, = max max We + Wep,, max We +We,
PeP(T) — PeP(Ty) — © PeP(Tr) —
eeP ecP ecP
=max{ap + We,,ar + W, }, (5)

and similarly

1 1 1 1 1
= ma = ma ma. — + , Ia +
B PEP()%') ZP W, * {PEP(}%L)CEP We WeL PEP(%('R) Z We WeR }

e€ ecP
BL+ —— Br+ = (6)
= Ima. —_— .
X< PL W, R W..
Finally, let v = \/f/a, and observe that
1
OPTT:\/OTzﬁzya:[/B—l—'ya]. (7)
gl 2 1y
Now, let
1 OPTr, — OPT
§=>+ T Tn (8)

2 2,/(OPTy, —OPTr,)2 +4’
and observe that ¢ € [0, 1]. Thus,

OPTF
1 [é + *ya} by Equation (7)
2 Ly
_ 1 Bo 1 Br 1 } }
=3 [max{ 5 + W + TWer + max {yar, + YWep,yar + YWe, }
by Equations (5) and (6)
> 1 [6<B—L+ !)+(1—6) (ﬂ—RJr !)+6(waL+nyeR)+(1—6)(vaR+vW8L)}
2 Y ’YWeL Y ’7W€R)
since max{a, b} > da + (1 —)b as 6 € [0,1]
[7(% Teen)+ (5)+ (e 57|
=3 - 1- - 1- er e
2[(5(7 +’yaL>+(6)(7 +yar) + WWeL+(NYWe,, | + 67WR+7WeR

rearranging terms

>4 oeLﬁLJr(lfzS)\/aRﬂRJr \/5(175)+ \/6(1 —9) since (a 4 b)/2 > v/ab for all a,b >0

> 00PTT, + (1 —0)OPT7, + 24/6(1 —9) by Equation (4)
_ OPTy, +OPTy, (OPT7, — OPT7,)? ¢1 (OPT, — OPT;,)2
2 2,/(OPTr, — OPTr,)? + 4 4 A((OPT7, — OPT7,)* +4)
plugging the value of ¢ from Equation (8)
_ OPTy, +OPTy, (OPTy, — OPT,)? % 4
2 2,/(OPT7, — OPT7,)2 +4 (OPT7, — OPT7,)? + 4
__OPTTL-+OPTTR+ (OPT7, — OPTr,)? +4
2 2,/(OPT7, — OPT7,)? +4
_ OPTy, + OPT7, ++/(OPT7, — OPTr,)% +4
- 5 ,
completing the proof. <

We can now combine both lemmas above into the following theorem, providing a recursive
characterization of the optimal value of Program 1 for all decision trees.

FSTTCS 2022

15:14

Improved Quantum Query Upper Bounds Based on Classical Decision Trees

» Theorem 26. Let T be a non-trivial decision tree, and let L and R be the two children
nodes of the root node. Let T, and Tr be the subtrees of T rooted at L and R, connected to
the root node by edges er, and eg, respectively. Then,

OPTr, + OPT7, +/(OPT, — OPTr;,)2 +4
2

OPTy =

Proof. The upper bound on OPT+ follows from Lemma 24 and the lower bound follows
from Lemma 25. <

Observe that Lemma 24 can be used to recursively assign optimal weights to the edges
of any given decision tree. We display this technique in two examples in Figure 2. Note
that the objective value of Program 1 for a trivial decision tree (a single node) is 0, which
provides the basis for our recursion.

1/5/:81\5 /\
AN NN
DS ARAS ANV

OPTy = ¢ OPT7 =3

Figure 2 Examples of optimal weight assignments for two different decision trees. The red and
black edges indicate the edges taken when the output of the query is 0 and 1, respectively, and
the edge labels represent the weights. Left: Canonical weight assignment of the decision tree for
the AND function on 3 bits, where ¢ = 1+2\/g7 and £ = TV ots V2¢+5 The objective value is £. Right:
Canonical weight assignment of the decision tree for the PARITY on 3 bits, with optimal value 3.

