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ABSTRACT

Since the adoption of VP9 by Netflix in 2016, royalty-free coding standards continued to gain prominence through
the activities of the AOMedia consortium. AV1,1 the latest open source standard, is now widely supported. In
the early years after standardisation, HDR video tends to be under served in open source encoders for a variety
of reasons including the relatively small amount of true HDR content being broadcast and the challenges in RD
optimisation with that material. AV1 codec optimisation has been ongoing since 2020 including consideration of
the computational load.2 In this paper, we explore the idea of direct optimisation of the Lagrangian λ parameter
used in the rate control of the encoders to estimate the optimal Rate-Distortion trade-off achievable for a High
Dynamic Range signalled video clip. We show that by adjusting the Lagrange multiplier in the RD optimisation
process on a frame-hierarchy basis, we are able to increase the Bjontegaard difference3 rate gains by more than
3.98× on average without visually affecting the quality.

Keywords: AV1, Adaptive Video Encoding, Rate-Distortion Optimisation, Lagrangian Optimisation

1. INTRODUCTION

In recent years, the growth in delivery of video at scale for broadcast and streaming applications (from Netflix,
YouTube, Disney etc.) has inspired further research into content-adaptive transcoding. The goal is to deliver
high-quality content at progressively lower bitrates by adapting the transcoder for each input at a fine-grained
level of control. In 2013, YouTube was the first to adopt this strategy for its User-Generated-Content (UGC)
by building a pipeline that is based on clip popularity by re-processing a clip with an enhanced pre-processor
in combination with a different built-in transcoder. Around the same time, Netflix’s seminal work on per-
clip and per-shot encoding4 for High Value Content (HVC) videos showed that an exhaustive search of the
coding parameter space can lead to significant gains in Rate-Distortion (RD) tradeoffs per clip. These gains
offset the high one-time computational cost of encoding as the same encoded clip may be streamed to millions
of viewers across many different Content Delivery Networks (CDNs),5 thus effectively saving bandwidth and
network resources. That idea has since been revisited and has become more efficient by applying the Viterbi
algorithm across shots and parameter spaces.6 Over the past years a lot of researchers have focused on the
optimisation of a high-level parameter (target bitrate or quantisation factor or objective quality) to generate an
optimal bitrate ladder for a clip as part of a Adaptive Bitrate Streaming (ABR).7–9

In our previous work,10 we showed that the RD tradeoff can be directly addressed by applying a numerical
optimisation scheme to estimate the appropriate Lagrangian λ multiplier for a given clip (see Section 2) for
standard dynamic range (SDR) videos. We observed an average BD-rate improvement of 1.9% for HEVC, 1.3%
for VP9,11 and 0.5% in AV1.12 In our latest work,12 we further demonstrated that additional BD-rate(%) gains,
from 0.5% to 4.9%, for AV1 could be achieved by adopting a per frame-type optimisation.

In this paper, we explore the idea of λ optimisation on High-Dynamic Range (HDR)/Wide Color Gamut
(WCG) material.13 HDR/WCG systems can capture, process, and reproduce a scene conveying the full range
of perceptible shadow and highlight details beyond normal dynamic range (SDR) video systems.
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Similarly to our latest work,12 we propose a content-adaptive transcoder optimisation at a global and a
deeper frame-type level. The core new ideas are i) consideration of RD Optimisation (RDO) for HDR content,
ii) optimisation of the RDO parameters on a frame-hierarchy basis, and iii) investigation of various convergence
criteria that result in the minimisation of the computational load. Our experiments in Section 5 demonstrate
that a frame-based tuning of video encoder can lead to an average gain of 1.63% of BD-rate (best recorded gain
of 9.3%) compared to the standardised method. Moreover, the average gains per shot range between 0.58 and
3.43% for HDR video content in AV1.

Section 2 gives an overview of previous research work and λ definition in rate control. Section 3 explains the
proposed methodology as well as the multi-dimensional optimisation. Section 4 then details the experimental
set-up including the test sequences, the keyframe combination selection, the framework implementation. Section
5 reports on the experimental findings.

