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ABSTRACT
The significant advances in developing high-speed shape ac-
quisition devices make it possible to capture the moving
and deforming objects at video speeds. However, due to
its complicated nature, it is technically challenging to effec-
tively model and store the captured motion data. In this
paper, we present a set of algorithms to construct geome-
try videos for 3D facial expressions, including hole filling,
geodesic-based face segmentation, and expression-invariant
parametrization. Our algorithms are efficient and robust,
and can guarantee the exact correspondence of the salient
features (eyes, mouth and nose). Geometry video naturally
bridges the 3D motion data and 2D video, and provides a
way to borrow the well-studied video processing techniques
to motion data processing. With our proposed intra-frame
prediction scheme based on H.264/AVC, we are able to com-
press the geometry videos into a very compact size while
maintaining the video quality. Our experimental results on
real-world datasets demonstrate that geometry video is ef-
fective for modeling the high-resolution 3D expression data.

Categories and Subject Descriptors
I.3.5 [Computational Geometry and Object Model-
ing]:

General Terms
Algorithms, Design

Keywords
Geometry video, motion data, 3D facial expression, video
compression, H.264/AVC, motion data parametrization, fea-
ture correspondence

1. INTRODUCTION
Over the past decade, we have witnessed a revolution in

movie and game industries resulting from the use of mo-
tion data. Nowadays, it is very common that actors work
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in front of a blue screen and interact with invisible com-
puter animated characters which are added later, trying to
fit into a computer animated world. The movements of ac-
tors are recorded using a motion capture (or mocap) system,
by which complex movement, realistic physical interactions,
and exchange of forces can be recreated in a physically accu-
rate manner. Despite the great success in movies and gam-
ing, the current motion capture usually requires the subject
to wear calibrated markers. The output of motion capture
is just the approximate motion of a skeleton representing
the rigid parts of the subject, rather than its precise geom-
etry. Therefore, much editing work is often needed to map
the skeletal movement to a virtual character. Furthermore,
artifacts may occur when applying the recorded motion to a
virtual model with proportions different than the captured
subject.

The latest 3D image sensing technology provides an al-
ternative way to capture the moving and deforming objects.
For example, the structure light technique is based on wave
optics, by encoding phase information of the light by light
intensity. All objects in the scene are then arranged in layers
according to the distance information sensed by the depth
pixels in the camera, providing depth information in real
time. The system consists of a structured light source (such
as a digital projector) and a high speed digital video camera,
and can be set up easily in an everyday environment.

Compared to the traditional marker based mocap system,
the 3D camera provides us a way to capture the moving ob-
jects in a less restrictive manner, i.e. without placing any
markers on the subject, and it can provide more accurate
geometry data of the objects. However, the current struc-
ture light based 3D camera has several serious drawbacks
that inhibits its use in broader applications:

• First, the scanned motion data is usually bulky. For
example, the cutting-edge high-resolution 3D camera [38]
is able to capture 30 fps with a resolution of 512× 512
of each frame, approximately 4.88MB raw data per
frame, 878MB per second and 51.44GB per minute as
shown in Fig. 1. This imposes a challenge for com-
pressing the captured video with a high compression
ratio while maintaining the video reconstruction qual-
ity.

• Second, the captured raw data may contain noise and/or
holes due to various reasons, such as camera occlusion,
specular reflection, shadows, light interference, depth
discontinuity, etc. Thus, much efforts are needed to
clean and repair the datasets.



• Third, each frame of the captured motion data is in the
reference system of the scanner, and it is not registered
in object space. Thus, the correspondences between
points in different frames are not available.

(a) (b) (c)

Figure 1: The 3D camera is capable of capturing
high-resolution motion data at 30 fps. Both geome-
try (vertex coordinate) and texture (greyscale color)
are encoded in a quadrilateral mesh with approxi-
mately 250K vertices. (a) The image captured by
conventional 2D camera. (b) The 3D mesh captured
by 3D camera. (c) Another view of the 3D mesh.

Geometry video (GV) is a novel concept that bridges 3D
motion data and video, and provides a way to borrow the
well-studied video processing techniques to motion data com-
pression and processing. However, the existing GV tech-
niques (e.g. [1]) applied only to datasets that are created by
the animators, of which the correspondences among frames
are available and the data are usually simple and clean.

