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Abstract

Multi-label classification is relevant to many domains, such as text, image

and other media, and bioinformatics. Researchers have already noticed that

in multi-label data, correlations exist between labels, and a variety of ap-

proaches, drawing inspiration from many spheres of machine learning, have

been able to model these correlations. However, data sources from the real

world are growing ever larger and the multi-label task is particularly sensi-

tive to this due to the complexity associated with multiple labels and the

correlations between them. Consequently, many methods do not scale up to

large problems.

This thesis deals with scalable multi-label classification: methods which

exhibit high predictive performance, but are also able to scale up to larger

problems. The first major contribution is the pruned sets method, which

is able to model label correlations directly for high predictive performance,

but reduces overfitting and complexity over related methods by pruning and

subsampling label sets, and can thus scale up to larger datasets. The second

major contribution is the classifier chains method, which models correlations

with a chain of binary classifiers. The use of binary models allows for scalabil-

ity to even larger datasets. Pruned sets and classifier chains are robust with

respect to both the variety and scale of data that they can deal with, and

can be incorporated into other methods. In an ensemble scheme, these meth-

ods are able to compete with state-of-the-art methods in terms of predictive
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performance as well as scale up to large datasets of hundreds of thousands

of training examples.

This thesis also puts a special emphasis on multi-label evaluation; intro-

ducing a new evaluation measure and studying threshold calibration. With

one of the largest and most varied collections of multi-label datasets in the

literature, extensive experimental evaluation shows the advantage of these

methods, both in terms of predictive performance, and computational effi-

ciency and scalability.
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Chapter 1

Introduction

It has always been in human nature to collect and classify information. Since

the digital revolution, the amount of data has proliferated, and the task of

classifying this data manually is rapidly becoming impossible. Automated

machine classification will play an ever-more vital role in the future.

Supervised classification is the task of using algorithms that allow com-

puters to learn associations between examples and class labels. Supervision

comes in the form of previously-labelled examples, from which an algorithm

builds a model to automatically predict the labels for new examples. Auto-

mated classification involves a variety of domains: text data such as e-mails,

web pages, news articles; audio; images and video; medical data; or even

annotated genes. Each example is associated with an attribute vector which

represents data from its domain. Labels represent concepts dependent on

the problem domain such as subject categories; genres; gene functions; and

other forms of annotation.

Previously-labelled examples are readily available in real world scenarios,

usually in the form of human-annotation by an expert. The type of expert

depends on the problem domain. In applications such as personal email, or

1



bookmark collections, users are able to form their own personalised labelling

scheme; news articles are commonly filed manually into a variety of cate-

gories; doctors can supply medical text classifications; microbiologists can

supply examples of gene annotation; and labelled data can even be taken

directly from human activity such as computer-network traffic. A supervised

classifier trains its model on these examples and continues the labelling task

automatically.

In the traditional task of single-label classification each example is asso-

ciated with a single class label and a classifier learns to associate each new

test example with one of these known class labels. When each example may

be associated with multiple labels, this is known as multi-label classification

Although single-label classification is considered the standard task, multi-

label classification is by no means less natural or intuitive. The human brain

can naturally associate one idea with multiple concepts. A news article about

a conference on climate change, for example, can be intuitively labelled both

politics and environment. This type of multiple-association long precedes the

digital age.

The popularity of the single-label paradigm most likely originated from

the familiarity of dealing with physical objects before the ubiquity of com-

puters and the virtual world. Duplicating physical objects requires extra

time, expense, space, and additional complexity for storing, retrieving, and

altering them or records of them. This often provides strong impetus for

a single-label association. For example, it would be possible to duplicate

an article on a conference on climate change in two separate sections of a

newspaper. This would make it easier to find the article, but would cre-

2



ate additional complications: namely the extra physical space on the paper

which the duplicated article occupies. For this, and other reasons, it would

be typical to place the article in a single section.

In a virtual context, which is evermore relevant in current times, there

are no such physical limitations: labels can be associated with data instances

without incurring the same physical storage or retrieval costs. Real-world ap-

plications have begun to embrace the multi-label paradigm. A good example

is how Gmail1 has replaced the old “folder” metaphor with labels. Many

online news sites, for example the BBC2, often link to the same news article

from different category headings, i.e. a multi-label association. A multitude

of other sources have also, knowingly or not, embraced the multi-label con-

text. Domains such as microbiology or medicine often inherently require

a multi-label scheme: a single gene may influence the production of more

than one protein, and a patient’s symptoms may be linked to multiple ail-

ments. This explains the explosion of interest in multi-label classification in

the academic literature over recent years.

Since the proliferation of data in all domains means that manually as-

signing labels is becoming infeasible for many applications, automated clas-

sification is increasingly seen as an ideal tool.

