806 research outputs found

    Quality Adaptive Least Squares Trained Filters for Video Compression Artifacts Removal Using a No-reference Block Visibility Metric

    No full text
    Compression artifacts removal is a challenging problem because videos can be compressed at different qualities. In this paper, a least squares approach that is self-adaptive to the visual quality of the input sequence is proposed. For compression artifacts, the visual quality of an image is measured by a no-reference block visibility metric. According to the blockiness visibility of an input image, an appropriate set of filter coefficients that are trained beforehand is selected for optimally removing coding artifacts and reconstructing object details. The performance of the proposed algorithm is evaluated on a variety of sequences compressed at different qualities in comparison to several other deblocking techniques. The proposed method outperforms the others significantly both objectively and subjectively

    Boosting neural video codecs by exploiting hierarchical redundancy

    Full text link
    In video compression, coding efficiency is improved by reusing pixels from previously decoded frames via motion and residual compensation. We define two levels of hierarchical redundancy in video frames: 1) first-order: redundancy in pixel space, i.e., similarities in pixel values across neighboring frames, which is effectively captured using motion and residual compensation, 2) second-order: redundancy in motion and residual maps due to smooth motion in natural videos. While most of the existing neural video coding literature addresses first-order redundancy, we tackle the problem of capturing second-order redundancy in neural video codecs via predictors. We introduce generic motion and residual predictors that learn to extrapolate from previously decoded data. These predictors are lightweight, and can be employed with most neural video codecs in order to improve their rate-distortion performance. Moreover, while RGB is the dominant colorspace in neural video coding literature, we introduce general modifications for neural video codecs to embrace the YUV420 colorspace and report YUV420 results. Our experiments show that using our predictors with a well-known neural video codec leads to 38% and 34% bitrate savings in RGB and YUV420 colorspaces measured on the UVG dataset.Comment: WACV 202

    Modeling and Compressing 3-D Facial Expressions Using Geometry Videos

    Get PDF
    Singapore National Research Foundatio

    Direct Optimisation of λ\boldsymbol\lambda for HDR Content Adaptive Transcoding in AV1

    Get PDF
    Since the adoption of VP9 by Netflix in 2016, royalty-free coding standards continued to gain prominence through the activities of the AOMedia consortium. AV1, the latest open source standard, is now widely supported. In the early years after standardisation, HDR video tends to be under served in open source encoders for a variety of reasons including the relatively small amount of true HDR content being broadcast and the challenges in RD optimisation with that material. AV1 codec optimisation has been ongoing since 2020 including consideration of the computational load. In this paper, we explore the idea of direct optimisation of the Lagrangian λ\lambda parameter used in the rate control of the encoders to estimate the optimal Rate-Distortion trade-off achievable for a High Dynamic Range signalled video clip. We show that by adjusting the Lagrange multiplier in the RD optimisation process on a frame-hierarchy basis, we are able to increase the Bjontegaard difference rate gains by more than 3.98×\times on average without visually affecting the quality.Comment: SPIE2022:Applications of Digital Image Processing XLV accepted manuscrip

    Surveillance centric coding

    Get PDF
    PhDThe research work presented in this thesis focuses on the development of techniques specific to surveillance videos for efficient video compression with higher processing speed. The Scalable Video Coding (SVC) techniques are explored to achieve higher compression efficiency. The framework of SVC is modified to support Surveillance Centric Coding (SCC). Motion estimation techniques specific to surveillance videos are proposed in order to speed up the compression process of the SCC. The main contributions of the research work presented in this thesis are divided into two groups (i) Efficient Compression and (ii) Efficient Motion Estimation. The paradigm of Surveillance Centric Coding (SCC) is introduced, in which coding aims to achieve bit-rate optimisation and adaptation of surveillance videos for storing and transmission purposes. In the proposed approach the SCC encoder communicates with the Video Content Analysis (VCA) module that detects events of interest in video captured by the CCTV. Bit-rate optimisation and adaptation are achieved by exploiting the scalability properties of the employed codec. Time segments containing events relevant to surveillance application are encoded using high spatiotemporal resolution and quality while the irrelevant portions from the surveillance standpoint are encoded at low spatio-temporal resolution and / or quality. Thanks to the scalability of the resulting compressed bit-stream, additional bit-rate adaptation is possible; for instance for the transmission purposes. Experimental evaluation showed that significant reduction in bit-rate can be achieved by the proposed approach without loss of information relevant to surveillance applications. In addition to more optimal compression strategy, novel approaches to performing efficient motion estimation specific to surveillance videos are proposed and implemented with experimental results. A real-time background subtractor is used to detect the presence of any motion activity in the sequence. Different approaches for selective motion estimation, GOP based, Frame based and Block based, are implemented. In the former, motion estimation is performed for the whole group of pictures (GOP) only when a moving object is detected for any frame of the GOP. iii While for the Frame based approach; each frame is tested for the motion activity and consequently for selective motion estimation. The selective motion estimation approach is further explored at a lower level as Block based selective motion estimation. Experimental evaluation showed that significant reduction in computational complexity can be achieved by applying the proposed strategy. In addition to selective motion estimation, a tracker based motion estimation and fast full search using multiple reference frames has been proposed for the surveillance videos. Extensive testing on different surveillance videos shows benefits of application of proposed approaches to achieve the goals of the SCC