Next, there are several ways in which we can conveniently upper bound the optimum value
of Program 1 in terms of well-studied measures of the underlying decision tree. Corollary 9
exhibits two such bounds.

Proof of Corollary 9. Theorem 8 implies that it suffices to prove both of the required upper
bounds on OPT rather than Q(f). The rank-depth bound follows directly from the bound
OPT7 < 24/G(T) - depth(T) derived in [5, Theorem 2|, and the equality G(T) = rank(T)
from Claim 12.

For proving the size bound, we use induction to show that OPTs < /2DTSize(7). First
observe that it is true for the trivial decision tree. Next, suppose that it is true for the left
and right subtrees 77, and T of 7. That is,

OPT, < +/2DTSize(Tz), and OPT7;, < +/2DTSize(TR).

Then, by Theorem 26, the square of the optimal value of Program 1 for 7 equals

(OPT, + OPT,)? + (OPT, — OPT7,)% +4
4
2(OPT7, + OPT7,)/(OPT7, — OPTr,)2 +4
4

OPT% =

A. Cornelissen, N. S. Mande, and S. Patro

_ 2(0PT7, + OPT,) +4 2(OPTy, + OPTy,)/(OPT7, — OPTr,)? +4
4 4

- 2(0PT%, + OPT%) +4+ (OPTy, + OPTr,)? + (OPTy, — OPT,)% +4

- 4

since 2ab < a2 + b? for all a,b > 0
= OPT7, + OPT7, +2
< 2DTSize(Ty,) + 2DTSize(Tr) + 2 = 2DTSize(T).

This completes the proof. |
Next, we note that the rank-depth and size bounds from Corollary 9 are incomparable,

as witnessed by the examples displayed in Figure 3. In particular, our bounds are strictly
stronger than those given by earlier works (Theorem 1) for the second tree in the figure.

Complete binary tree Balanced binary-AND tree
depth
depth logn
logn
n leaves
OPT7 = O(logn) OPT7r = O(y/n)
rank(7)depth(7) = O(logn) rank(7)depth(7) = O(y/nlogn)
DTSize(T) = O(y/n) DTSize(T) = O(y/n)

Figure 3 Examples showing separations between the two bounds derived in Corollary 9. The
shaded regions represent complete binary trees. In the left example the rank-depth bound beats the
size bound, whereas in the right example the opposite is true.

Finally, we note that we can obtain analogous quantum query upper bounds to those in
Corollary 9 when the initial tree is a randomized one.

» Corollary 27. Let f C {0,1}" x R be a relation. Then Qz/5(f) = O(\/RDTSize(f)).
Moreover, let T be a randomized decision tree computing f with depth T. Then Qq/5(f) =

0 (rrank(’T)T) .

The proof of Corollary 27 follows along similar lines as the proof of Theorem 5 and we
omit it.

—— References

1 Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and Juris
Smotrovs. Separations in query complexity based on pointer functions. Journal of the ACM,
64(5):32:1-32:24, 2017. Earlier version in STOC’16. doi:10.1145/3106234.

2 Andris Ambainis, Aleksandrs Belovs, Oded Regev, and Ronald de Wolf. Efficient quantum
algorithms for (gapped) group testing and junta testing. In Robert Krauthgamer, editor,
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 903-922. SIAM, 2016. doi:10.1137/1.9781611974331.ch65.

15:15

FSTTCS 2022

https://doi.org/10.1145/3106234
https://doi.org/10.1137/1.9781611974331.ch65

15:16

Improved Quantum Query Upper Bounds Based on Classical Decision Trees

10

11

12

13

14

15

16

17

18

19

Agnis Arins. Span-program-based quantum algorithms for graph bipartiteness and connectivity.
In Mathematical and Engineering Methods in Computer Science — 10th International Doctoral
Workshop, MEMICS, Selected Papers, volume 9548 of Lecture Notes in Computer Science,
pages 35—-41. Springer, 2015. doi:10.1007/978-3-319-29817-7_4.