The multi-label context implies an extra dimension because each example

may be associated with multiple labels, as opposed to a single class label.

This dimension affects both the learning and evaluation processes.

The evaluation process is no longer straightforward as in traditional single-

label learning, since a simple correct/incorrect evaluation no longer suffices

1http://www.gmail.com
2http://www.bbc.co.uk
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to convey the comparative predictive power of a given classifier. Simple cor-

rect/incorrect evaluations by example are too harsh by obligating label sets

to be exact, and evaluations by label are too lenient by ignoring the structure

of label sets completely. Thus, different evaluation methods are needed.

Learning is affected by label correlations, or label relationships, that oc-

cur in the multi-label dimension. That is to say that labels co-occur with

different frequencies. For example, newspaper articles are more likely to be

associated with both category labels science and environment, than both

environment and sport. In a database of films, the genre labels family and

adult may never occur together throughout the entire collection.

The issue of label correlations directly influences a further issue: com-

putational complexity. Instead of choosing a single class label from a label

set, a multi-label classifier must consider combinations of labels. Many prior

methods for multi-label classification invest considerable computational com-

plexity into modelling label correlations, but as a result become infeasible on

even a relatively small scale. As the quantities of data grow ever greater, this

situation is exacerbated. Other methods in the literature are based upon very

efficient classification paradigms and can scale to large data. However, these

methods are often either very domain specific—i.e. specialising within a nar-

row range of data attributes and dimensions of a specific domain—or are

implemented purely to handle large data and are unable to compete with

the accuracy of other methods in the literature generally. There is a paucity

of methods in the literature which are both efficient enough to handle large

datasets as well as able to achieve high accuracy across a variety of data.

The now-widespread relevance of multi-label problems implies a need for
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such methods.

This thesis advances the field of multi-label classification with scalable

methods: methods which are able to scale to large datasets, as well as com-

pete with state-of-the-art methods on a wide variety of data sources across

different domains.

1.1 Problem Setting and Assumptions

Multi-label classification is a generalisation of single-label classification where

each example is associated with a set of labels, as opposed to one label.

Therefore the problem settings are similar: a predefined set of labels and

a set of training examples associated with these labels. Each example is

represented by a vector of attributes. A classifier trains on these examples,

and learns to predict the labels for a set of test examples, upon which its

performance is evaluated. In multi-label classification, it is usually assumed

that the set of labels has at least one element (Godbole and Sarawagi, 2004;

Kiritchenko, 2005; Ghamrawi and McCallum, 2005; Zhu et al., 2005), on the

basis that if an example has no labels it is irrelevant to the problem context

in question. Aside from this exception, an example may be associated with

any number of the labels defined in the label set.

The assumptions for this multi-label problem setting are as follows:

1. The set of labels is predefined, meaningful and human-interpretable

(albeit by an expert), and all relevant to the problem domain.

2. The number of possible labels is limited in scope, such that they are
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human-browsable, and typically not greater than the number of at-

tributes.

3. Each training example is associated with a number of labels from the

label set.

4. The number of attributes representing training examples may vary,

but there is no need to consider extreme cases of many thousands of

attributes since attribute-reduction strategies can be employed in these

cases.

5. The number of training examples may be large – a multi-label classifier

may have to deal with potentially hundreds of thousands of examples.

Under these assumptions, a multi-label classifier learns from the available

training data with the goal of undertaking the task of labelling new data.

1.2 Related Problems

It is important to mention related problems which are not part of the problem

setting so as to carefully define the focus of this thesis.

1.2.1 Tagging and keyword assignment

Tagging involves assigning tags to examples in the same way that labels are

assigned in the multi-label context. However, tags are usually assigned on

the fly, typically in a collaborative process distributed across many users

who contribute to the same corpus, often called a folksonomy. Hence the set
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of tags is dynamic and not predefined and therefore does not fit our focus

(see Assumption 1). In the past, folksonomies have been criticised for their

unreliability and inconsistency in terms of labelling (Chi and Mytkowicz,

2007).

Keyword assignment (or keyphrase indexing) with a controlled vocabu-

lary is another task comparable to multi-label learning. The association of

keywords with documents is done in a controlled fashion (unlike tags in a folk-

sonomy) but, nevertheless, keywords are usually far too sparse to constitute

the label-space of a multi-label problem: the keyword-space is often greater

than the attribute-space, or even the number of training examples (see As-

sumption 2). Keywords are usually intended to facilitate content-based search

rather than category-based browsing which is appropriate for a labelling con-

text. A thesaurus or external hyper-linked structure such as Wikipedia3 is

often employed to cope with the different task of keyword assignment, as in

(Medelyan, 2009). Although there is always possibility for overlap with these

related problems, this thesis will not address tagging or keyword assignment

directly. As it is a different problem, different approaches are needed.