To solve the aforementioned challenges and promote GV
to real-world applications, this paper presents a novel frame-
work that can capture high-resolution motion data in a less
restrictive manner, store the recorded data in a compact
way, and allow users to manage, manipulate, and render the
data easily. In this paper, we demonstrate GV on 3D hu-
man expressions. Given the captured expression data, GV
first analyzes the geometry and detects salient features, and
then parameterizes the motion data to a rectangular domain
such that the detected features in all frames can be mapped
consistently. Finally, the parameterized motion data are
converted into a video format such that the well-developed
video compression techniques can be used to compress the
motion data. Specifically, the GV compression task in this
work will be accomplished by the state-of-the-art video cod-
ing standard - H.264/AVC [35] with our tailored intra-frame
prediction scheme.

The specific contributions of this paper include:

• We present a set of algorithms to construct GV for 3D
facial expressions, including hole filling, geodesic-based
face segmentation and expression-invariant parametriza-
tion. Our algorithms are efficient and robust, and can
guarantee the exact correspondence of the salient fea-
tures (eyes, mouth and nose).

• We apply the GV framework to both real-world facial
expression data and synthetic motion data. By tak-
ing advantage of the strong spatial coherence of GV,
we present a tailored intra-frame prediction scheme for
GV in addition to that in original H.264/AVC. Our ex-
perimental results show that the proposed framework
is highly effective to model 3D motion data into a very
compact size while maintaining high video quality.

The rest of this paper is organized as follows. Section 2
briefly reviews the related previous work. Section 3 presents
the overview of the proposed GV framework. Section 4
presents the 3D motion data acquisition and pre-processing.
Section 5 details the algorithm to parameterize the motion
data. Section 6 presents our proposed“tailored H.264/AVC”
for GV compression. Experimental results are presented in
Section 7. Finally, we conclude our work and highlight the
future work in Section 8.

2. RELATED WORK
GV bridges two different research fields, geometry pro-

cessing and video processing. This section briefly reviews
the related work in motion data acquisition and processing,
geometry images/videos, and video compression.

2.1 3D motion data acquisition and process-
ing

In recent years, we have witnessed the significant advances
in developing high-speed shape acquisition devices. Using
range scanning techniques, such as phase-shifting structure
light [21, 12, 38] and spacetime stero [18, 37], it is possible to
scan high-resolution 3D geometry and/or texture of moving
and deforming objects at video speeds.

Wang et al. presented a data-driven approach for accurate
facial tracking and expression retargeting [34]. Wang et al.
simplified the 3D human face registration problem to a 2D
image matching problem by conformal parametrization [32].
Mitra et al. proposed an algorithm to register large sets
of unstructured point clouds of moving and deforming ob-
jects without computing correspondences [16]. Chang and
Zwicker presented an unsupervised algorithm that aligns a
pair of articulated shapes with significant motion and miss-
ing data [3]. Sharf et al. developed a volumetric space-time
technique to reconstruct the moving and deforming objects
from point clouds [22]. Wang et al. developed an efficient
non-rigid 3D motion tracking algorithm to establish inter-
frame correspondences that facilitate the temporal study of
subtle motions in facial expressions [33].

Observing that the human facial expressions are isometric,
Bronstein et al. developed an algorithm to embed human
faces into spherical domain, by which the canonical spher-
ical coordinates induce an expression-invariant parametriza-
tion [2]. In this paper, we also present an expression-invariant
parametrization algorithm. Our method is different than [2]
in following aspects: 1) our algorithm guarantees the ex-
act correspondence of the salient features (eyes, mouth and
nose); and 2) the parametrization distortion is much less
than that of [2]. To our best knowledge, this is the first
work that can parameterize the 3D facial expressions with
guaranteed feature correspondence.

2.2 Geometry images and videos
The concept of geometry images was pioneered by Gu et

al [6], who parameterized the 3D mesh into a square do-
main and then encoded the normalized vertex coordinates
(x, y, z) as a pixel value (r, g, b) of a 2D image. Therefore,
geometry images naturally bridge 3D shape compression and
2D image compression algorithms, e.g. [9]. Along this direc-
tion, Lin et al. [13] presented JEPG2000 for compression and
streaming of geometry images. Peyré and Mallat presented
geometric bandlets to compress geometry images and nor-
mal maps [20]. They showed that bandeletization algorithm



outperforms the wavelet-based compression by removing the
geometric redundancy of orthogonal wavelet coefficients.

Geometry images are an elegant representation of static
shape. To model motion data, it is a natural idea to ex-
tend geometry images to geometry videos. In [1], Briceño
et al. [1] parameterized the animated mesh sequence onto a
rectangular domain and then formed geometry video. How-
ever, their method [1] applied only to synthetic data, of
which the correspondence among frames are available. They
also used 2D wavelet-based video compression techniques.
In contrast to [1], our proposed parametrization algorithm
works for real-world datesets which may contain artifacts
such as holes and noise, and do not have the correspondence
between adjacent frames. Furthermore, our parametriza-
tion method matches the salient features among frames in
a consistent manner. As a result, the generated geometry
videos are highly correlated in both spatial and temporal
domains. This feature enables us to exploit the potential
of H.264/AVC, which is incorporated with many advanced
video compression techniques, for heavier compression of
GV.