Salman Beigi and Leila Taghavi. Span program for non-binary functions. Quantum Information
and Computation, 19(9&10):760-792, 2019. doi:10.26421/QIC19.9-10-2.

Salman Beigi and Leila Taghavi. Quantum speedup based on classical decision trees. Quantum,
4:241, 2020. doi:10.22331/9-2020-03-02-241.

Salman Beigi, Leila Taghavi, and Artin Tajdini. Time and query optimal quantum algorithms
based on decision trees. CoRR, abs/2105.08309, 2021. arXiv:2105.08309.

Aleksandrs Belovs. Learning-graph-based quantum algorithm for k-distinctness. In Proceedings
of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
207-216. IEEE Computer Society, 2012. doi:10.1109/F0CS.2012.18.

Aleksandrs Belovs. Quantum dual adversary for hidden subgroups and beyond. In Proceedings
of the 18th International Conference on Unconventional Computation and Natural Computation
(UCNC), volume 11493 of Lecture Notes in Computer Science, pages 30-36. Springer, 2019.
doi:10.1007/978-3-030-19311-9_4.

Aleksandrs Belovs and Ben W. Reichardt. Span programs and quantum algorithms for st-
connectivity and claw detection. In Proceedings of the 20th Annual European Symposium
on Algorithms (ESA), volume 7501 of Lecture Notes in Computer Science, pages 193-204.
Springer, 2012. doi:10.1007/978-3-642-33090-2_18.

Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theoretical Computer Science, 288(1):21-43, 2002. doi:10.1016/S0304-3975(01)
00144-X.

Chris Cade, Ashley Montanaro, and Aleksandrs Belovs. Time and space efficient quantum al-
gorithms for detecting cycles and testing bipartiteness. Quantum Information and Computation,
18(1&2):18-50, 2018. doi:10.26421/QIC18.1-2-2.

Arjan Cornelissen, Nikhil S. Mande, and Subhasree Patro. Improved quantum query upper
bounds based on classical decision trees, 2022. doi:10.48550/ARXIV.2203.02968.

Yogesh Dahiya and Meena Mahajan. On (simple) decision tree rank. In Proceedings of
the 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), volume 213 of LIPIcs, pages 15:1-15:16. Schloss Dagstuhl —
Leibniz-Zentrum fir Informatik, 2021. doi:10.4230/LIPIcs.FSTTCS.2021.15.

Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random examples.
Information and Computation, 82(3):231-246, 1989. doi:10.1016/0890-5401(89)90001-1.

Mika Go66s, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition
number. SIAM Journal on Computing, 47(6):2435-2450, 2018. Earlier version in FOCS’15.
doi:10.1137/16M1059369.

Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the Twenty-FEighth Annual ACM Symposium on the Theory of Computing (STOC), pages
212-219. ACM, 1996. doi:10.1145/237814.237866.

Peter Hgyer, Troy Lee, and Robert Spalek. Negative weights make adversaries stronger. In
Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), pages
526-535. ACM, 2007. doi:10.1145/1250790.1250867.

Michael Jarret, Stacey Jeffery, Shelby Kimmel, and Alvaro Piedrafita. Quantum algorithms for
connectivity and related problems. In Proceedings of the 26th Annual European Symposium on
Algorithms (ESA), volume 112 of LIPIcs, pages 49:1-49:13. Schloss Dagstuhl — Leibniz-Zentrum
fiir Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.49.