1.2.2 Hierarchical multi-label classification

The limit on the number of labels in a multi-label problem in terms of human

interpretability (see Assumption 1) can be extended considerably by defin-

ing an organisational structure in the data, for example a category hierarchy,

which can facilitate human interpretation of many labels. The Yahoo! ontol-

ogy (Labrou and Finin, 1999) is an example of a huge hierarchy of thousands

3http://wikipedia.org
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of labels, yet structured for human interpretation and browsing, and thus

could be considered a multi-label problem. However, such datasets are rare

and the hierarchal arrangement usually facilitates dividing the label set into

smaller more manageable subsets which can be treated as separate datasets,

as in the treatment of the Yahoo! dataset by Tang et al. (2009).

A dataset hierarchy can define important information about the relation-

ships between labels in a specific problem domain. If the hierarchical infor-

mation is taken into account directly during the classification process, this is

known as hierarchical multi-label classification. Hierarchical specialisations

are beyond the focus of this thesis, although we address hierarchical data

generally in Section 2.5 and show why we do not address this specialisation.

1.2.3 Label ranking

Label ranking is the task of creating a model able to rank, as opposed to

classify, the set of predefined labels. For any given instance, a ranking model

outputs all the labels in order of their predicted relevance to that particular

instance. Although many multi-label classification methods are able to pro-

vide a label ranking additionally to a label-set classification, label ranking is

nevertheless a separate task requiring separate evaluation, which this thesis

does not address specifically.

1.2.4 Other related tasks

Multi-category or multi-topic classification is usually a variation of the term

multi-label classification, typically dealing with a specific problem domain

(where labels can be considered as categories or topics), as is sometimes im-
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plied by the terms subject categorisation and document categorisation. Some

variants of the multi-label problem assume the number of labels for each test

example is constant or known prior to classification, such as in (Luo and

Zincir-Heywood, 2005), however such problems are not frequently found in

the real world and this thesis does not consider them.

Multi-instance learning is the task where labels are assigned to bags of

instances (Maron et al., 1998) as opposed to a single instance. There are

a few authors embracing a multi-label multi-instance paradigm (Zhang and

Zhou, 2007b; Zhou and Zhang, 2006; Zha et al., 2008) although this is a

specific setting not addressed by this thesis.

Multi-task learning involves learning a problem together with other re-

lated problems with the aim of creating a better model for the target problem.

Because it may allow the learner to use the commonality among the tasks

in a similar way to the different labels of a multi-label problem, multi-task

learning may overlap in some aspects, but is a different task.

1.3 Approaches and Contributions

This thesis approaches the task of multi-label classification with problem

transformation, where a multi-label problem is transformed into one or more

single-label problems (Tsoumakas and Katakis, 2007). This scheme uses

common off-the-shelf single-label classifiers and thus avoids the restrictions

of a certain classification paradigm, instead allowing efforts to be placed

on improving the classification process itself. This is opposed to algorithm

adaptation, where a specific classifier is modified to carry out multi-label
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classification; often highly suited to specific domains or contexts but not as

flexible or as generally applicable as a problem transformation.

The core of this thesis identifies limitations of current problem transfor-

mation methods and contributes two significant novel methods: the pruned

sets method (published in (Read, 2008) and extended in (Read et al., 2008)),

and the classifier chains method (published in (Read et al., 2009b)). Both

these methods put a heavy emphasis on efficiency, but also demonstrate

convincing improvements in terms of predictive performance over related

methods. We also develop ensemble schemes for both methods. The main

contribution of our methods is that they are scalable. This means that they:

• are generally applicable to a wide variety of data sources;

• achieve better predictive performance than other methods in the liter-

ature; and

• can scale to large datasets where other high-performing methods do

not.

Our claims are justified by theoretical and experimental analysis of time

complexity, and extensive empirical comparison to related, well-known and

state-of-the-art methods with a large and varied collection of datasets un-

der multiple measures of predictive performance. We compare both to other

problem transformation methods as well as to alternative algorithm adapta-

tion methods.

Aside from the major component of novel methods just described, this

research also led to general contributions to the field of multi-label classifi-

cation. These include the following:
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• New multi-label datasets, to form one of the largest and varied dataset

collections used in the literature

• A detailed investigation of generally applicable threshold-calibration

methods

• Novel evaluations involving threshold functions, hierarchical methods,

and existing problem transformation methods

• The log loss evaluation function for multi-label evaluation

• An ensemble of binary relevance methods

Significant parts of the research presented in this thesis have appeared in

the following publications.

• Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank. Classifier

Chains for Multi-label Classification. In Proc. of 20th European Con-

ference on Machine Learning (ECML 2009). Bled, Slovenia, September

2009.

• Jesse Read, Bernhard Pfahringer, Geoff Holmes. Generating Synthetic

Multi-label Data Streams. In Proc. of ECML/PKKD 2009 Workshop

on Learning fromMulti-label Data (MD’09). Bled, Slovenia, September

2009.

• Jesse Read, Bernhard Pfahringer, Geoff Holmes. Multi-label Classifi-

cation using Ensembles of Pruned Sets. Proc. of IEEE International

Conference on Data Mining (ICDM 2008), Pisa, Italy, 2008.
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• Jesse Read. A Pruned Problem Transformation Method for Multi-label

Classification. In Proc. of the NZ Computer Science Research Student

Conference, Christchurch, New Zealand (2008).

1.4 Notation

We use the following notation:

• X = R
M is the input attribute space

• x ∈ X is an instance, which can be represented as an M -vector x =

[x1, . . . , xM ]

• Y = {1, . . . , L} is the set of L possible labels

• Label associations y ∈ 2L (i.e. a label set4, subset of Y) can be repre-

sented as an L-vector y = [y1, . . . , yL] = {0, 1}
L where yj = 1 iff the

jth label is relevant (otherwise yj = 0)

• (x,y) is an example consisting of an instance x and associated labels

y

• D = {(x1,y1), . . . , (xN ,yN)} is a training set of N multi-label exam-

ples

4We use the terms label associations or relevances, and label set interchangeably. Note
there is no generally accepted “standard” terminology or formal representation in the
multi-label literature. Vector notation and speaking of binary relevances is more conve-
nient when referring to, for example, the “binary relevance” method. On the other hand,
speaking of label sets is more convenient in reference to, for example, the “label powerset”
and “pruned sets” methods. We show a preference for vector notation, but since this thesis
covers such a broad range of multi-label concepts and methods, we use terminology from
both the concept of a bit vector, and a label subset.
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• When the label reference of a specific example is referred to, i becomes

a superscript, such that yij is the binary relevance of the jth label with

respect to the ith instance

Logical operations using the y-type vector representation are possible:

• ∧ is the AND operation; e.g. [0, 1, 0] ∧ [0, 1, 1] = [0, 1, 0]

• ∨ is the OR operation; e.g. [0, 1, 0] ∨ [0, 1, 1] = [0, 1, 1]

• ∆ is the XOR operation; e.g. [0, 1, 0]∆[0, 1, 1] = [0, 0, 1]

For convenience, we can borrow some notation from set theory (y can be

thought of as a set where j ∈ y ⇔ yj = 1):

• |y| gives the cardinality of y, i.e. the number of relevant labels in y,

where |y| =
∑L

j=1 yj

• y′ ⊂ y is a label subset, where |y| > |y′| and y′ ∧ y = y′

We limit the use of the latter notation to Chapter 6, where it is particu-

larly convenient, and prefer to use vector notation elsewhere.

Given training data D, a multi-label classifier learns to map the attribute

input space to the label output space:

• h : X → Y is a multi-label classifier

• ŷ = h(x) is a multi-label prediction of classifier h for test instance x

The predicted set ŷ can then be compared to the true classification set y

under multi-label evaluation. DT may denote a set of test examples (where
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labels are not provided to the classifier). In an evaluation context, we some-

times use D instead, but at no point do any of our methods use information

from test examples prior to or during classification.

Multi-label classification is often conducted in a two-stage process where,

upon receiving a test instance, real-valued confidence outputs or scores are ini-

tially provided for all labels and an additional function creates a bi-partition

of relevant and irrelevant labels, where the relevant labels become the pre-

diction. In these cases:

• ŵ ∈ R
L are confidence outputs, where ŵj is the confidence that the

jth label is relevant

• h : XM → R
L is a classifier that produces confidence outputs

• f : RL → {0, 1}L is a function that turns confidence outputs into a

label set prediction (commonly a threshold function)

• ŷ = f(h(x)) is a multi-label prediction of classifier h with function f ,

for test instance x

1.5 Thesis Organisation

This thesis is structured as follows:

• Chapter 2 provides an in depth study of multi-label data sources and

dimensions;

• Chapter 3 discusses multi-label evaluation, and introduces a log loss

evaluation measure and threshold calibration method, and also details
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of the setup for experimental evaluation;

• Chapter 4 reviews and defends problem transformation methods;

• Chapter 5 provides in depth coverage of prior work in the multi-label

literature: both existing work on problem transformation methods as

well as alternative approaches;

• Chapter 6 introduces a novel pruned sets method;

• Chapter 7 introduces a novel classifier chains method. Both Chapters

6 and 7 are largely self-contained in terms of experimental evaluation

and discussion, as well as references to related work from Chapter 5;

and finally

• Chapter 8 provides a synthesis of the contributions, makes concluding

remarks, and discusses future work.
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Chapter 2

Multi-labelled Data

In multi-label data, the label space creates an entirely new measurable di-

mension. This chapter studies that dimension.