2.3 Video compression and H.264/AVC
Video compression aims at reducing the amount of data

used to represent the video information. Traditional 2D
video compression techniques can be categorized as predic-
tion, transformation, quantization and entropy coding [25].
Prediction will produce a set of predicted values so that some
video information can be represented as only the differences
(residuals) from the predicted values, e.g. intra-frame pre-
diction [35] and inter-frame motion estimation [25]. Trans-
formation will transform pixel values or residuals into an-
other domain so that the significant visual information is
concentrated into a small number of coefficients, e.g. the
Discrete Cosine Transform (DCT) [17]. Quantization [25]
will reduce the representation precision of pixel values or
residuals, e.g. rounding off the less significant video infor-
mation. Entropy coding, e.g. the well-known Huffman cod-
ing [25], is to compress the symbols representing the video
information by taking into account the possibilities of their
occurrences.

In this work, we compress GV by using the H.264/AVC,
and in particular we would also investigate better intra pre-
diction scheme of H.264/AVC for GV. In H.264/AVC, an
intra-frame is compressed by using intra-frame prediction
[35], which allows the video encoder to predict pixel val-
ues of the current block from its previously reconstructed
upper and left neighbor pixels. There is also a considerable
amount of intra-frame prediction schemes proposed in recent
years, e.g. [27, 19, 28, 11] focusing on reducing the predic-
tion complexity, and [39, 40, 14, 31] aiming at reducing the
prediction errors. However, all of the above schemes are
mainly designed for compressing natural video pictures. In
this work, we will present a tailored intra-frame prediction
scheme for our GV framework in Section 6.

3. SYSTEM OVERVIEW
This section briefly shows the pipeline of the GV frame-

work that contains the following three steps.

• Step 1 - Data acquisition and pre-processing: Using a
structure-light based 3D camera system, we can cap-
ture the high resolution 3D expressions in real time.

However, the captured raw data usually contains noise,
holes and other artifacts. In the pre-processing step,
we first fill the both the geometry and texture of holes
by constructing a minimal surface with C1 continuity
along the hole boundaries. Then we track the salient
facial features, such as eyes, nose, mouth, etc using ac-
tive appearance modeling (AAM). Next, we segment
the facial expression by computing a geodesic mask
that is invariant to the expressions. Finally, we re-
move the eyes and mouth. See Section 4.

• Step 2 - Motion data parametrization: Each frame of
a GV sequence is a 3D mesh with its own resolution
and tessellation. It is highly desirable to map them to
a canonical domain such that the expressions can be
re-sampled to the same triangulation. Parametrization
serves this purpose. Our motion data parametrization
can guarantee the exact feature correspondence. See
Section 5.

• Step 3 - Geometry video compression: Using the mo-
tion data parametrization technique, we map the 3D
facial expressions to the rectangular domain and then
construct the GV. Utilizing our tailored intra-frame
prediction scheme and the powerful H.264/AVC com-
pression tools, we can compress the GV into a very
compact size while maintaining the detailed 3D mo-
tion data. See Section 6.

4. 3D MOTION DATA ACQUISITION AND
PRE-PROCESSING

(a) (b) (c)

Figure 2: Face segmentation using geodesic mask.
Human expressions are approximate isometry, thus,
the geodesic distance is independent of the expres-
sions. We first compute a geodesic mask from the
detected features on mouth and eyes (see (a)), then
segment the front face by the user-specified radius
(see (b)). Finally, we remove the mouth and eyes
(see (c)).



We employ the structure light-based 3D camera system [38]
to capture the moving objects in real time. The system con-
tains a video camera and a structured light projector. The
projector projects digital fringe patterns composing of verti-
cal straight stripes to the object. The stripes are deformed
due to the surface profile. Then a high-speed CCD cam-
era synchronized with the projector captures the distorted
fringe image. Finally, by analyzing the fringe images, the
3D information is obtained based on the deformation using
triangulation. The system is able to capture the geometry
and texture of the moving objects in real time. Although
very fast, the 3D camera system is not robust due to vari-
ous reasons, such as ambient light interference, occlusions,
shadows, and depth discontinuity. Therefore, much efforts
are needed to pre-process the captured raw data.

Figure 3: The captured raw data usually contains
holes due to the occlusions. We fill both the ge-
ometry and texture of the holes by constructing a
minimal surface which has C1 continuity along the
hole boundaries.