Stacey Jeffery and Shelby Kimmel. Quantum algorithms for graph connectivity and formula
evaluation. Quantum, 1:26, 2017.

https://doi.org/10.1007/978-3-319-29817-7_4
https://doi.org/10.26421/QIC19.9-10-2
https://doi.org/10.22331/q-2020-03-02-241
http://arxiv.org/abs/2105.08309
https://doi.org/10.1109/FOCS.2012.18
https://doi.org/10.1007/978-3-030-19311-9_4
https://doi.org/10.1007/978-3-642-33090-2_18
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.26421/QIC18.1-2-2
https://doi.org/10.48550/ARXIV.2203.02968
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.15
https://doi.org/10.1016/0890-5401(89)90001-1
https://doi.org/10.1137/16M1059369
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/1250790.1250867
https://doi.org/10.4230/LIPIcs.ESA.2018.49

A. Cornelissen, N. S. Mande, and S. Patro

20

21

22

23

24

25

26

27

28

29

30

31

32

33

A

All logarithms in this paper are taken base 2. For a bit b € {0, 1}, let b denote the bit 1 —b.

Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of the Eigth Annual
Structure in Complexity Theory Conference, pages 102—-111. IEEE Computer Society, 1993.
doi:10.1109/SCT.1993.336536.

Robin Kothari. An optimal quantum algorithm for the oracle identification problem. In
Proceedings of the 81st International Symposium on Theoretical Aspects of Computer Science
(STACS), volume 25 of LIPIcs, pages 482-493. Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, 2014. doi:10.4230/LIPIcs.STACS.2014.482.

Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Spalek, and Mario Szegedy. Quantum
query complexity of state conversion. In Proceedings of the IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS, pages 344-353. IEEE Computer Society, 2011.
doi:10.1109/F0CS.2011.75.

Cedric Yen-Yu Lin and Han-Hsuan Lin. Upper bounds on quantum query complexity inspired
by the Elitzur—Vaidman bomb tester. Theory of Computing, 12(1):1-35, 2016. doi:10.4086/
toc.2016.v012a018.

Sagnik Mukhopadhyay, Jaikumar Radhakrishnan, and Swagato Sanyal. Separation between
deterministic and randomized query complexity. SIAM Journal on Computing, 47(4):1644-1666,
2018. Earlier versions in FSTTCS’15 and FSTTCS’16. doi:10.1137/17M1124115.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum In-
formation (10th Anniversary edition). Cambridge University Press, 2016. URL:
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum—
information-and-quantum-computation/quantum-computation-and-quantum-information
-10th-anniversary-edition?format=HB.

Noam Nisan. CREW prams and decision trees. SIAM Journal on Computing, 20(6):999-1007,
1991. Earlier version in STOC’89. doi:10.1137/0220062.

Pavel Pudlak and Russell Impagliazzo. A lower bound for DLL algorithms for k-sat (preliminary
version). In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 128-136. ACM/SIAM, 2000. URL: http://dl.acm.org/citation.cfm?id=
338219.338244.

Ben Reichardt. Span programs and quantum query complexity: The general adversary bound
is nearly tight for every boolean function. Proceedings of the 50th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 544-551, 2009.

Ben Reichardt. Reflections for quantum query algorithms. In Proceedings of the Twenty-Second

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 560-569. SIAM, 2011.

d0i:10.1137/1.9781611973082.44.

Ben Reichardt and Robert Spalek. Span-program-based quantum algorithm for evaluating
formulas. Theory of Computing, 8(1):291-319, 2012. Earlier version in STOC’08. doi:
10.4086/toc.2012.v008a013.

Michael E. Saks and Avi Wigderson. Probabilistic boolean decision trees and the complexity
of evaluating game trees. In Proceedings of the 27th Annual Symposium on Foundations of

Computer Science (FOCS), pages 29-38. IEEE Computer Society, 1986. doi:10.1109/SFCS.

1986.44.

Leila Taghavi. Simplified quantum algorithm for the oracle identification problem. CoRR,
abs/2109.03902, 2021. arXiv:2109.03902.

Ronald de Wolf. Quantum computing: Lecture notes. CoRR, abs/1907.09415, 2019. arXiv:
1907.09415.