Section 2.1 reviews and introduces various metrics for measuring multi-

label data. Section 2.2 introduces a collection of multi-label datasets from a

variety of real-world domains. Section 2.3 analyses this data in terms of label

distribution, and Section 2.4 analyses them in terms of label relationships.

Section 2.5 discusses hierarchical data. Section 2.6 briefly reviews attribute

selection, extraction and reduction for multi-label data.

2.1 Measuring Multi-labelled Data

As in single-label data, multi-label data can be measured by the number of

examples (N), the number of attributes in the input space (M), and the

number of labels (L). Here we review measures specific to the multi-label

dimension, following the notation from Section 1.4.

Label Card inality (LCard) (Equation 2.1) is a standard measure of

“multi-labelled-ness”, introduced in (Tsoumakas and Katakis, 2007). It is
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simply the average number of labels associated with each example.

LCard(D) =

∑N

i=1 |yi|

N
(2.1)

Label Dens ity (LDens) (Equation 2.2), also introduced in (Tsoumakas

and Katakis, 2007), relates to LCard, but takes into account the size of the

label space.

LDens(D) =
1

L
LCard(D) (2.2)

These measures give a good idea of label frequency, but give no indication

of the regularity or uniformity of the labelling scheme.

We introduce the Proportion of Unique label combinations (PUniq)

(Equation 2.3): the proportion of label sets which are unique across the

total number of examples.

PUniq(D) =
|{y|∃!x : (x,y) ∈ D}|

N
(2.3)

This thesis further introduces the Proportion of Occurrences of the label

set with theM aximum frequency (PMax) (Equation 2.4, where count(y,D)

is the frequency that y is found as a label combination in the datasetD). This

represents the proportion of examples associated with the most frequently

occurring label sets.

PMax(D) = max
y|(x,y)∈D

count(y,D)

N
(2.4)

These two measures indicate the level of regularity and uniformity in the
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labelling scheme. High PUniq(D) indicates irregular labelling and, when

PMax(D) is also high, the data exhibits label skew. Label skew (often known

as the ‘power law’) is well known to classification, particularly in text data

(Gelbukh and Sidorov, 2001). In a multi-label context, label skew translates

to a relatively high number of examples associated with the most common

label sets, while a relatively high number of examples are associated with

infrequent label sets. Label skew is the opposite of label uniformity and,

while well known throughout classification literature, is particularly prevalent

and exaggerated in the multi-label context (Ráez et al., 2004) where more

than one label can be associated with over half of all examples. Label skew

becomes class imbalance when each label is considered separately as a binary

problem.

2.2 Datasets and Applications

Table 2.1 displays our collection of multi-label datasets. All multi-label-

specific measurements are as described in Section 2.1. The datasets are

ordered roughly by complexity (N×L×M), with a horizontal line separating

larger datasets. Large datasets will be evaluated separately, as detailed in

our evaluation setup in Section 3.4.

The rapid increase of popularity of multi-label classification in the recent

academic literature has seen with it the emergence of new publicly available

datasets, most of which are involved in our collection. However, datasets have

still not become nearly as numerous and varied as in the traditional standard

single-label literature. To further facilitate the analysis of multi-label data
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Table 2.1: A collection of multi-label datasets and associated statistics. n
indicates a numeric attribute space; b indicates a binary attribute space.

N L M LCard LDens PDist PMax Type

Music 593 6 72n 1.87 0.31 0.046 0.137 media
Scene 2407 6 294n 1.07 0.18 0.006 0.168 media
Yeast 2417 14 103n 4.24 0.30 0.082 0.098 biol.
Genbase 661 27 1185b 1.25 0.05 0.048 0.257 biol.
Medical 978 45 1449b 1.25 0.03 0.096 0.158 text
Slashdot 3782 22 1079b 1.18 0.05 0.041 0.139 text
20ng 19300 20 1006b 1.03 0.05 0.003 0.052 text
LangLog 1460 75 1004b 1.18 0.02 0.208 0.142 text
Enron 1702 53 1001b 3.38 0.06 0.442 0.096 text
Reuters 6000 103 500n 1.46 0.01 0.135 0.064 text

TMC2007 28596 22 500b 2.16 0.10 0.047 0.087 text
Ohsumed 13929 23 1002n 1.66 0.07 0.082 0.084 text
IMDB 120919 28 1001b 2.00 0.07 0.037 0.109 text
Bibtex 7395 159 1836b 2.40 0.02 0.386 0.064 text
MediaMill 43907 101 120n 4.38 0.04 0.149 0.054 media
Delicious 16105 983 500b 19.02 0.02 0.981 0.001 text

and the evaluation of multi-label algorithms we have compiled additional

datasets from various sources: Enron (introduced in (Read, 2008)), Slashdot

and IMDB (introduced in (Read et al., 2009b)), and LangLog (introduced

here). Let us now review the collection. The relevant sources and citations

are given in the text that follows.