Feature tracking We first project the captured 3D ex-
pressions to 2D images, and then denote the salient features,
including nose tip, eyes, mouth, eyebrows, etc, on the first
frame. Next we use Active Appearance Model (AAM) [4] to
track the feature points for the remaining frames automati-
cally. Finally, the 2D feature points are mapped back to the
3D meshes.

Hole filling The captured raw data is a genus-0 open
surface M . Let ∂M = γ0 ∪ γ1 ∪ · · · γk denote boundaries
where γ0 is the outer boundary and γi, i ≥ 1 the interior
holes. To fill the hole γi, we construct a minimal surface Hi

that satisfies the following Laplacian equation [7]:

△v = 0, ∀v /∈ ∂Hi (1)

with boundary conditions

v|∂Hi
= v|γi (2)

▽v|∂Hi
= ▽v|γi . (3)

The boundary conditions guarantee that the filled surface
is of C1 continuity along γi, thus, leads to visually pleasing
results. Note that we can also fill the colors using the same
equation except that the vertex position (x, y, z) is replaced
by the color (r, g, b). Figure 3 shows the hole filling results.

Face segmentation The captured raw data contains
not only the 3D faces, but also some unnecessary informa-

tion, such as the cloth, hair, and background. Observe that
the human expressions are approximate isometry, thus, the
intrinsic properties, such as Gaussian curvature, first fun-
damental form, geodesic, conformal factor, etc, which are
invariant under isometry, can be used to segment the face.
In our framework, we adopt the geodesic since it is fairly easy
to compute and highly robust to the mesh resolution and tri-
angulation. With the eyes and mouth as source points, we
compute the “multiple-sources all-destinations” geodesic us-
ing the modified Xin and Wang’s algorithm [36] which takes
only a few seconds for each frame. Then we segment the fa-
cial expressions using the user-specified radius. Finally, we
remove the eyes and mouth. As shown in Fig. 2, our method
leads to highly consistent segmentation results.

5. PARAMETERIZING MOTION DATA
In each frame of the captured motion data, the geome-

try is given in the reference system of the scanner, and it is
not registered in object space, and correspondences between
points in different frames are not available. From the anal-
ysis and editing point of view, it is highly desirable to find
the correspondence among the captured data. Motion data
parametrization serves this purpose by mapping all frames
to a parametric domain and then re-sample the data on the
domain.

Although there are large amount of literatures in surface
parametrization [5] [23], there is little work on the motion
data parametrization. The key challenging in motion data
parametrization is that it must take the temporal coherence
into consideration, i.e., the features in all frames should be
mapped consistently to the parametric domain.

This section presents a novel algorithm to parameterize
the 3D facial expression data. The proposed algorithm is
guaranteed to be bijective and the salient facial features
(such as mouth, nose and eyes) are mapped consistently on
the parametric domain.

The input of our algorithm is a sequence of genus-0 meshes
with four boundaries. Let M denote the mesh and ∂M =
γ0∪· · ·∪γ3 are the boundaries, where γ0 is the boundary of
the human face, γ1 and γ2 the two eyes and γ3 the mouth.
We design the parametric domain D ∈ R

2 as the rectangle
with three holes, thus, D has the same topology of M .

We first compute the geodesic c between two eyes, i.e., γ1
and γ2. Then we compute the geodesic d from the middle
point of c to the mouth γ3. Note that geodesic is an intrinsic
property, thus, independent of the expressions which are ap-
proximate isometry. By slicing the mesh along the geodesics
c and d, the number of boundaries is reduced to 2. The re-
sulted mesh M is a genus-0 mesh with two boundaries, i.e.,
γ0 and γ1 ∪ γ2 ∪ γ3 ∪ c ∪ d. In the following, we use ∂M0

and ∂M1 to denote the two boundaries of M .
Then we compute the harmonic function f : M → R,

△f(v) = 0, ∀v /∈ ∂M,

with Dirichlet boundary condition:

f(v) = 0, ∀v ∈ ∂M0,

f(v) = 1, ∀v ∈ ∂M1.

Since the function f is harmonic, all its local extrema are
on the boundaries. Furthermore, the mesh M is of genus-
0 with two boundaries. According to Morse theory [15],
f has no critical point (the point with vanishing gradient)



inside M . Therefore, the gradient vector field ∇f has no
singularity. The integration curve of ∇f is a curve such
that the tangent vector to the curve at any point v along
the curve is precisely the vector ∇f(v). In the Appendix, we
show that each integral curve has unique ending points, one
on ∂M0, the other on ∂M1. Furthermore, any two integral
curves do not intersect.

