90 research outputs found

    Preference Learning

    Get PDF
    This report documents the program and the outcomes of Dagstuhl Seminar 14101 “Preference Learning”. Preferences have recently received considerable attention in disciplines such as machine learning, knowledge discovery, information retrieval, statistics, social choice theory, multiple criteria decision making, decision under risk and uncertainty, operations research, and others. The motivation for this seminar was to showcase recent progress in these different areas with the goal of working towards a common basis of understanding, which should help to facilitate future synergies

    On Aggregation in Ensembles of Multilabel Classifiers

    Full text link
    While a variety of ensemble methods for multilabel classification have been proposed in the literature, the question of how to aggregate the predictions of the individual members of the ensemble has received little attention so far. In this paper, we introduce a formal framework of ensemble multilabel classification, in which we distinguish two principal approaches: "predict then combine" (PTC), where the ensemble members first make loss minimizing predictions which are subsequently combined, and "combine then predict" (CTP), which first aggregates information such as marginal label probabilities from the individual ensemble members, and then derives a prediction from this aggregation. While both approaches generalize voting techniques commonly used for multilabel ensembles, they allow to explicitly take the target performance measure into account. Therefore, concrete instantiations of CTP and PTC can be tailored to concrete loss functions. Experimentally, we show that standard voting techniques are indeed outperformed by suitable instantiations of CTP and PTC, and provide some evidence that CTP performs well for decomposable loss functions, whereas PTC is the better choice for non-decomposable losses.Comment: 14 pages, 2 figure

    Methods for Ordinal Peer Grading

    Full text link
    MOOCs have the potential to revolutionize higher education with their wide outreach and accessibility, but they require instructors to come up with scalable alternates to traditional student evaluation. Peer grading -- having students assess each other -- is a promising approach to tackling the problem of evaluation at scale, since the number of "graders" naturally scales with the number of students. However, students are not trained in grading, which means that one cannot expect the same level of grading skills as in traditional settings. Drawing on broad evidence that ordinal feedback is easier to provide and more reliable than cardinal feedback, it is therefore desirable to allow peer graders to make ordinal statements (e.g. "project X is better than project Y") and not require them to make cardinal statements (e.g. "project X is a B-"). Thus, in this paper we study the problem of automatically inferring student grades from ordinal peer feedback, as opposed to existing methods that require cardinal peer feedback. We formulate the ordinal peer grading problem as a type of rank aggregation problem, and explore several probabilistic models under which to estimate student grades and grader reliability. We study the applicability of these methods using peer grading data collected from a real class -- with instructor and TA grades as a baseline -- and demonstrate the efficacy of ordinal feedback techniques in comparison to existing cardinal peer grading methods. Finally, we compare these peer-grading techniques to traditional evaluation techniques.Comment: Submitted to KDD 201

    Identification of functionally related enzymes by learning-to-rank methods

    Full text link
    Enzyme sequences and structures are routinely used in the biological sciences as queries to search for functionally related enzymes in online databases. To this end, one usually departs from some notion of similarity, comparing two enzymes by looking for correspondences in their sequences, structures or surfaces. For a given query, the search operation results in a ranking of the enzymes in the database, from very similar to dissimilar enzymes, while information about the biological function of annotated database enzymes is ignored. In this work we show that rankings of that kind can be substantially improved by applying kernel-based learning algorithms. This approach enables the detection of statistical dependencies between similarities of the active cleft and the biological function of annotated enzymes. This is in contrast to search-based approaches, which do not take annotated training data into account. Similarity measures based on the active cleft are known to outperform sequence-based or structure-based measures under certain conditions. We consider the Enzyme Commission (EC) classification hierarchy for obtaining annotated enzymes during the training phase. The results of a set of sizeable experiments indicate a consistent and significant improvement for a set of similarity measures that exploit information about small cavities in the surface of enzymes

    Scalable Multi-label Classification

    Get PDF
    Multi-label classification is relevant to many domains, such as text, image and other media, and bioinformatics. Researchers have already noticed that in multi-label data, correlations exist between labels, and a variety of approaches, drawing inspiration from many spheres of machine learning, have been able to model these correlations. However, data sources from the real world are growing ever larger and the multi-label task is particularly sensitive to this due to the complexity associated with multiple labels and the correlations between them. Consequently, many methods do not scale up to large problems. This thesis deals with scalable multi-label classification: methods which exhibit high predictive performance, but are also able to scale up to larger problems. The first major contribution is the pruned sets method, which is able to model label correlations directly for high predictive performance, but reduces overfitting and complexity over related methods by pruning and subsampling label sets, and can thus scale up to larger datasets. The second major contribution is the classifier chains method, which models correlations with a chain of binary classifiers. The use of binary models allows for scalability to even larger datasets. Pruned sets and classifier chains are robust with respect to both the variety and scale of data that they can deal with, and can be incorporated into other methods. In an ensemble scheme, these methods are able to compete with state-of-the-art methods in terms of predictive performance as well as scale up to large datasets of hundreds of thousands of training examples. This thesis also puts a special emphasis on multi-label evaluation; introducing a new evaluation measure and studying threshold calibration. With one of the largest and most varied collections of multi-label datasets in the literature, extensive experimental evaluation shows the advantage of these methods, both in terms of predictive performance, and computational efficiency and scalability