Music (Trohidis et al., 2008) is a small dataset concered with labelling in-

stances of music with six possible emotions: sad-lonely, angry-aggressive,

amazed-surprised, relaxing-calm, quiet-still, and happy-pleased.

Scene (Boutell et al., 2004) is a relatively small but widely used scene

classification dataset involving the following six possible contexts as labels:
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beach, sunset, field, fall-foliage, mountain, and urban.

The Yeast dataset (Elisseeff and Weston, 2001) is a widely used biological

dataset where genes are associated with several of 14 biological functions.

Genbase (Diplaris et al., 2005) is another microbiological dataset con-

cerned with gene-function where, similarly to Yeast, each gene can be associ-

ated with multiple functions. In this dataset there are 27 labels in the label

space.

Medical (Pestian et al., 2007) is a medical-text dataset compiled for the

Computational Medicine Centers 2007 Medical Natural Language Processing

Challenge1. Each document includes a brief free-text summary of patient

symptom history and their prognosis, labelled with insurance codes.

We collected the Slashdot data from http://slashdot.org, with article

titles and partial blurbs composing the documents, and subject categories

(e.g. linux, technology, science) representing the label space.

We compiled 20ng from the classic 20 Newsgroups data (Lang, 2008): a

compilation of around 20, 000 posts to 20 newsgroups ranging from rec.sports

to politics.guns, which represent part of a newsgroup hierarchy (where,

for example, rec and politics are internal nodes). Around 1000 posts are

available in the data for each of the 20 groups (i.e. labels). This is a somewhat

artificial fashion of collection as opposed to other datasets where examples

are collected with label sets as they occur naturally. We also note that this

dataset is barely multi-label.

We put Enron together from a subset of the Enron e-mail corpus2, already

labelled with a hierarchical set of categories developed by the UC Berke-

1http://www.computationalmedicine.org/challenge/
2http://www.cs.cmu.edu/~enron/
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ley Enron Email Analysis Project3. Top level categories are Coarse genre,

Included/forwarded information, Primary topics and Emotional tone.

Each message was labelled by two people, but no claims are made of consis-

tency or comprehensiveness. We considered all the leaf categories as labels.

We compiled the LangLog dataset from the Language Log Forum (http:

//languagelog.ldc.upenn.edu/nll/) hosted by the University of Penn-

sylvania, which discusses various topics relating to language (primarily En-

glish). We used the 75 topics to represent the label space, which include

language and politics, errors, humor, and computational linguistics.

Reuters comes from the modern Reuters RCV1 corpus (Lewis et al.,

2004), involving the Topics hierarchy. We reduced the attribute space from

around 46, 000 original numeric attributes to 500 by employing an attribute

selection filter for each label, based on information gain, and then taking

the top 500 attributes across all labels. This type of attribute selection for

multi-label data has been described in (Tsoumakas and Vlahavas, 2007).

This dataset is designed around a hierarchy where both leaves and internal

nodes can be considered label classification. To flatten this hierarchy, we

treat internal nodes (where classifications are possible), as well as the leaves,

as the label set.

TMC2007 (Srivastava and Zane-Ulman, 2005) originates from the SIAM

Text Mining Workshop4 and contains instances of aviation safety reports that

document problems that occurred during certain flights. The labels represent

the problems being described by these reports. We use a reduced version of

this dataset with the top 500 attributes selected, as specified in (Tsoumakas

3http://bailando.sims.berkeley.edu/enron_email.html
4http://www.cs.utk.edu/tmw07/
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and Vlahavas, 2007).

The Ohsumed collection (Hersh et al., 1994) is a subset5 of the MEDLINE

database6. This database consists of peer-reviewed medical articles, labelled

with disease categories.

We gathered IMDB from the Internet Movie DataBase7 (from http://

www.imdb.com/interfaces#plain). We used the movie plot text summaries

as examples labelled with their relevant genres. Note that this dataset is a

larger updated version from that which we used in (Read et al., 2009b).

MediaMill (Snoek et al., 2006) originates from the 2005 NIST TRECVID

challenge dataset8 which contains annotated video data. The label space

is represented by 101 “annotation concepts” such as Explosion, Aircraft,

Face, Truck, Urban.