2. BACKGROUND

The work of Sullivan et al14 laid the foundations for optimising the RD tradeoff in modern video codecs. By taking
a Lagrange multiplier approach the joint optimisation problem is posed as the minimisation of J = D + λR,
where λ is the Lagrange multiplier controlling the tradeoff. This idea is the basis of the RDO process used
especially in making mode decisions in modern codecs. The independent variable in this optimisation is usually
qp, a quantiser step size. Increasing qp reduces rate R but increases distortion D. Also, a different choice of λ
yields different R,D pairs.

Different codecs devised different recipes to derive the optimal λ value for RDO through an empirical rela-
tionship with qp. In libaom-AV11 λ is empirically related to qi (Quantizer Index: ≈ qp ∗ 4 in the AV1 codebase),
as follows:

λ = q2dc × (A+ 0.0035× qi), (1)

where A is a constant depending on the frame type (3.2 ≤ A ≤ 3.3) and qdc = f(qi, A) is defined through a
discrete valued Look Up Table (LUT) (0 ≤ qi ≤ 255 for AV1). This λ− qp relationship is not necessarily optimal
for a particular clip because the empirical relationship was derived for optimality over an entire test corpus. To
maximise gains, λ should be content dependent.

Per Clip λ Optimisation. The idea of adapting λ based on video content is not entirely new. Zhang and Bull15

altered λ based on distortion statistics on a frame-basis for HEVC. In our previous work,10,11,16 we introduced
the idea of an adaptive λ on a clip basis, using a single modified λ = kλo across all the frames in a clip. Here,
λo represents the default value deployed from the relevant empirical relationship e.g. Eq. (1). In order to find
the optimal λ value, we deployed numerical optimisers (Brent’s method and Golden-search17) that minimised
the BD-rate as a cost function. Later work,10 considered the use of Machine Learning techniques to reduce the
required computational load.

Per Clip, Per Frame-Type λ Optimisation. In our latest work,12 we showed that this method of global
λ tuning yields average BD-rate(%) gains of only 0.539% and 0.097% for AV1 and HEVC, respectively. These
modest improvements are probably due to the fact that current modern video encoders are content-adaptive by
nature and include many new improvements such as partition tools, Inter/Intra prediction tools and modern
hierarchical reference frame-structure. Another important aspect to consider is that the heuristics and empirical
shortcuts used in this content-adaptive implementation of the Lagrangian parameter, deviates from classical
RDO theory, which normally requires λ to be constant across the sequences over which distortion is measured.
For example in Eq.(1) λ changes with frame type. Motivated by this observation, in our latest work,12 we
studied the effect of isolating the optimisation of λ for different frame types. Results on SDR sequences showed
that optimising λ purely for Keyframes (KF), Golden-Frames (GF), Alternate-reference Frames (ARF), leads to
average BD-rate gains of 4.92% compared to global λ optimisation (only 0.54% BR-Rate gains).

HDR in AV1. The quality of compressed 4K and 8K HDR content was evaluated by Pourazad et. al.,18 drone
content from P. Topiwala et.al.,19 and gaming (Nabajeet et. al.20). More relevant here is the work of Zhou et.
al21 for HEVC that expresses distortion D in terms of the HDR-VDP-2 quality metric.22 They presented an
algorithm for prediction of λ at the CTU level which resulted in 5% BD-rate improvement w.r.t. a reference
implementation of HEVC (HM16.19).
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Algorithm 1 Proposed Optimisation Workflow

1: Initialise video set, qp points, codec and associated options.
2: [Run-A] Encode each clip in parallel with P threads, where P is a number of qp points.
3: Compute RD-points and collect metrics using libvmaf.
4: This establishes the RD curve corresponding to λo

5: [Run-B] Deploy selected Numeric Optimiser with initial condition k = 1
6: On each successive iteration i of the Optimiser Do
7: Encode the given clip using the new value of k = ki

8: Compute the cost function Cm(ki) using reference RD curve for BDRATE calcuation from Run-A
9: Terminate optimiser using default convergence and stopping criteria.