We process the parametric domain D in the same way
and let D denote the sliced mesh with two boundaries. We
compute the harmonic function g : D → R with the same
boundary condition as f . We also construct a bijective map
between two boundary curves h : ∂M1 → ∂D1 by arc-length
parametrization.

Then the parametrization φ : M → D is constructed as
follows: For each vertex v ∈ ∂M1, trace the integral curve
α ∈ M following the gradient ∇f . Then, starting from
h(v) ∈ ∂D1, trace another integral curve β ∈ D. Thus, we
build a one-to-one map between two integral curves α and
β. By going through every point v ∈ ∂M1, we build the
one-to-one map between M and D which in turns induces a
one-to-one map φ : M → D.

Input:
M ∈ R

3, the input 3D facial expression of genus-0
mesh with four boundaries, ∂M = γ0 ∪ · · · ∪ γ3;
D ∈ R

2, the parametric domain with the same
topology of M ;
Output:
The one-to-one map φ : M → D such that the salient
features (eyes, mouth and nose) are mapped to the
corresponding features on D.

1. Compute the geodesic c between γ1 and γ2.
2. Compute the geodesic d from the middle point of c
to γ3.
3. Cut M along c and d, the resulted mesh M is of
genus-0 with 2 boundaries.
4. Process the parametric domain D in the similar
way (as steps 1 to 3). Let D denotes the processed
mesh of genus-0 with 2 boundaries.
5. Compute the harmonic function f : M → R with
Dirichlet boundary condition, △f = 0, f |∂M0

= 0,
f |∂M1

= 1

6. Compute the harmonic function g : D → R with
Dirichlet boundary condition, △g = 0, g|∂D0

= 0,
g|∂D1

= 1

7. Parameterize ∂M1 and ∂D1 by the arc length
parametrization, h : ∂M1 → ∂D1.
8. For each point v ∈ ∂M1

8.1 Trace the integral curve α ∈ M of the gradient
vector field ∇f .
8.2 Trace another integral curve β ∈ D starting
from h(v) ∈ ∂D1 and following the vector field ∇g.
8.3 Construct the one-to-one map φ : M → D as
φ(α) = β
9. The parametrization φ : M → D is induced from
φ : M → D.

Algorithm 1: Expression-invariant 3D face
parametrization

Remark In the parametrization algorithm, we cut the 3D
face along the geodesics connecting the three holes (i.e., eyes
and mouth). So the resulted mesh is of genus-0 with 2

boundaries. The inner boundary γ1 ∪ γ2 ∪ γ3 ∪ c ∪ d is in-
variant to the expressions, thus, highly consistent among all
frames. Furthermore, the outer boundary is determined by
a geodesic mask with the user-specified radius applied to all
expressions. Thus, the outer boundary is also invariant to
the expression. Observe that the harmonic function is in-
trinsic to the geometry and independent of the expressions.
As a result, the proposed parametrization is invariant to the
expression. Furthermore, as proven in the Appendix, the
inner boundary of M is mapped to the inner boundary of
D precisely, thus, guarantees the exact correspondence of
salient features, such as eyes, mouth and nose. As shown in
Fig. 4, two expressions are parameterized consistently using
our approach.

Using the expression invariant parametrization, we can pa-
rameterize a sequence of facial expressions to the canonical
parametric domain with guaranteed correspondence of the
salient features (mouth, nose and eyes).

(a) Original data

(b) Compression ratio 21:1, PSNR 71.73dB

(c) Compression ratio 212:1, PSNR 58.31dB

(d) Compression ratio 575:1, PSNR 46.00dB

Figure 6: Geometry video of HumanFaceGV1. (a)
shows the original video sequence; (b), (c) and
(d) show the reconstructed videos at low, medium
and high compression ratios by using the tailored
H.264/AVC.



(a) (b) (c) (d) (e) (f)

Figure 4: Expression-invariant parametrization. (a) Input mesh M . (b) Geodesics connecting the eyes, nose
and mouth. (c) Harmonic function with Dirichlet boundary condition. (d) Integral curves follow the gradient
of the harmonic function. (e) Integral curves on the parametric domain. (f) The integral curves induce the
parametrization between M and D, which guarantees the exact correspondence of the eyes, mouth and nose.

(a) Polycube mapped horse

(b) Rectangular parametric domain

(c) Original data

(d) Compression ratio 48:1
PSNR 81.05dB

(e) Compression ratio 140:1
PSNR 67.68dB

(f) Compression ratio 466:1
PSNR 47.98dB
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Figure 5: Geometry video of SynthHorseGV. (a) maps the surface of horse onto polycube. (b) parameterizes
the mapped polycube into rectangular domain. (c) shows the original video sequence. (d), (e) and (f) show
the reconstructed videos at low, medium and high compression ratios by using our tailored H.264/AVC. (g)
shows the rate-distortion (PSNR vs. Bitrates) performance of our tailored H.264/AVC in comparison to the
original H.264/AVC.