    Label Ranking with Probabilistic Models

    Get PDF
    Diese Arbeit konzentriert sich auf eine spezielle Prognoseform, das sogenannte Label Ranking. Auf den Punkt gebracht, kann Label Ranking als eine Erweiterung des herkömmlichen Klassifizierungproblems betrachtet werden. Bei einer Anfrage (z. B. durch einen Kunden) und einem vordefinierten Set von Kandidaten Labels (zB AUDI, BMW, VW), wird ein einzelnes Label (zB BMW) zur Vorhersage in der Klassifizierung benötigt, während ein komplettes Ranking aller Label (zB BMW> VW> Audi) für das Label Ranking erforderlich ist. Da Vorhersagen dieser Art, bei vielen Problemen der realen Welt nützlich sind, können Label Ranking-Methoden in mehreren Anwendungen, darunter Information Retrieval, Kundenwunsch Lernen und E-Commerce eingesetzt werden. Die vorliegende Arbeit stellt eine Auswahl an Methoden für Label-Ranking vor, die Maschinelles Lernen mit statistischen Bewertungsmodellen kombiniert. Wir konzentrieren wir uns auf zwei statistische Ranking-Modelle, das Mallows- und das Plackett-Luce-Modell und zwei Techniken des maschinellen Lernens, das Beispielbasierte Lernen und das Verallgemeinernde Lineare Modell

    Modelos de clasificación multi-etiqueta para datos heterogéneos: un enfoque basado en ensembles