3. DIRECT λ OPTIMISATION IN AV1

As noted in Section 2, the encoder is determining λ independently on a frame basis inside the encoder. In this
work, we explore the impact of treating λ optimisation as a multi variable search problem at a frame basis w.r.t.
HDR content. The following sections expand our main strategies for the direct optimisation of the λ parameter.

BD-rate Optimisation. For the nth RDO decision in clip m, we propose that λn = knλ0. We estimate
k = [k1, . . . , kN ] (where we assume N RDO decisions) to maximise the BD-rate gain using MS-SSIM23 as the
quality metric (Qm). The cost function Cm(k) can therefore be formulated as:

Cm(k) = BD-rate(Rm(kλo, Q), Rm(λo, Q))

∝
∫ Q2

Q1

(Rm(kλo, Q)−Rm(λo, Q)) dQ , (2)

where Rm(kλo, Q) is the bitrate of the mth clip at quality Q, using λ = kλo for the N RDO decisions and Q1, Q2

defined as usual.3 Rm(·, ·) is derived from the MS-SSIM-based RD curve generated using P qp measurements.
Here we use P = 5: qp ={27, 39, 49, 59, 63}.

The flow of the optimisation framework is reported in Algorithm 1. We can see that repeated computations
of the BD-rate are required, and this incurs a huge computational cost. To address this, we deploy the idea
of proxies for parameter selection as proposed by Ping H. et. al.24,25 They observe that using different speed
settings of the encoder at the same target quality/quantizer level results primarily in bitrate differences that
are directly proportional to the content complexity (see section 5.1). That idea also extends to the use of lower
resolution proxies. Therefore we can reduce computational load by performing optimisation using faster encoder
presets ‘em and lower resolution proxies.

Multi-Dimensional Optimiser. Our previous study for finding the optimal λ multiplier in AV1 used Brent’s
line search method.12 The focus was on applying a modifier k to only one sub-module in the encoder. However,
here we explore the scenario of a multiple dimensional search for finding the optimal λ for multiple frame types
each associated with a different k. For this multi-dimensional search, we have various options like Nelder-Mead
Simplex,26 Conjugate Gradient,27 Powell’s method,28 etc.

In order to select a suitable optimiser, we conducted a simple analysis by carrying out an exhaustive grid-
search on a single video to study the surface of our objective function. For this study, we chose the clip
NocturneRoom from the AOM Common-Testing-Configuration (AOM-CTC)29 set, and optimised λ for two
different frametypes: λKF for the KFs and λGF/ARF , for the GF/ARFs. For all other frame-types, λ was set to
the default. The grid search range for both λKF and λGF/ARF is 0.6 to 5.4, in steps of 0.1. This provided 2,401
anchor points resulting in a total of 12,005 RD points for analysis.

Figure 1 shows the contour plot of the BD-rate % (MS-SSIM) objective function for a sample clip. The
surface is clearly smooth, and a gradient based method is expected to converge to a sub-optimal solution (local
minimum) due to very low gradient. This observation was confirmed by testing gradient based methods such as
the Nelder-Mead Simplex method26 and the Conjugate Gradient.27 Both of these methods converged erroneously
after the first iteration as the gradient was very close to zero. Therefore, we explored line-search constrained
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Figure 1: Plot of the optimisation surface, where X axis represents the λKF [K1] multiplier value and Y axis
the λGF/ARF [K2] value, contour is Cm(k1, . . . , kn). The red line shows the variation of K1 and K2 values when
Powell’s method28 is deployed for direct optimisation.

methods. One of the best performing was the modified Powell method,28 which succeeded to reach the global
minima for the test clip (see red-lines on the Figure 1).

