54 research outputs found

    Similarity modeling for machine learning

    Get PDF
    Similarity is the extent to which two objects resemble each other. Modeling similarity is an important topic for both machine learning and computer vision. In this dissertation, we first propose a discriminative similarity learning method, then introduce two novel sparse similarity modeling methods for high dimensional data from the perspective of manifold learning and subspace learning. Our sparse similarity modeling methods learn sparse similarity and consequently generate a sparse graph over the data. The generated sparse graph leads to superior performance in clustering and semi-supervised learning, compared to existing sparse graph based methods such as β„“1\ell^{1}-graph and Sparse Subspace Clustering (SSC). More concretely, our discriminative similarity learning method adopts a novel pairwise clustering framework by bridging the gap between clustering and multi-class classification. This pairwise clustering framework learns an unsupervised nonparametric classifier from each data partition, and searches for the optimal partition of the data by minimizing the generalization error of the learned classifiers associated with the data partitions. Regarding to our sparse similarity modeling methods, we propose a novel β„“0\ell^{0} regularized β„“1\ell^{1}-graph (β„“0\ell^{0}-β„“1\ell^{1}-graph) to improve β„“1\ell^{1}-graph from the perspective of manifold learning. Our β„“0\ell^{0}-β„“1\ell^{1}-graph generates a sparse graph that is aligned to the manifold structure of the data for better clustering performance. From the perspective of learning the subspace structures of the high dimensional data, we propose β„“0\ell^{0}-graph that generates a subspace-consistent sparse graph for clustering and semi-supervised learning. Subspace-consistent sparse graph is a sparse graph where a data point is only connected to other data that lie in the same subspace, and the representative method Sparse Subspace Clustering (SSC) proves to generate subspace-consistent sparse graph under certain assumptions on the subspaces and the data, e.g. independent/disjoint subspaces and subspace incoherence/affinity. In contrast, our β„“0\ell^{0}-graph can generate subspace-consistent sparse graph for arbitrary distinct underlying subspaces under far less restrictive assumptions, i.e. only i.i.d. random data generation according to arbitrary continuous distribution. Extensive experimental results on various data sets demonstrate the superiority of β„“0\ell^{0}-graph compared to other methods including SSC for both clustering and semi-supervised learning. The proposed sparse similarity modeling methods require sparse coding using the entire data as the dictionary, which can be inefficient especially in case of large-scale data. In order to overcome this challenge, we propose Support Regularized Sparse Coding (SRSC) where a compact dictionary is learned. The data similarity induced by the support regularized sparse codes leads to compelling clustering performance. Moreover, a feed-forward neural network, termed Deep-SRSC, is designed as a fast encoder to approximate the codes generated by SRSC, further improving the efficiency of SRSC

    Robust graph learning from noisy data

    Get PDF

    Learning effective binary representation with deep hashing technique for large-scale multimedia similarity search

    Get PDF
    The explosive growth of multimedia data in modern times inspires the research of performing an efficient large-scale multimedia similarity search in the existing information retrieval systems. In the past decades, the hashing-based nearest neighbor search methods draw extensive attention in this research field. By representing the original data with compact hash code, it enables the efficient similarity retrieval by only conducting bitwise operation when computing the Hamming distance. Moreover, less memory space is required to process and store the massive amounts of features for the search engines owing to the nature of compact binary code. These advantages make hashing a competitive option in large-scale visual-related retrieval tasks. Motivated by the previous dedicated works, this thesis focuses on learning compact binary representation via hashing techniques for the large-scale multimedia similarity search tasks. Particularly, several novel frameworks are proposed for popular hashing-based applications like a local binary descriptor for patch-level matching (Chapter 3), video-to-video retrieval (Chapter 4) and cross-modality retrieval (Chapter 5). This thesis starts by addressing the problem of learning local binary descriptor for better patch/image matching performance. To this end, we propose a novel local descriptor termed Unsupervised Deep Binary Descriptor (UDBD) for the patch-level matching tasks, which learns the transformation invariant binary descriptor via embedding the original visual data and their transformed sets into a common Hamming space. By imposing a l2,1-norm regularizer on the objective function, the learned binary descriptor gains robustness against noises. Moreover, a weak bit scheme is applied to address the ambiguous matching in the local binary descriptor, where the best match is determined for each query by comparing a series of weak bits between the query instance and the candidates, thus improving the matching performance. Furthermore, Unsupervised Deep Video Hashing (UDVH) is proposed to facilitate large-scale video-to-video retrieval. To tackle the imbalanced distribution issue in the video feature, balanced rotation is developed to identify a proper projection matrix such that the information of each dimension can be balanced in the fixed-bit quantization, thus improving the retrieval performance dramatically with better code quality. To provide comprehensive insights on the proposed rotation, two different video feature learning structures: stacked LSTM units (UDVH-LSTM) and Temporal Segment Network (UDVH-TSN) are presented in Chapter 4. Lastly, we extend the research topic from single-modality to cross-modality retrieval, where Self-Supervised Deep Multimodal Hashing (SSDMH) based on matrix factorization is proposed to learn unified binary code for different modalities directly without the need for relaxation. By minimizing graph regularization loss, it is prone to produce discriminative hash code via preserving the original data structure. Moreover, Binary Gradient Descent (BGD) accelerates the discrete optimization against the bit-by-bit fashion. Besides, an unsupervised version termed Unsupervised Deep Cross-Modal Hashing (UDCMH) is proposed to tackle the large-scale cross-modality retrieval when prior knowledge is unavailable