6. GEOMETRY VIDEO COMPRESSION
Using the proposed motion data parametrization algo-

rithm, each frame of the motion data is parameterized to
a rectangular domain that can be easily converted into a ge-
ometry image, i.e. the pixel color R, G, and B representing
the vertex coordinates, x, y, and z. Then the 2D GV is
constructed by combining all geometry images together.

The temporal feature of GV is quite similar to that of nat-
ural videos, i.e. a block in the current video picture usually
closely matches another block locating at the same or close
position in the neighbor picture. As a result, the tempo-
ral redundancy in GV can be significantly removed by using
existing motion estimation algorithms [35].

The spatial feature of GV, on the other hand, is different
from that of natural video pictures. Since the pixel values of
a GV picture are actually the vertex coordinates of the 3D
model in the 3D space, the adjacent pixels usually share a
correlated local variant pattern. For example, assuming that
the 3D model surface is relatively smooth in a small local
region, e.g. a 4x4 block region, the corresponding pixels
within that region will be smoothly-varying too. In this
work, we model and utilize this feature of GV by proposing
a simple yet effective “tailored intra-prediction scheme” for
better compression.

Specifically, we have added 4 extra intra-frame prediction
modes to the original H.264/AVC in our tailored scheme.
These extra modes will form predicted pixels by considering
the variant pattern of neighbor pixels. For a 4x4 block in a
video picture, our proposed prediction modes can be written
as:

P (x,y)=







































P (x,y−1)+[N(x−1,y−1)−N(x−1,y)], mode 1

P (x,y−1)+ 1

4

4
∑

i=1

[N(x−1,y+i)−N(x−1,y+i−1)], mode 2

P (x−1,y)+[N(x,y−1)−N(x−1,y−1)], mode 3

P (x−1,y)+ 1

4

4
∑

i=1

[N(x−1,y+i)−N(x+i−1,y−1)], mode 4

whereN(x, y) denotes the neighbor pixel locating at position
(x, y) and P (x, y) is the predicted pixel in current block.

The tailored H.264/AVC encoder will then select the best
prediction mode from the original H.264/AVC modes and
our extra modes based on minimum prediction errors.

These extra prediction modes were only used for 4x4 blocks
in a video picture. The extra prediction modes may slightly
impose the computational overhead on the encoder. How-
ever, the overhead is neglectable compared with those higher-
complexity components in H.264/AVC, e.g. motion estima-
tion.

In the next section, we will show that the tailored pre-
diction scheme yields better prediction results, leading to
obtain lower bitrates of the encoded video.

7. EXPERIMENTAL RESULTS
In this section, we present the results of compressing and

reconstructing the 3D motion data by using our GV frame-
work.

7.1 Experimental setups

7.1.1 Test GV sequences
There are 4 test GV sequences of human faces (named

“HumanFaceGV1” to “HumanFaceGV4”) captured by our
camera from 4 subjects, who were asked to make varied fa-

(a) (b) (c)

Figure 8: Geometry video of a synthetic face model
(SynthFaceGV). (a) 3D model. (b) Parameteriza-
tion. (c) Geometry image (video frame of a GV).

cial expressions, e.g. laughing, shouting, etc, during the cap-
ture. Each of the sequence consists of 200 frames with the
resolution of 320x320. For each video sequence, we compress
it at different bitrates and then decompress and reconstruct
the video. The peak signal to noise ratio (PSNR) is used to
measure the reconstruction quality of the video.

In addition to the real human expressions, we also tested
2 sequences containing synthetic 3D motion data, including
a synthetic face model and a horse gallop model, which were
named as“SynthFaceGV”and“SynthHorseGV”respectively.

The motion in SynthHorseGV is composed of a few rigidly
moving parts, such as the horse gallop shown in Fig. 5. In
contrast to our camera-captured facial expression datasets
which can be parameterized to the rectangular domain di-
rectly, the horse model is a closed surface with complex ge-
ometry. To reduce the parametrization distortion, we first
parameterized it to a polycube domain which mimics the
geometry of the model (see Fig. 5(a)). Then we flattened
the polycube parametrization to the 2D rectangular domain
(see Fig. 5(b)). As the correspondence is available for these
synthetic animation datasets, we only need to parameter-
ize the first frame. In our implementation, we adopted the
algorithm presented in [8] to parameterize the horse model.