Preliminaries

Throughout this paper, R denotes an arbitrarily large but finite set. For a relation f C

{0,1}™ x R, define the domain of f to be Dy := {z € {0,1}" : 3b € R such that (z,b) € f}.

For a vector v, let ||v|| denote its ¢o-norm. For a matrix M, let ||M]|| denote its spectral

15:17

FSTTCS 2022

https://doi.org/10.1109/SCT.1993.336536
https://doi.org/10.4230/LIPIcs.STACS.2014.482
https://doi.org/10.1109/FOCS.2011.75
https://doi.org/10.4086/toc.2016.v012a018
https://doi.org/10.4086/toc.2016.v012a018
https://doi.org/10.1137/17M1124115
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
https://doi.org/10.1137/0220062
http://dl.acm.org/citation.cfm?id=338219.338244
http://dl.acm.org/citation.cfm?id=338219.338244
https://doi.org/10.1137/1.9781611973082.44
https://doi.org/10.4086/toc.2012.v008a013
https://doi.org/10.4086/toc.2012.v008a013
https://doi.org/10.1109/SFCS.1986.44
https://doi.org/10.1109/SFCS.1986.44
http://arxiv.org/abs/2109.03902
http://arxiv.org/abs/1907.09415
http://arxiv.org/abs/1907.09415

15:18

Improved Quantum Query Upper Bounds Based on Classical Decision Trees

norm. For matrices M and N of the same dimensions, let M o N denote their entry-wise
(Hadamard) product. Let d, 5 be the function that outputs 1 when a = b and 0 otherwise.
We use [T] to denote the set {1,...,T} where T' € Z*.

A.1 Decision Trees

A decision tree computing a relation f C {0,1}" x R is a binary tree with leaf nodes labeled
in R, each internal node is labeled by a variable z; and has two outgoing edges, labeled 0
and 1. On input x € {0,1}", the tree’s computation proceeds by computing x; as indicated
by the node’s label and following the edge indicated by the value of the computed variable.
The output value at the leaf, say b € R, must be such that (z,b) € f. Given a relation
f €40,1}" x R and a deterministic decision tree 7 computing it, define the function f that
takes an input = € {0,1}" and outputs the leaf of T reached on input z. Let V(7)) denote
the set of vertices in T, and, we use V;(7T) to denote the set of internal nodes of 7. We
use the notation J(v) to denote the variable queried at vertex v. For a vertex v € Vi(T)
and ¢ € {0,1}, let N(v,q) denote the vertex that is the child of v along the edge that
has label ¢g. For neighbors v, w, let e(v, w) denote the edge between them. For an input
x € Dy, let P, denote the unique path in 7 from its root to f(z). For a path P in T, we
say an edge e deviates from P if exactly one vertex of e is in P. For a path P in T, define
P := {e: e deviates from P}. We let P(T) denote the set of all paths from the root to a leaf
in 7. We assume that decision trees computing relations f contain no extraneous leaves, i.e.,
for all leaves there is an input « € Dy that reaches that leaf. We also assume that for every
path P in T and index i € [n], the variable z; is queried at most once on P.

The decision tree complexity (also called deterministic query complexity) of f, denoted
D(f), is defined as

D(f) T T:T is a Dr’%ucI(l)mputing f depth(T).

Note that a deterministic decision tree in fact computes a function, since each input reaches
exactly one leaf on the computation path of the tree. A randomized decision tree is a
distribution over deterministic decision trees. We say a randomized decision tree computes a
relation f C {0,1}" x R with error 1/3 if for all = € {0, 1}", the probability of outputting
a b € R such that (z,b) € f is at least 2/3. The depth of a randomized decision tree is
the maximum depth of a deterministic decision tree in its support. Define the randomized
decision tree complexity (also called randomized query complezity) of f as

R(f) = depth(T).

min
T:T is a randomized DT
that computes f to error 1/3

Another measure of interest to us in this work is the decision-tree size complexity of f.