    Data-driven visual quality estimation using machine learning

    Get PDF
    Heutzutage werden viele visuelle Inhalte erstellt und sind zugänglich, was auf Verbesserungen der Technologie wie Smartphones und das Internet zurückzuführen ist. Es ist daher notwendig, die von den Nutzern wahrgenommene Qualität zu bewerten, um das Erlebnis weiter zu verbessern. Allerdings sind nur wenige der aktuellen Qualitätsmodelle speziell für höhere Auflösungen konzipiert, sagen mehr als nur den Mean Opinion Score vorher oder nutzen maschinelles Lernen. Ein Ziel dieser Arbeit ist es, solche maschinellen Modelle für höhere Auflösungen mit verschiedenen Datensätzen zu trainieren und zu evaluieren. Als Erstes wird eine objektive Analyse der Bildqualität bei höheren Auflösungen durchgeführt. Die Bilder wurden mit Video-Encodern komprimiert, hierbei weist AV1 die beste Qualität und Kompression auf. Anschließend werden die Ergebnisse eines Crowd-Sourcing-Tests mit einem Labortest bezüglich Bildqualität verglichen. Weiterhin werden auf Deep Learning basierende Modelle für die Vorhersage von Bild- und Videoqualität beschrieben. Das auf Deep Learning basierende Modell ist aufgrund der benötigten Ressourcen für die Vorhersage der Videoqualität in der Praxis nicht anwendbar. Aus diesem Grund werden pixelbasierte Videoqualitätsmodelle vorgeschlagen und ausgewertet, die aussagekräftige Features verwenden, welche Bild- und Bewegungsaspekte abdecken. Diese Modelle können zur Vorhersage von Mean Opinion Scores für Videos oder sogar für anderer Werte im Zusammenhang mit der Videoqualität verwendet werden, wie z.B. einer Bewertungsverteilung. Die vorgestellte Modellarchitektur kann auf andere Videoprobleme angewandt werden, wie z.B. Videoklassifizierung, Vorhersage der Qualität von Spielevideos, Klassifikation von Spielegenres oder der Klassifikation von Kodierungsparametern. Ein wichtiger Aspekt ist auch die Verarbeitungszeit solcher Modelle. Daher wird ein allgemeiner Ansatz zur Beschleunigung von State-of-the-Art-Videoqualitätsmodellen vorgestellt, der zeigt, dass ein erheblicher Teil der Verarbeitungszeit eingespart werden kann, während eine ähnliche Vorhersagegenauigkeit erhalten bleibt. Die Modelle sind als Open Source veröffentlicht, so dass die entwickelten Frameworks für weitere Forschungsarbeiten genutzt werden können. Außerdem können die vorgestellten Ansätze als Bausteine für neuere Medienformate verwendet werden.Today a lot of visual content is accessible and produced, due to improvements in technology such as smartphones and the internet. This results in a need to assess the quality perceived by users to further improve the experience. However, only a few of the state-of-the-art quality models are specifically designed for higher resolutions, predict more than mean opinion score, or use machine learning. One goal of the thesis is to train and evaluate such machine learning models of higher resolutions with several datasets. At first, an objective evaluation of image quality in case of higher resolutions is performed. The images are compressed using video encoders, and it is shown that AV1 is best considering quality and compression. This evaluation is followed by the analysis of a crowdsourcing test in comparison with a lab test investigating image quality. Afterward, deep learning-based models for image quality prediction and an extension for video quality are proposed. However, the deep learning-based video quality model is not practically usable because of performance constrains. For this reason, pixel-based video quality models using well-motivated features covering image and motion aspects are proposed and evaluated. These models can be used to predict mean opinion scores for videos, or even to predict other video quality-related information, such as a rating distributions. The introduced model architecture can be applied to other video problems, such as video classification, gaming video quality prediction, gaming genre classification or encoding parameter estimation. Furthermore, one important aspect is the processing time of such models. Hence, a generic approach to speed up state-of-the-art video quality models is introduced, which shows that a significant amount of processing time can be saved, while achieving similar prediction accuracy. The models have been made publicly available as open source so that the developed frameworks can be used for further research. Moreover, the presented approaches may be usable as building blocks for newer media formats
    corecore