The Delicious dataset was collected and preprocessed by Tsoumakas et al.

(2008) from the del.ico.us social bookmarking site9. This dataset actually

exceeds the scope for multi-label problems that we set in Section 1.1 (see

assumption 2). It is, in fact, a modified tagging problem: the label space

was not predefined prior to labelling and the size of the label space is greater

than the size of the input space (L > M). However, we include it in our

collection to help demonstrate the scalability of the algorithms we present

and analyse in later chapters.

These datasets and further information about them can be obtained at

the sources referenced in the above text. Datasets which we compiled or mod-

5http://www.mat.unical.it/Olex-GA/examples.htm
6http://www.ncbi.nlm.nih.gov/entrez/query/static/overview.html
7http://imdb.org
8http://www.science.uva.nl/research/mediamill/challenge/
9http://del.ico.us
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ified are available at http://meka.sourceforge.net. Many of the datasets

in our collection are part of the growing collection maintained by the Ma-

chine Learning and Knowledge Discovery Group in the Aristotle University

of Thessaloniki, available at http://mlkd.csd.auth.gr/multilabel.html#

Datasets.

The number of publicly available multi-labelled datasets has grown con-

siderably, but still by no means represents an exhaustive list of possible appli-

cations for multi-label classification, and we expect the number of available

datasets to continue increasing.

2.3 Label Distribution

Label distribution refers to the distribution of frequencies at which label sets

occur within the data. This may be characterised by the measures described

in Section 2.1.

LCard varies considerably across datasets, ranging from close to 1.0

(e.g. 20ng and Scene) where most examples are associated with only a single

label, to more than 4.0 (e.g. Yeast, MediaMill). LDens is usually very low,

i.e. labelling is usually very sparse, and Yeast and Music are the exceptions

where nearly 30 percent of the label space is associated on average with each

example (in the latter case, this is probably more on account of its small

label space—see also Scene).

Low label cardinality (and density) is typical of text and media clas-

sification, where most examples fit naturally under a single label scheme,

and multi-labelling has been introduced to resolve ambiguities. Consider the
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Label Top Level Category
Attachment(s) Included/forwarded information
Newsletters Included/forwarded information
Forwarded Email(s) Included/forwarded information
Legal Advice Primary Topics
Company Image – Current Primary Topics
Internal Company Policy Primary Topics
Humor Emotional Tone
Admiration Emotional Tone
Triumph/Gloating Emotional Tone
Worry/Anxiety Emotional Tone
. . . . . .

Figure 2.1: A subset of the label space of the Enron dataset.

Scene image-classification dataset, where most images are naturally relevant

to only a single label, such as mountain, field, or sunset. Multiple labels

are used to resolve occasional ambiguities, for example when mountain and

field are both relevant to one particular image.

High label cardinality is often observed in datasets with a very narrow

domain. Examples include biological datasets, like Yeast, where genes are

expected to have multiple functions, and text datasets like the Enron email

dataset which is specific to the Enron Corporation10, where label categories

take the form of a checklist. Figure 2.1 provides a small sample of the label

space of the Enron dataset to illustrate this characteristic.

In our collection, the label cardinality of all datasets we consider as multi-

label problems is less than 5.0. We have already discussed the exception:

Delicious, where L > M , and thus the problem is better treated as a tagging

or keyword-assignment problem, as discussed in Section 1.2.1.

10http://en.wikipedia.org/wiki/Enron
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Various label distributions are displayed in Figure 2.2, as the overall com-

position of label set frequencies. These distributions can be approximated

by a Poisson distribution:

POISS(k, λ) =
λke−λ

k!

with λ as a function of label cardinality and k as a function of the size

of the label space (λ = LCard(D), k = L). Only the highly structured

labelling scheme of the Yeast dataset deviates significantly from this distri-

bution (where label-set sizes of 2, 4, and 6 are all more common than sizes

3 and 5). Figure 2.2 shows how datasets contain very few examples that are

associated with more than about 10, even when the dataset involves over 100

possible labels (see Table 2.1).

The variance in PUniq(D) and PMax(D) values indicate the different

levels of regularity of the labelling that may be found in real-world data.

Enron and LangLog are examples of irregular labelling, given the large pro-

portion of unique label sets (high PUniq(D)), and the latter is also quite

skewed given the relatively high number of examples associated with the

most frequent label set (high PMax(D)). 20ng is a much different dataset:

it is hardly multi-label at all, and (partly as a consequence of this) only 0.3

percent of label sets are unique in the dataset—i.e. labelling is very regular—

partially due to the artificial way examples were originally collected (men-

tioned in Section 2.2). IMDB is an example of a dataset with relatively few

unique label sets, but where the frequency of the most commonly occurring

label set is relatively high. Delicious demonstrates the difference between

the dimensions of a tagging problem and a typical multi-label problem.
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Figure 2.2: The label distributions of various datasets.
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We have just looked at label distribution, which deals with label-set fre-

quencies. In the following section we discuss relationships which exist be-

tween labels themselves.