» Definition 28 (Decision-tree size complexity). Let f : {0,1}™ — {0,1} be a Boolean function.
Define the decision-tree size complexity of f, which we denote by DTSize(f), as
DTSi = i DTSi
lze(f> T:T cglﬂgutes f lze(T>7

where DTSize(T) denotes the number of nodes of T. Analogously, the randomized decision-
tree size complexity of f is defined to be

RDTSize(f) := RDTSize(T),

min
T:T is a randomized DT
that computes f to error 1/3

where RDTSize(T) denotes the mazimum number of nodes of a decision tree in the support

of T.

A. Cornelissen, N. S. Mande, and S. Patro

It is easy to observe that the number of nodes in a deterministic decision tree equals one less
than twice the number of leaves in the tree.

A.2 Quantum Query Complexity

We refer the reader to [25, 33] for the basics of quantum computing. A quantum query
algorithm A for a relation f C {0,1}™ x R begins in a fixed an initial state |1g), applies a
sequence of unitaries Uy, O, U1, Oy, - -- ,Up, and performs a measurement. Here, the initial
state |tg) and the unitaries Uy, Uy, ..., Ur are independent of the input. The unitary O,
represents the “query” operation, and maps |i)|b) to |i)|b + z; mod 2) for all ¢ € [n] and
|0) to |0). We say that A is an e-error algorithm computing f if for all z in the domain of
f, the probability of outputting b € R such that (z,b) € f is at least 1 — e. The e-error
quantum query complexity of f, denoted by Q.(f), is the least number of queries required for
a quantum query algorithm to compute f with error e. When the subscript ¢ is dropped we
assume € = 1/3; the bounded-error query complexity of f is Q(f).

B Construction of Span Programs and Dual Adversary Solution of [5]

In this section, we describe Beigi and Taghavi’s construction of an NBSPwOI and a dual
adversary solution for f given a relation f C {0,1}" x R and a decision tree 7~ computing
it [5, Section 3] (recall from Appendix A that f takes an input z € {0,1}" and outputs the
leaf of T reached on input x). We describe their construction in a modular fashion: we
leave the choice of “weights” of the vectors in the span program and dual adversary solution
unfixed. We show that the witness complexity and dual adversary bounds thus obtained are
captured by the objective value of Program 1. In the next section we demonstrate a choice
of weights and prove its optimality. We exhibit another interesting choice of weights in the
full version of this paper [12, Appendix BJ.

B.1 Span Program Construction

The model of span programs of interest to us is that of “non-binary span programs with ortho-
gonal inputs”, abbreviated NBSPwOI. This model was introduced by Beigi and Taghavi [4].
We refer the reader to the full version of this paper [12, Section 2.3] for basics.

In order to define the NBSPwOI, we first assign strictly positive real weights W, to all
edges e in the decision tree. These weights play a crucial role in the witness complexity
analysis, presented in Appendix B.2.

The following is the NBSPwOI for f.

The vector space is determined by the orthonormal basis indexed by vertices of 7:
{lv) ;v € V(T)}.

The input vectors are

o= U {{Wewnwan (0) - IN@a)}- (9)

veV(T):J(v)=j

That is, for all j € [n] and ¢ € {0, 1}, the input vectors correspond to edges corresponding
to answers of queries of the form z; = ¢. In other words, for every vertex v € V;(T),
e(v, N (v, 2 5(,))) is always the unique available outgoing edge of v. Moreover, these vectors
are weighted, and we leave these weights variable for now.

15:19

FSTTCS 2022

15:20

Improved Quantum Query Upper Bounds Based on Classical Decision Trees

Let r denote the root vertex of 7. For each leaf u of T, the associated target vector is
given by [ty) = |r) — |u).
We now give positive and negative witnesses for every x € Dy, argue that the above span
program evaluates f, and analyze the positive and negative witness complexities.

