42 research outputs found

    Digital image compression

    Get PDF

    Proceedings of the Scientific Data Compression Workshop

    Get PDF
    Continuing advances in space and Earth science requires increasing amounts of data to be gathered from spaceborne sensors. NASA expects to launch sensors during the next two decades which will be capable of producing an aggregate of 1500 Megabits per second if operated simultaneously. Such high data rates cause stresses in all aspects of end-to-end data systems. Technologies and techniques are needed to relieve such stresses. Potential solutions to the massive data rate problems are: data editing, greater transmission bandwidths, higher density and faster media, and data compression. Through four subpanels on Science Payload Operations, Multispectral Imaging, Microwave Remote Sensing and Science Data Management, recommendations were made for research in data compression and scientific data applications to space platforms

    Fitting and tracking of a scene model in very low bit rate video coding

    Get PDF

    Development of Some Efficient Lossless and Lossy Hybrid Image Compression Schemes

    Get PDF
    Digital imaging generates a large amount of data which needs to be compressed, without loss of relevant information, to economize storage space and allow speedy data transfer. Though both storage and transmission medium capacities have been continuously increasing over the last two decades, they dont match the present requirement. Many lossless and lossy image compression schemes exist for compression of images in space domain and transform domain. Employing more than one traditional image compression algorithms results in hybrid image compression techniques. Based on the existing schemes, novel hybrid image compression schemes are developed in this doctoral research work, to compress the images effectually maintaining the quality

    Fractal image compression and the self-affinity assumption : a stochastic signal modelling perspective

    Get PDF
    Bibliography: p. 208-225.Fractal image compression is a comparatively new technique which has gained considerable attention in the popular technical press, and more recently in the research literature. The most significant advantages claimed are high reconstruction quality at low coding rates, rapid decoding, and "resolution independence" in the sense that an encoded image may be decoded at a higher resolution than the original. While many of the claims published in the popular technical press are clearly extravagant, it appears from the rapidly growing body of published research that fractal image compression is capable of performance comparable with that of other techniques enjoying the benefit of a considerably more robust theoretical foundation. . So called because of the similarities between the form of image representation and a mechanism widely used in generating deterministic fractal images, fractal compression represents an image by the parameters of a set of affine transforms on image blocks under which the image is approximately invariant. Although the conditions imposed on these transforms may be shown to be sufficient to guarantee that an approximation of the original image can be reconstructed, there is no obvious theoretical reason to expect this to represent an efficient representation for image coding purposes. The usual analogy with vector quantisation, in which each image is considered to be represented in terms of code vectors extracted from the image itself is instructive, but transforms the fundamental problem into one of understanding why this construction results in an efficient codebook. The signal property required for such a codebook to be effective, termed "self-affinity", is poorly understood. A stochastic signal model based examination of this property is the primary contribution of this dissertation. The most significant findings (subject to some important restrictions} are that "self-affinity" is not a natural consequence of common statistical assumptions but requires particular conditions which are inadequately characterised by second order statistics, and that "natural" images are only marginally "self-affine", to the extent that fractal image compression is effective, but not more so than comparable standard vector quantisation techniques

    Low bit-rate image sequence coding

    Get PDF

    Data comparison schemes for Pattern Recognition in Digital Images using Fractals

    Get PDF
    Pattern recognition in digital images is a common problem with application in remote sensing, electron microscopy, medical imaging, seismic imaging and astrophysics for example. Although this subject has been researched for over twenty years there is still no general solution which can be compared with the human cognitive system in which a pattern can be recognised subject to arbitrary orientation and scale. The application of Artificial Neural Networks can in principle provide a very general solution providing suitable training schemes are implemented. However, this approach raises some major issues in practice. First, the CPU time required to train an ANN for a grey level or colour image can be very large especially if the object has a complex structure with no clear geometrical features such as those that arise in remote sensing applications. Secondly, both the core and file space memory required to represent large images and their associated data tasks leads to a number of problems in which the use of virtual memory is paramount. The primary goal of this research has been to assess methods of image data compression for pattern recognition using a range of different compression methods. In particular, this research has resulted in the design and implementation of a new algorithm for general pattern recognition based on the use of fractal image compression. This approach has for the first time allowed the pattern recognition problem to be solved in a way that is invariant of rotation and scale. It allows both ANNs and correlation to be used subject to appropriate pre-and post-processing techniques for digital image processing on aspect for which a dedicated programmer's work bench has been developed using X-Designer

    Combined Industry, Space and Earth Science Data Compression Workshop

    Get PDF
    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems

    Spline wavelet image coding and synthesis for a VLSI based difference engine

    Get PDF
    Bibliography: leaves 142-146.The efficiency of an image compression/synthesis system based on a spline multi-resolution analysis (MRA) is investigated. The proposed system uses a quadratic spline wavelet transform combined with minimum-mean squared error vector quantization to achieve image compression. Image synthesis is accomplished by utilizing the properties of the MRA and the architecture of a custom designed display processor, the Difference Engine. The latter is ideally suited to rendering images with polynomial intensity profiles, such as those generated by the proposed spline :V1RA. Based on these properties, an adaptive image synthesis system is developed which enables one to reduce the number of instruction cycles required to reproduce images compressed using the quadratic spline wavelet transform. This adaptive approach is computationally simple and fairly robust. In addition, there is little overhead involved in its implementation
    corecore