4. EXPERIMENTAL SETUP

4.1 4K HDR Corpus

For our experimental studies, we formed a video corpus consisting of 50 video clips (6500 frames) curated from
various public sources. All the videos are normalized to BT.2020 color primaries with SMPTE2084 Perceptual
Quantizer (PQ) transfer function and represented in the YUV colourspace inside YUV-Y4M containers. All the
conversions and normalization of the clips are implemented with HDRTools.30 The configuration file for the
conversion to YUV Space with PQ Signal is available in our project page∗. The 50 clips contain 130 frames, a
resolution of 3840x2160/4096x2160, and can be further grouped into 7 shot groups. Figure 2 illustrates sample
frames of the dataset and Table 1 gives a short description of the content of these 7 shot groups. More information
on the dataset, including computed Spatial and Temporal Information (SI and TI)31 and Dynamic Range (DR)
can be found in our project page∗.

4.2 Keyframe Selection

Reference frames (henceforth called keyframes) in AV1, typically contain 5 to 10 times more bits than other
frames. Therefore, we target the optimisation of the bit allocation of these keyframes. In AV1, in order to code
an Inter frame, references up to 8 keyframes35 are used. The encoder chooses from multiple frames in both
forward and backward direction.36 For the simulations presented, we consider multiple combinations of the 3
keyframe types: the reference Intra-coded frame KF, an ARF FRAME (ARF) used in prediction but does not
appear in the display, and an Inter coded frame which is coded at higher quality GOLDEN FRAME (GF).

∗Project page: https://gitlab.com/mindfreeze/spie2022
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Figure 2: Sample frames from the corpus.

Table 1: High-level description of the shots.

Shot Group Description

Cosmos32
Vibrant animated sequence, high
temporal complexity, 24fps

Meridian29,32 Natural sequence, high
spatial complexity, 59.94fps

Nocturne29,32
Natural sequence, medium
spatial complexity, 60fps

Sol Levante29,32
Animated sequence, medium-high
temporal complexity, 24fps

Sparks29,32
Sequence with medium motion
and wide dynamic range, 59.94fps

SVT33 Very high natural
complexity sequences, 50fps

Cables 4K34 Outdoor sequences with
moderate complexity, 59.94fps

4.3 Framework Implementation

For the simulations, Random-Access (RA) encoding mode was chosen as per AOM-CTC.29 This mode is com-
monly used for streaming as it allows users to randomly seek into any frame of the clip. We deployed a stable
release for AV1 (libaom-av1-3.2.0, 287164d) with modifications to allow k to propagate to the desired mode
from a command-line argument.

The objective metrics for Quality and Rate (RD measurements) at the selected qp settings were computed
using libvmaf,37 a standard open-source video quality evaluation library. Our software framework for performing
these experiments with AV1 is based on AreWeCompressedYet.38

5. EXPERIMENTS & RESULTS

5.1 Proxy Processing

As discussed earlier, optimisation requires many encodes, and we need to consider faster proxy presets to make
these experiments practical. We have investigated three proxy modes for use during the optimisation: (4K S2-
S2), the default non-proxy encode at the original 4K resolution using AV1 Speed 2 preset as in the final setting,
(4K S2-S6), which encodes videos at 4K resolution using AV1 Speed 6 preset, and (1080p S2-S6), which operates
at a (Lanczos 5) downsampled 1080p resolution with speed preset 6.

Table 2 presents the BD-rate gains on the 4 sequences of the av2-g1-hdr-4k set from AOM-CTC. The op-
timisation is performed in this case for a single global k using Brent’s method.17 It is clear that using the
proxy method (1080p S2-S6) reduces the encoding complexity by an average of 4.8×, with negligible degradation
in quality (BD-rate) when compared against full-resolution optimisation mode (4K S2-S2). We also note that
BD-rate gains at (4K S2-S6) are almost identical to (1080p S2-S6), but with about 30% slower encoding speed.
Given that processing time for our subsequent experiments takes in the order of 100’s of hours, we therefore use
this (1080p S2-S6) proxy setting in the rest of the study. Hence in results reported in Table 3 we use that proxy
to estimate optimal values of k1, . . . , kn; then evaluate BD-rate gains using the original material i.e. 4K with S2
preset. We observe of course some differences between this approach and using 4K S2 throughout but it is the
more pragmatic approach validated by our results in Table 2.