B.2 Witness Complexity Analysis

Note that, we use v € P, to denote a vertex in the path P,, and, we use e € P, to denote an
edge in the path P,. For every x € Dy, we can express the corresponding target vector by a
telescoping sum of vectors that are all available to x, as

i) =) =1F@) = >) = N zswm))
veP ()}

1
= > (Y Wetwn s (10) = IN@,20)))) -
veP\{f(z)} We('UvN('Uva(v)))

On the other hand, we let [w,) = >_ . p [v). For any vector in [v') € I(z), we have

(@) = 3\ Wetw oz (01) = (N0, ew, 250 le')) = 0.

vEP,

For a leaf u # f(z) of T,

() = 3 (rlo) = 3 ule) =1-0=1.

vEP, vEP,

This implies that the NBSPwOI indeed computes f. For the positive and negative witness
sizes, we have

1 1
wsizet (P, w,w) = max Z — = max —,
DT ey | N @) PEPT) S We

and

wsize (P, w,w) = max | AT ||” = = max H\/ e, N @) (v, 25 ())|) @)

= Z We(v,N(v,ﬂIJ('U))) = Preng()’(T) We.

veP\{f(=)} ecP

2

Now, it remains to find the weight assignment W that minimizes the total complexity of the
NBSPwOI, which is given by

wsize(P,w,w) = \/Wsize* (P, w,w) - wsize™ (P, w,w) < Prenfz}(x) W . Pglg(};) Z We.
ee ecP

Thus, if we assign of weights W to the edges of T as in Sections B.1 and B.2, and set
Q= maxpep(T) Zeeﬁ W, and 3 = maxpep(T) ZSGP W the construction from earlier in
this section gives rise to an explicit NBSPwOI computing f with witness complexity of /a.
This is exactly captured by Program 1, giving us Theorem 20.

In the next subsection we show that a solution to Program 1 also gives a dual adversary
solution with the same objective value.

A. Cornelissen, N. S. Mande, and S. Patro

B.3 Dual Adversary Solution

We refer the reader to the full version of this paper [12, Section 2.4] for basics. Here in this
section we give a simplified analysis of Beigi and Taghavi’s construction of a dual adversary
solution for a relation f C {0,1}" x R given a deterministic decision tree 7 that computes f.
Recall that for a deterministic tree 7~ computing f, f is the function that takes input z € D I
and outputs the leaf of T reached on input z. We show that a dual adversary solution for
f can also be obtained by different settings of weights as in the previous subsection, and
obtain a corresponding dual adversary bound as the optimum value of Program 1.

We construct vectors {|ug;) : @ € Dy, j € [n]} and {Jwy;) : © € Dy, j € [n]} that are feas-
ible solutions to Program 2, which we recall below.

Program 2 Dual SDP for f. By replacing the 0 F(x),F(y) term with 67 r() in the constraints we
instead get the dual SDP for f.

Variables {|uz;) : @ € Dy, j € [n]} and {|we;) : ¢ € Dy, j € [n]},d
Minimize max;ep, max {22:1 H|Uzj>”272?:1 |er3>|\2}

8-t 2 jetntia; 2y, (Uailwui) = 1= 870 fiy) Va,y € Dy
|t), Jway) € C for all x € Dy

Let Vi(T) denote the set of internal nodes of 7. Consider the basis set {|v) : v € V;(T)}.
We construct the vectors |u,;) and |w,;) in the space CV7(7). Additionally, we use V;(7) to
denote the set of vertices associated with query index j, i.e., V;(T) = {v € Vi(T) : J(v) = j}.

Define |u,;) and |w,;) as follows.

1) ifFve P.nVi(T),
) = { Ve 7 (10)
0

otherwise,
and,
lwa) = We(,N(w,-eylv) if Jv € P OV;(T), a1
! 0 otherwise.