The SynthFaceGV is topologically equivalent to a annulus,
we applied our constrained parametrization such that outer
and inner boundaries are mapped to the unit square and
a slim rectangle respectively (see Fig. 8). We should also
point out that the synthetic GVs do not contain the texture
information.

7.1.2 H.264/AVC configurations
In this work, the proposed ”tailored intra-frame prediction

scheme” (as described in Section 6), was implemented based
on the JM14.2 H.264/AVC reference software [10]. The High
4:4:4 profile of H.264/AVC FRExt [26] was adopted in this
work to keep the high fidelity of the motion data, i.e. each
color channel of a GV picture is equally compressed and
there is no subsampling used. The test GV sequences were
encoded at 30 frames per second, with Group of Picture
(GOP) structure of “IPBPB”, Fast Full Search motion esti-
mation (32x32 search range, 5 reference frames and variable
block sizes) and CABAC entropy coding. Rate-Distortion
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Figure 7: Bitrates of our tailored H.264/AVC in comparison to the original H.264/AVC for QP ranging
from -12 to +12, where a lower QP results in a higher video quality but a lower compression ratio: (a)
HumanFaceGV1. (b) HumanFaceGV2. (c) HumanFaceGV3. (d) HumanFaceGV4. (e) SynthFaceGV. (f)
SynthHorseGV.

Optimization (RDO) was turned on. The intra-frame pe-
riod (interval) was set to 30 (i.e. 1 intra-frame per second).
The GVs were compressed at different bitrates by adjust-
ing the quantization parameters (QPs). Please refer to [10]
for more details about the above encoding parameters and
configurations.

7.2 Results
Fig. 7 illustrates the bitrates achieved by the modified

H.264/AVC with our tailored intra-frame prediction scheme
(abbreviated as“tailored H.264/AVC”in the remaining parts),
in comparison to those achieved by original H.264/AVC. The
QPs range from -12 to +12, where a lower QP results in a
higher video quality but a lower compression ratio. Please
note that we have adopted some negative QPs in order to
encode high-quality GVs [24]. It has been observed that our
tailored H.264/AVC outperforms the original H.264/AVC,
e.g. for HumanFaceGVs, the tailored H.264/AVC is able to
further reduce the bitrate of original H.264/AVC by 1.02% to
5.56% while increasing the PSNR by 0.04dB to 0.22dB at the
same time. For the synthetic GVs (SynthFaceGV and Syn-
thHorseGV), the bitrate reduction obtained by our tailored
H.264/AVC over original H.264/AVC is up to 20%, which
is more significant than those for HumanFaceGVs. This is
because that these synthetic GVs are articulated animation
containing less noise. Also, the surfaces of the synthetic
models are smoother compared to HumanFaceGVs thus en-
abling better prediction results of our tailored H.264/AVC.
The above results demonstrated that our tailored H.264/AVC
can better utilize the spatial feature of GV.

Fig. 6 (a)-(d) display sample frames of the original Hu-

manFaceGV1 and the reconstructed video by our tailored
H.264/AVC with different compression ratios. We have ob-
served that the tailored H.264/AVC will result in no vi-
sual distortion at low compression ratio (21:1). At medium
compression ratio (212:1), the decoded frames showed a ac-
ceptable quality but small deformation can be found in the
boundary of the human face. At very high compression ra-
tio (575:1), the decoded frames are visually distorted. Fig. 5
(a)-(f) shows sample frames of original SynthHorseGV and
the reconstructed video sequence. We observed from this
figure the similar results to HumanFaceGVs, i.e. the re-
constructed video frames are of good quality at low and
medium compression ratios. Fig. 5 (g) demonstrates the
rate-distortion performance of our tailored H.264/AVC is
significantly better than the original H.264/AVC for Synth-
HorseGV.

As a summary, our experimental results show that the
GVs can be significantly compressed by using H.264/AVC.
By employing our tailored H.264/AVC, a further improve-
ment over original H.264/AVC can be achieved in both bi-
trate reductions and PSNR gains, resulting in a good com-
pression ratio (over 200:1) without introducing visual arti-
facts.

8. CONCLUSIONS AND FUTURE WORK
This paper presented a novel framework to model 3D

facial expressions using geometry video (GV). Within our
framework, we parameterize the 3D motion data with guar-
anteed feature correspondence and store them into a video
format. Our investigation shows that the GV framework is
very effective for modeling the 3D motion data. In particu-



lar, it allows the 3D motion data being heavily compressed
by using well-studied video compression techniques. Our ex-
perimental results on real-world datasets show that the GV
can be significantly compressed by H.264/AVC. By taking
advantage of the strong spatial coherence of GV, we have
also presented a tailored intra-frame prediction scheme and
incorporated it into H.264/AVC. The experimental results
demonstrated that our tailored scheme can achieve bitrate
reductions and PSNR improvement concurrently over the
original H.264/AVC. In conclusion, our proposed GV frame-
work enables efficient modeling, storage, and manipulation
of the high-resolution 3D motion data thus providing an at-
tractive way in multimedia information processing in this
regard.