5.2 Multiple Frame Types λ Optimisation Performance

One of the objectives of this work is to compare different combinations of frame-type dependent λ optimisations
with the ultimate aim to find the best λ optimisation strategy. First, we considered 4 modes, as in our previous
work.12 Particularly, we set λ = kλo for some grouped frame types, and kept λ = λo for all other frame
types. These four modes are: i) All Frames, which refers to the global λ tuning method where we set the same
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Table 2: Proxy encoding time(hours), estimated λ multiplier value, and BD-rate gains (%) MS-SSIM for the
different proxy encoding speeds and video resolutions.

Encoding Time (hrs) λ Multiplier BD-rates (%)

Proxy
Settings

4K
S2-S2

4K
S2-S6

1080p
S2-S6

4K
S2-S2

4K
S2-S6

1080p
S2-S6

4K
S2-S2

4K
S2-S6

1080p
S2-S6

MeridianRoad 332.78 107.05 102.71 1.02 1.02 1.16 0.07 0.07 -0.2
NocturneDance 598.07 189.32 134.46 0.75 1.01 1.01 0.45 -0.08 -0.08
NocturneRoom 932.528 252.87 159.29 3.79 3.86 2.81 -9.19 -9.24 -7.86
SparksWelding 1065.35 249.94 179.91 1.59 2.25 1.56 -1.47 -1.81 -1.39

multiplier k for all frames, as previously proposed by Ringis et al.,11 ii) KF, which refers to the scenario where we
set λ = kλo tune for KF, iii) GF-ARF, which refers to λ optimisation for GF and ARF frames, iv) KF-GF-ARF,
which refers to optimising λ for KF, GF, and ARF frames.

In addition to the above four modes, we introduced a new search method Powell [KF-GF/ARF], which is a
multidimensional joint search, where we deploy two k values, with k1 for KF and k2 for GF and ARF frames.
Thus, λKF = k1λo and λGF/ARF = k2λo, and for others we use the default λ value.

Table 3 reports the BD-rate (MS-SSIM %), MS-SSIM (dB), VMAF39 gains for these different optimisation
strategies for the whole corpus which is divided into 7 different shots groups (see Table 1). The underlined result
shows the highest gains in terms of BD-rate that the proposed tuning brings compared to (4K S2). The results
presented are averaged on a shot group basis. Also, the minimum and average BD-rate in the shot group are
recorded. Another perspective of the resulting BD-rates from all tested clips is illustrated in the histograms of
the BD-rate values in Figure 3.

First, we observe that the new values of k are, on average, significantly different from k = 1, hence verifying
our initial hypothesis of a “better” λ value. Inspecting the Brent optimiser results from both Table 3 and
Figure 3, it transpires that the KF-GF-ARF method is achieving the best BD-rate gains on average (1.12%).
Analysing the results on per-shot basis, we were able to see significant improvements in BD-rates for certain
shots. Best average gains recorded were for Sol-Levante, where the BD-rate improved from 0.79% to 2.94%, and
this was followed by Cosmos with an improvement from 1.44% to 2.74%.

Another important observation is that the multidimensional search method Powell [KF, GF/ARF], appears
to be the overall top performer, with average BD-rate gains of 1.63%. The histogram in Figure 3e also shows
that the improvement is consistent for the majority of the videos. This also evident in terms of bitrate, as we
achieve a bitrate reduction of 0.64% with KF, GF, ARF and 4.25% with Powell [KF, GF/ARF] at QP39. We
also observed that for this improved bitrate savings, we have a minimal loss of MS-SSIM with 0.06dB and 0.35
for VMAF on average.