We claim that these vectors form a feasible solution to Program 2. Fix z,y € D; with
f(z) # f(y). We now verify that the corresponding equality constraint in Program 2 is
satisfied.

There is a unique vertex in 7 where P, and P, deviate. Let v € V;(7T) denote this vertex,

and let its associated query index be J(v) = i. We have v € P, N P, and z; # y;. In that

case (Uugi|wy;) = 1 by the definitions of |ug;) and |w,;) from Equations (10) and (11).

Consider an index j € [n] \ {i} such that x; # y;. Let v/ and v” be the vertices on

P, and P,, respectively (if they exist), with J(v") = J(v"”) = j. By the previous point,

v' ¢ P, and v ¢ P,. Thus, (v'|v”) = 0 from Equations (10) and (11), which implies

(ugj|wy;) = 0. _ _

Thus, we have for all z,y € Dy with f(x) # f(y),

D (uajlwyg) = 1= 074 70
j€lmlw; £y,

In the case when f(z) = f(y), the right hand side in the constraint evaluates to 0 and so
does the left side, because the indices where z and y differ cannot be queried on their path
since = and y reach the same leaf in 7. Therefore, the set of vectors {|uy;) : © € Dy, j € [n]}

and {|wg;) : x € Dy, j € [n]}, and d = |V;(T)| form a feasible solution to Program 2 for f.

15:21

FSTTCS 2022

15:22

Improved Quantum Query Upper Bounds Based on Classical Decision Trees

Proof of Theorem 22. Let C denote the objective value of Program 2 with the settings of
{luzj) : x € Dy, j € [n]} and {|wg;) : © € Dy, j € [n]} as defined in Equations (10) and (11),
and d = [V(T)].

We now argue that C' = OPT, where OPT+ denotes the optimal solution of Program 1.
First note that for all x € Dy,

n 1 n
2 2
Dolllup)lP =" 5= and Y llww)F = D0 We
=1 ecp, ¢ Jj=1 e€P,
Thus,
n n 1
C = min max max Z|Huz]>\|2,Z|HwIJ)H2 = min max max Z —, Z We
z€Dy z€Dy We' £—
i=1 i=1 eeP; e,

Thus we can alternatively view C to be an optimal solution to the following optimization
program.

Program 3 Optimization program with C being its optimal solution.

Variables {W,:eis anedgein T},q,f

Minimize max{a, 8}

s.t. Yoecm We <a, for all paths P € P(T)
Yoecr ﬁ <8, for all paths P € P(T)
We >0, for all edges e in T
o, B > 0.

We now show C = OPTy. Let {W,:eedgein T},a, be settings of variables in
a feasible solution to Program 3, with objective value C. Clearly the same settings of
variables also form a feasible solution to Program 1, since the constraints are the same. The
corresponding objective value of Program 1 is v/af < max {a, 3} = C. Thus, OPT+ < C.

In the other direction, let {W, : e edge in T}, «, 8 be settings of variables in a feasible
solution to Program 1 with objective value OPTy. Set

W!.=+/B/a W, for all edges e in T,
o' = /ap,
B =+ap.

It is easy to verify that this setting of variables is feasible for Program 3, and attains objective
value max {oa/, 8’} = v/af = OPTy. Thus, C < OPT7, proving the claim. <

	1 Introduction
	1.1 Span Programs
	1.2 Dual Adversary Bound
	1.3 Related Works
	1.4 Our Contributions
	1.5 Organization

	2 Decision Tree Rank
	2.1 Guessing Complexity and Rank
	2.2 A Separation Between Rank and Randomized Rank

	3 Proof of Theorem 8
	4 An Optimal Weight Assignment
	A Preliminaries
	A.1 Decision Trees
	A.2 Quantum Query Complexity

	B Construction of Span Programs and Dual Adversary Solution of [5]
	B.1 Span Program Construction
	B.2 Witness Complexity Analysis
	B.3 Dual Adversary Solution

