School of Computing Sciences, Department of Mathematical Sciences
Abstract
Pattern recognition in digital images is a common problem with application in
remote sensing, electron microscopy, medical imaging, seismic imaging and
astrophysics for example. Although this subject has been researched for over
twenty years there is still no general solution which can be compared with the
human cognitive system in which a pattern can be recognised subject to
arbitrary orientation and scale.
The application of Artificial Neural Networks can in principle provide a very
general solution providing suitable training schemes are implemented.
However, this approach raises some major issues in practice. First, the CPU
time required to train an ANN for a grey level or colour image can be very
large especially if the object has a complex structure with no clear geometrical
features such as those that arise in remote sensing applications. Secondly,
both the core and file space memory required to represent large images and
their associated data tasks leads to a number of problems in which the use of
virtual memory is paramount.
The primary goal of this research has been to assess methods of image data
compression for pattern recognition using a range of different compression
methods. In particular, this research has resulted in the design and
implementation of a new algorithm for general pattern recognition based on
the use of fractal image compression.
This approach has for the first time allowed the pattern recognition problem to
be solved in a way that is invariant of rotation and scale. It allows both ANNs
and correlation to be used subject to appropriate pre-and post-processing
techniques for digital image processing on aspect for which a dedicated
programmer's work bench has been developed using X-Designer