From Table 3, we notice that clips within the same shot group respond differently. These deviations can be
partly explained by variations in spatial and temporal information (See project page∗). Analysing the distribution
of results obtained with the Powell method, we observed that the higher BD-rate gains ( > 4%) were acquired
for clips with high spatial information/complexity (5 clips). Videos with lower temporal information, exhibited
higher gains. Videos with low temporal and low spatial complexity had no improvements. Different optimisation
modes exhibited very different distributions, for instance, in the classic tuning method, the BD-rate improvements
were noticed with clips with SI between 400-500 while for tuning mode of λ for KF/GF gave large loss for the
same range of videos.

5.3 Convergence Speed of Optimisation Methods

The Powell method is computationally expensive, with a roughly twice computational cost compared to the
Brent optimisation. Practically this means 203 hours on average over 118 hours per clip. Furthermore, the
Brent search for optimal k1 and k2 determinations required an average of 15 hours, while Powell method’s joint
search for (k1, k2) needed around 87 hours. The final optimisation step, i.e. the non-proxy encode at slower
speed preset, took around 107 hours per clip on average for all three modes. It is interesting that for the Powell
method and for most of the clips, we were able to achieve results very close to the final iteration by only using
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Table 3: Per-frame-type λ-optimisation results for multiple combination of frame types. k values are obtained
using (1080p S6) proxy settings. BD-rates (BDR) are calculated using (4K S2) as an anchor.

Shot Group Frame Type
Avg. k
value

Avg.
BDR (%)

Max.
BDR (%)

Min.
BDR (%)

Avg.
Iters

Avg.
Bitrate.

Savings (%)

Avg. Q39
Bitrate

Savings (%)

Avg.
MS-SSIM

Change (dB)

Avg.
VMAF
Change

Cosmos All Frames 1.49 -1.44 -2.91 -0.41 9.00 -15.71 -14.19 0.32 1.52
Meridian All Frames 1.07 0.12 -0.29 0.36 9.71 -5.32 -3.45 0.04 0.24
Nocturne All Frames 1.65 -0.16 -1.33 3.53 8.63 -26.33 -25.43 0.49 2.87
Sol Levante All Frames 1.23 -0.79 -2.20 0.33 9.20 -7.47 -7.07 0.22 1.48
Sparks All Frames 1.26 -0.37 -1.31 1.01 8.22 -11.33 -10.33 0.24 1.11
SVT All Frames 0.97 0.04 -0.36 1.04 8.83 3.12 3.04 -0.14 -0.24
Cables 4K All Frames 1.56 -0.36 -1.05 0.16 10.00 -16.69 -15.81 0.44 1.74

Cosmos KF 3.31 -0.85 -1.88 0.10 12.29 -2.10 -2.21 0.03 0.14
Meridian KF 4.00 -0.37 -10.45 7.86 11.00 -2.03 1.41 0.04 0.19
Nocturne KF 5.08 -2.39 -6.98 -0.86 11.88 -4.28 -6.89 0.07 0.37
Sol Levante KF 4.49 -1.02 -2.43 0.00 11.20 -2.58 -2.39 0.08 0.33
Sparks KF 2.54 -0.44 -2.75 2.21 11.33 -0.44 -0.78 -0.01 -0.03
SVT KF 6.20 0.36 -0.59 3.01 10.50 -1.83 -1.74 0.13 0.38
Cables 4K KF 2.49 0.16 -2.65 6.19 11.00 1.13 0.56 -0.04 -0.06

Cosmos GF, ARF 2.00 -1.63 -3.88 0.00 8.00 -2.69 -2.53 0.04 0.17
Meridian GF, ARF 2.07 1.01 -0.19 3.50 9.14 -6.26 -7.15 0.12 0.78
Nocturne GF, ARF 1.51 0.13 -3.32 4.23 10.75 5.24 0.54 0.06 0.33
Sol Levante GF, ARF 2.71 -2.15 -3.42 -0.16 10.40 -4.87 -4.85 0.14 0.72
Sparks GF, ARF 1.60 0.34 -2.09 2.15 8.78 -3.54 -4.36 0.13 0.66
SVT GF, ARF 2.38 -1.35 -4.77 0.16 11.50 -2.09 -2.10 0.16 0.78
Cables 4K GF, ARF 1.66 0.40 -0.59 2.23 9.50 -5.21 -6.15 0.20 0.63