There are several future research directions. First, this
paper focuses on the 3D facial expression due to its sim-
plicity. The general 3D motions of human and animals are
usually of complex geometry and topology. Thus, to re-
duce the parametrization distortion, a polycube is an ideal
parametric domain as we demonstrated in the horse gallop
model. However, the existing polycube parametrization al-
gorithms such as [30][29] do not allow the users to freely
specify the key feature correspondence among frames. Sec-
ond, there is a need to develop an automatic method to flat-
ten the polycube into the planar domain in a space efficient
manner. Third, our current tailored intra-frame prediction
scheme has not fully exploited the potentials of dedicated
compression techniques for GV. These issues will be further
investigated in our future work.
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Appendix
In this appendix, we prove that the proposed parametriza-
tion algorithm leads to a one-to-one map and guarantees the
exact boundary correspondence.

TheoremGiven two surfaces A and B, both are of genus-
0 with 2 boundaries. Let Ai, Bi, i = 1, 2 denote the bound-
aries, i.e., ∂A = A0∪A1 and ∂B = B0∪B1. Define harmonic
function f : A → R on A, △f = 0, with Dirichlet boundary
condition, f |A0

= 0 and f |A1
= 1.

Let Cf : A0 × [0, 1] → A be the integral curve of the gra-
dient field ∇f such that given an arbitrary point v0 ∈ A0,
Cf (v0, 0) = v0, Cf (v0, 1) = v1 and Cf (v0, t) = vt, where
v1 ∈ A1 is the other ending point and vt ∈ M is the
point satisfying f(vt) = t. Similarly, we define the har-
monic function on B, g : B → R and the integral curve
Cg : B0 × [0, 1] → B.

Define a homeomorphic map h : A0 → B0 and construct
the parametrization φ : A → B by mapping the integral
curve Cf (v0, ·) to Cg(h(v0), ·) for ∀v0 ∈ A0.

Then the map φ has the following properties:

• φ is one-to-one;

• φ maps the inner boundary A0 to B0, i.e., φ(A0) = B0.

Proof First, we show no integral curve of ∇f or ∇g form a
loop, since f or g is smooth function and its gradient vector
field is curl-free.

Second, we show that no integral curve that starts and
ends on the same boundary curve. The function f or g is
harmonic function that does not have critical points (where
the gradient vanishes) inside the surface. Thus, the function
value is strictly monotonic along the integral curve. Note
that all points on the same boundary curve have the same
function value, so the ending points of each integral curve
must be on different boundary curve.

Third, we show that two integral curves do not intersect.
Without loss of generality, assume two integral curves γ1 ∈
A and γ2 ∈ A intersect at a point p. Then p is a critical
point and the gradient ∇f vanishes at p. We consider two
cases:

Case 1: p /∈ ∂A is an interior point. Since f is harmonic,
the maximum and minimum must be on the boundaries.
Therefore the Hessian matrix at p has negative eigenvalue
values. Suppose f(p) = s, then according to Morse theory,
the homotopy types of the level sets f−1(s−ǫ) and f−1(s+ǫ)
will be different. At all the interior critical points, the Hes-
sian matrices have negative eigenvalues, the homotopy type
of the level sets will be changed. The changes of the homo-
topy type can not be canceled out. Therefore, the homotopy
type of A0 is different from that of A1. This contradicts the
given condition, since A0 is homotopic to A1.

Case 2: p ∈ ∂A is on the boundary. Without loss of
generality, say p ∈ A0. Then we can glue two copies of the
same surface, along A0. And reverse the gradient field of
one surface. The union of the two gradient fields give us a
harmonic function field. Then there is no interior critical
point on the doubled surface. p becomes one interior critical
point, that leads to a contradiction.

Therefore γ1 and γ2 have no intersection points anywhere.
Last, we show φ is one-to-one. From the above, we know

that for an arbitrary interior point, there is a unique inte-
gral curve passing through and intersecting on the inner and
outer boundaries. The two ending points are also unique.
Furthermore, the given boundary map h : A0 → B0 is
homeomorphic, thus, it induces a homeomorphism between
integral curves in A and B, Cf (v0, ·) → Cg(h(v0), ·). The
boundary A0 is mapped to B0 because the map φ restricted
on A0 is the boundary map h : A0 → B0, i.e., φ|A0

= h.
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