    Learning to Measure: Distance Metric Learning with Structured Sparsity

    Get PDF
    Many important machine learning and data mining algorithms rely on a measure to provide a notion of distance or dissimilarity. Naive metrics such as the Euclidean distance are incapable of leveraging task-specific information, and consider all features as equal. A learned distance metric can become much more effective by honing in on structure specific to a task. Additionally, it is often extremely desirable for a metric to be sparse, as this vastly increases the ability to interpret or explain the measures produced by the distance metric. In this dissertation, we explore several current problems in distance metric learning and put forth solutions which make use of structured sparsity. The contributions of this dissertation may be broadly divided into two portions. In the first portion (chapter 2) we begin with a classic approach in distance metric learning and address a scenario where distance metric learning is typically inapplicable, i.e., the case of learning on heterogeneous data in a high-dimensional input space. We construct a projection-free distance metric learning algorithm which utilizes structured sparse updates and successfully demonstrate its application to learn a metric with over a billion parameters. The second portion (chapters 3 & 4) of this dissertation focuses on a new and intriguing regression-based approach to distance metric learning. Under this regression approach there are two sets of parameters to learn; those which parameterize the metric, and those defining the so-called ``virtual points''. We begin with an exploration of the metric parameterization and develop a structured sparse approach to robustify the metric to noisy, corrupted, or irrelevant data. We then focus on the virtual points and develop a new method for learning the metric and constraints together in a simultaneous manner. We demonstrate through empirical means that our approach results in a distance metric which is much more effective than the current state of-the-art. Machine learning algorithms have recently become ingrained in an incredibly diverse amount of technology. The primary focus of this dissertation is to develop more effective techniques to learn a distance metric. We believe that this work has the potential for rather broad-reaching impacts, as learning a more effective metric typically results in more accurate metric-based machine learning algorithms

    Describing Images by Semantic Modeling using Attributes and Tags

    Get PDF
    This dissertation addresses the problem of describing images using visual attributes and textual tags, a fundamental task that narrows down the semantic gap between the visual reasoning of humans and machines. Automatic image annotation assigns relevant textual tags to the images. In this dissertation, we propose a query-specific formulation based on Weighted Multi-view Non-negative Matrix Factorization to perform automatic image annotation. Our proposed technique seamlessly adapt to the changes in training data, naturally solves the problem of feature fusion and handles the challenge of the rare tags. Unlike tags, attributes are category-agnostic, hence their combination models an exponential number of semantic labels. Motivated by the fact that most attributes describe local properties, we propose exploiting localization cues, through semantic parsing of human face and body to improve person-related attribute prediction. We also demonstrate that image-level attribute labels can be effectively used as weak supervision for the task of semantic segmentation. Next, we analyze the Selfie images by utilizing tags and attributes. We collect the first large-scale Selfie dataset and annotate it with different attributes covering characteristics such as gender, age, race, facial gestures, and hairstyle. We then study the popularity and sentiments of the selfies given an estimated appearance of various semantic concepts. In brief, we automatically infer what makes a good selfie. Despite its extensive usage, the deep learning literature falls short in understanding the characteristics and behavior of the Batch Normalization. We conclude this dissertation by providing a fresh view, in light of information geometry and Fisher kernels to why the batch normalization works. We propose Mixture Normalization that disentangles modes of variation in the underlying distribution of the layer outputs and confirm that it effectively accelerates training of different batch-normalized architectures including Inception-V3, Densely Connected Networks, and Deep Convolutional Generative Adversarial Networks while achieving better generalization error
    • …
    corecore