Cosmos KF, GF, ARF 3.36 -2.74 -6.89 0.55 10.86 -5.58 -5.66 0.10 0.43
Meridian KF, GF, ARF 0.96 1.37 -0.53 6.92 10.86 1.01 4.41 0.02 0.02
Nocturne KF, GF, ARF 1.56 -2.05 -7.86 1.43 9.25 -3.00 -5.19 0.05 0.38
Sol Levante KF, GF, ARF 3.54 -2.94 -5.54 -0.25 11.20 -7.99 -7.48 0.24 1.27
Sparks KF, GF, ARF 0.95 -0.42 -1.39 0.14 9.56 1.82 1.85 -0.07 -0.20
SVT KF, GF, ARF 0.91 -0.97 -3.81 0.12 10.67 4.81 4.55 -0.27 -0.45
Cables 4K KF, GF, ARF 0.93 -0.09 -0.81 0.37 9.75 1.56 1.49 -0.06 -0.17

Cosmos Powell (KF, GF/ARF) (3.99, 4.09) -3.02 -6.91 0.24 61.71 -6.36 -6.57 0.13 0.52
Meridian Powell (KF, GF/ARF) (3.80, 1.12) -1.13 -9.30 3.92 40.71 -4.42 -5.45 0.03 0.12
Nocturne Powell (KF, GF/ARF) (4.18, 1.27) -2.80 -7.84 0.00 52.63 -3.64 -5.73 0.07 0.43
Sol Levante Powell [KF, GF/ARF] (4.01, 3.61) -3.43 -5.43 -2.28 100.40 -8.60 -8.22 0.25 1.32
Sparks Powell (KF, GF/ARF) (0.88, 1.58) -0.33 -2.17 1.68 60.33 -0.15 -0.82 -0.01 0.11
SVT Powell (KF, GF/ARF) (6.42, 0.91) -0.76 -3.62 0.01 47.00 0.88 0.83 -0.09 0.03
Cables 4K Powell (KF, GF/ARF) (2.00, 1.78) -0.58 -2.89 1.06 50.13 -4.14 -5.37 0.08 0.30

Average

All Frames 1.34 -0.41 -2.91 3.53 9.06 -12.24 -11.27 0.25 1.30
KF 3.88 -0.66 -10.45 7.86 11.34 -1.64 -1.71 0.04 0.17
GF, ARF 1.92 -0.32 -4.77 4.23 9.64 -2.62 -3.78 0.12 0.57
KF, GF, ARF 1.64 -1.02 -7.86 6.92 10.20 -0.76 -0.64 -0.01 0.13
Powell (KF, GF/ARF) (3.27, 1.98) -1.63 -9.30 3.92 57.32 -3.46 -4.25 0.06 0.35

one iteration of the algorithm. With respect to the BD-RATE at iteration 1, the BD-rate at the final iteration
(Powell method) was only on average 9% different with a median of 2.4%. Hence in practice, just one iteration
of Powell is good enough and certainly for at least 50% of the clips. Taking all the above into consideration, we
can reduce the total computational cost by half just by reducing the iterations of Powell search.

5.4 HDR vs. SDR λ Optimisation

It is educational to consider whether there is any difference in gains between equivalent HDR and SDR material.
We therefore curated a subset of 39 clips from the current dataset, for which a SDR version of the sequence
was released along with the HDR data from the content producer. Table 4 presents these SDR/HDR results for
these particular subset sequences. The anchor for the BD-rate computations is the (4K S2) case. Overall, the
average gains for HDR and SDR are comparable, with average BD-rate gains of 2.47% for SDR vs. 1.89% for
HDR. Comparing directly the distributions of BD-rate between SDR and HDR, we notice that for 82% of the
clips we have very similar BD-rate gains (±1%).