    Get PDF
    In recent years, the multi-label classification task has gained the attention of the scientific community given its ability to solve real-world problems where each instance of the dataset may be associated with several class labels simultaneously. For example, in medical problems each patient may be affected by several diseases at the same time, and in multimedia categorization problems, each item might be related with different tags or topics. Thus, given the nature of these problems, dealing with them as traditional classification problems where just one class label is assigned to each instance, would lead to a lose of information. However, the fact of having more than one label associated with each instance leads to new classification challenges that should be addressed, such as modeling the compound dependencias among labels, the imbalance of the label space, and the high dimensionality of the output space. A large number of methods for multi-label classification has been proposed in the literature, including several ensemble-based methods. Ensemble learning is a technique which is based on combining the outputs of many diverse base models, in order to outperform each of the separate members. In multi-label classification, ensemble methods are those that combine the predictions of several multi-label classifiers, and these methods have shown to outperform simpler multi-label classifiers. Therefore, given its great performance, we focused our research on the study of ensemble-based methods for multi-label classification. The first objective of this dissertation is to perform an thorough review of the state-of-the-art ensembles of multi-label classifiers. Its aim is twofold: I) study different ensembles of multi-label classifiers proposed in the literature, and categorize them according to their characteristics proposing a novel taxonomy; and II) perform an experimental study to find the method or family of methods that performs better depending on the characteristics of the data, as well as provide then some guidelines to select the best method according to the characteristics of a given problem. Since most of the ensemble methods for multi-label classification are based on creating diverse members by randomly selecting instances, input features, or labels, our second and main objective is to propose novel ensemble methods for multi-label classification where the characteristics of the data are taken into account. For this purpose, we first propose an evolutionary algorithm able to build an ensemble of multi-label classifiers, where each of the individuals of the population is an entire ensemble. This approach is able to model the relationships among the labels with a relative low complexity and imbalance of the output space, also considering these characteristics to guide the learning process. Furthermore, it looks for an optimal structure of the ensemble not only considering its predictive performance, but also the number of times that each label appears in it. In this way, all labels are expected to appear a similar number of times in the ensemble, not neglecting any of them regardless of their frequency. Then, we develop a second evolutionary algorithm able to build ensembles of multi-label classifiers, but in this case each individual of the population is a hypothetical member of the ensemble, and not the entire ensemble. The fact of evolving members of the ensemble separately makes the algorithm less computationally complex and able to determine the quality of each member separately. However, a method to select the ensemble members needs to be defined. This process selects those classifiers that are both accurate but also diverse among them to form the ensemble, also controlling that all labels appear a similar number of times in the final ensemble. In all experimental studies, the methods are compared using rigorous experimental setups and statistical tests over many evaluation metrics and reference datasets in multi-label classification. The experiments confirm that the proposed methods obtain significantly better and more consistent performance than the stateof- the-art methods in multi-label classification. Furthermore, the second proposal is proven to be more efficient than the first one, given the use of separate classifiers as individuals.En los últimos años, el paradigma de clasificación multi-etiqueta ha ganado atención en la comunidad científica, dada su habilidad para resolver problemas reales donde cada instancia del conjunto de datos puede estar asociada con varias etiquetas de clase simultáneamente. Por ejemplo, en problemas médicos cada paciente puede estar afectado por varias enfermedades a la vez, o en problemas de categorización multimedia, cada ítem podría estar relacionado con varias etiquetas o temas. Dada la naturaleza de estos problemas, tratarlos como problemas de clasificación tradicional donde cada instancia puede tener asociada únicamente una etiqueta de clase, conllevaría una pérdida de información. Sin embargo, el hecho de tener más de una etiqueta asociada con cada instancia conlleva la aparición de nuevos retos que deben ser abordados, como modelar las dependencias entre etiquetas, el desbalanceo de etiquetas, y la alta dimensionalidad del espacio de salida. En la literatura se han propuesto un gran número de métodos para clasificación multi-etiqueta, incluyendo varios basados en ensembles. El aprendizaje basado en ensembles combina las salidas de varios modelos más simples y diversos entre sí, de cara a conseguir un mejor rendimiento que cada miembro por separado. En clasificación multi-etiqueta, se consideran ensembles aquellos métodos que combinan las predicciones de varios clasificadores multi-etiqueta, y estos métodos han mostrado conseguir un mejor rendimiento que los clasificadores multi-etiqueta sencillos. Por tanto, dado su buen rendimiento, centramos nuestra investigación en el estudio de métodos basados en ensembles para clasificación multi-etiqueta. El primer objetivo de esta tesis el realizar una revisión a fondo del estado del arte en ensembles de clasificadores multi-etiqueta. El objetivo de este estudio es doble: I) estudiar diferentes ensembles de clasificadores multi-etiqueta propuestos en la literatura, y categorizarlos de acuerdo a sus características proponiendo una nueva taxonomía; y II) realizar un estudio experimental para encontrar el método o familia de métodos que obtiene mejores resultados dependiendo de las características de los datos, así como ofrecer posteriormente algunas guías para seleccionar el mejor método de acuerdo a las características de un problema dado. Dado que la mayoría de ensembles para clasificación multi-etiqueta están basados en la creación de miembros diversos seleccionando aleatoriamente instancias, atributos, o etiquetas; nuestro segundo y principal objetivo es proponer nuevos modelos de ensemble para clasificación multi-etiqueta donde se tengan en cuenta las características de los datos. Para ello, primero proponemos un algoritmo evolutivo capaz de generar un ensemble de clasificadores multi-etiqueta, donde cada uno de los individuos de la población es un ensemble completo. Este enfoque es capaz de modelar las relaciones entre etiquetas con una complejidad y desbalanceo de etiquetas relativamente bajos, considerando también estas características para guiar el proceso de aprendizaje. Además, busca una estructura óptima para el ensemble, no solo considerando su capacidad predictiva, pero también teniendo en cuenta el número de veces que aparece cada etiqueta en él. De este modo, se espera que todas las etiquetas aparezcan un número de veces similar en el ensemble, sin despreciar ninguna de ellas independientemente de su frecuencia. Posteriormente, desarrollamos un segundo algoritmo evolutivo capaz de construir ensembles de clasificadores multi-etiqueta, pero donde cada individuo de la población es un hipotético miembro del ensemble, en lugar del ensemble completo. El hecho de evolucionar los miembros del ensemble por separado hace que el algoritmo sea menos complejo y capaz de determinar la calidad de cada miembro por separado. Sin embargo, también es necesario definir un método para seleccionar los miembros que formarán el ensemble. Este proceso selecciona aquellos clasificadores que sean tanto precisos como diversos entre ellos, también controlando que todas las etiquetas aparezcan un número similar de veces en el ensemble final. En todos los estudios experimentales realizados, los métodos han sido comparados utilizando rigurosas configuraciones experimentales y test estadísticos, involucrando varias métricas de evaluación y conjuntos de datos de referencia en clasificación multi-etiqueta. Los experimentos confirman que los métodos propuestos obtienen un rendimiento significativamente mejor y más consistente que los métodos en el estado del arte. Además, se demuestra que el segundo algoritmo propuesto es más eficiente que el primero, dado el uso de individuos representando clasificadores por separado
    corecore