We need to note that this comparison between HDR and SDR must however be nuanced by the fact that
the same distortion metric (MS-SSIM) is applied in both HDR and SDR. Using the same distortion metric for
both allows us to make a direct comparison, but MS-SSIM has not been designed for HDR. To the best of our
knowledge, there is no objective quality metric available at the moment that could facilitate a direct comparison
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(a) All Frames (b) KF (c) GF, ARF

(d) KF, GF, ARF (e) K1 = KF, K2 = GF/ARF

Figure 3: Histogram distribution of BD-rate(%) MS-SSIM for various frame-level tuning methods.

of SDR and HDR. Nevertheless the point is here that HDR optimisation and SDR optimisation is quite different.
In particular Table 4 shows that the average estimated value of λ is quite different for SDR and HDR.

Table 4: λ optimisation result for same set sequences represented in SDR and HDR domain, where the k values
are obtained using (1080p S6) proxy settings. BD-rates (BDR) are calculated using (4K S2).

Dynamic
Range

Shot Group
Avg. λ
value

Avg.
BDR (%)

Max.
BDR (%)

Min.
BDR (%)

Avg.
Iters

Avg.
Bitrate
Savings (%)

Avg. Q39
Bitrate
Savings (%)

Avg.
MS-SSIM
Change (dB)

Avg.
VMAF
Change

Cosmos (3.42, 4.41) -3.26 -9.34 0.09 55.71 -5.98 -6.72 0.09 0.38
Meridian (3.79, 0.89) -2.78 -9.9 4.18 59.33 -3.32 -5.52 -0.01 -0.13
Nocturne (4.11, 1.42) -2.86 -7.06 0.94 87.71 -6.07 -10.68 0.09 0.38

SDR Sol Levante (5.36, 3.16) -3.14 -5.55 -1.47 71 -8.44 -8.53 0.24 1.11
Sparks (0.82, 1.14) -1.12 -2.48 0.37 55 1.57 1.73 -0.08 -0.24
SVT (2.96, 1.60) -2 -10.69 0.14 53.17 -1.41 -1.42 0 0.33

Average (3.24, 2.07) -2.47 -10.69 4.18 63.44 -3.65 -4.93 0.04 0.26

Cosmos (3.99, 4.09) -3.02 -6.91 0.24 61.71 -6.36 -6.57 0.13 0.52
Meridian (4.26, 1.15) -1.32 -9.3 3.92 43.33 -5.15 -6.35 0.04 0.13
Nocturne (3.60, 1.31) -2.95 -7.84 0 56.71 -3.66 -6.08 0.06 0.39

HDR Sol Levante (4.01, 3.61) -3.43 -5.43 -2.28 100.4 -8.6 -8.22 0.25 1.32
Sparks (0.91, 1.61) -0.28 -2.17 1.68 59.5 0.11 -0.45 -0.02 0.07
SVT (6.42, 0.90) -0.76 -3.62 0.01 47 0.88 0.83 -0.09 0.03

Average (3.70, 2.08) -1.89 -9.3 3.92 60.23 -3.53 -4.27 0.06 0.37

6. CONCLUSION

We have presented a new method of per-clip optimisation based on the rate control λ multiplier in AV1 for
different frame types. The proposed method was tested on a 4K-HDR corpus of 50 videos. We reported
improved average BD-rate gains of 1.6% for the proposed per-frame-type per-clip optimisation compared to the
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0.4% for the global per-clip λ-optimisation. The proposed method showed improvements up to 3.4% on average
for certain shots compared to the method of global λ tuning. The best improvements in BD-rate range from 2.1%
to 9.3% with our proposed method. We have also showed that the computational complexity of the optimisation
process can be mitigated by employing proxy settings and restricting the number of iterations used by the Powell
optimiser. Thus, our proposed method of multivariable Powell-based optimiser gave the best improvements on
average. Future work will focus on exploring the current implementation of deriving λ from the quantiser along
with more in-depth analysis of the quality aspect of the results including a subjective study.
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