2.4 Label Relationships

In all multi-label problems relationships exist between labels. In the absence

of label relationships multi-label data is uninteresting, since each label could

be assumed independent and treated as a separate binary problem without

any loss of information, and the point of multi-label classification would be

lost. The presence of label relationships is considered throughout the litera-

ture (Ji et al., 2008; Godbole and Sarawagi, 2004; Tsoumakas and Vlahavas,

2007; Read et al., 2008; Sun et al., 2008; Yan et al., 2007; Loza Menćıa and

Fürnkranz, 2008), and is worth analysing in detail.

We can say that two labels can be measured to occur together with a

certain probability i.e. the conditional dependence of one label on another.

The conditional probability of the jth label being relevant given that the

kth label is relevant, is P (yj|yk). P (yj) is the prior probability. Note that

prior probabilities in multi-label classification sum to more than 1.0, since

labels are not all mutually exclusive, and that LCard(D)/N =
∑L

j P (Yj).

We can say that there is some “relationship” between labels yj and yk when

P (yj|yk) 6≈ P (yj).

We can visualise label relationships in different ways. Figure 2.3 shows a

graph of co-occurrences probabilities for the labels of various datasets. Figure

2.4 shows conditional and prior probabilities in the form of heatmaps, which
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Table 2.2: Existing label combinations and their respective frequencies for
labels Comedy, Short, Animation and Family in the IMDB dataset.

Combination Freq.
Comedy 6802
Comedy,Short 3219
Short 3213
Animation,Comedy,Short,Family 1469
Animation,Short 1086
Family 643
Animation,Comedy,Short 435
Comedy,Family 302
Animation 291
Animation,Family 182
Animation,Comedy 128
Short,Family 118
Animation,Comedy,Family 108
Animation,Short Family 89
Comedy,Short,Family 79

provide a more compact representation. We see “columns” in the heatmap

around labels with high priors (i.e. P (yj) values), most clearly in Enron and

MediaMill due to their high label cardinality. The remainder of noticeable

effects (where P (yj|yk) 6≈ P (yj)) are strong domain-dependent relationships,

seen most clearly in Genbase and Medical.

These graphs only display binary correlations. Often label relationships

are best analysed as combinations. Table 2.2 represents a subset of four labels

from the IMDB dataset (Animation, Comedy, Short, and Family), and the

combinations in which they occur most frequently. Note that, for example,

the combination Animation,Comedy,Short,Family occurs much more often

in the data that just the combination Comedy,Short,Family; illustrating that

label relationships can be more complex than just binary correlations.

28



quiet-still

angry-aggressive

sad-lonely

relaxing-calm

happy-pleased

amazed-supr ised

(a) Music

field

mounta in

u r b a n

foliage s u n s e tbeach

(b) Scene

1 9

1 7

1 81 5

1 6

1 3

1 4 1 1

1 2 2 1 2 0 2 2

2 3

2 4 2 5 2 6

3 2

1 1 0

0 7

6

5 4

9

8

(c) Genbase

1 9

3 7

3 5

3 61 7

4 1

1 8

3 8

4 3

3 3

1 5 1 6

3 2

3 4

3 9

1 3

1 4

4 0

1 1

1 2

2 1 2 0 4 2

4 4

2 2

2 3

2 4

2 5 2 62 7

2 8

2 9 3

2

4

1

1 0

3 1

0

9

7

3 0 6 5

8

(d) Medical

1 3

1 1

1 2

3

1 0

7

6

5

4

9

8

2

1

0

(e) Yeast

adul t

d r a m a

w e s t e r n

horror

family

comedy

romance

(f) IMDB: a subset of 7 of 28 labels

Figure 2.3: Label relationships. Node thickness indicates prior probability
P (yj); edge thickness indicates co-occurrence probability P (yj ∧ yk). Note
that only binary relationships can be interpreted from the graph (two nodes
connected via a third may not necessarily co-occur in the data).

29



0.
0 

...
 1

.0
(a) Genbase

0.
0 

...
 1

.0

(b) Medical
0.

0 
...

 1
.0

(c) TMC2007

0.
0 

...
 1

.0

(d) Media Mill

0.
0 

...
 1

.0

(e) IMDB

0.
0 

...
 1

.0

(f) Enron

Figure 2.4: Heatmaps representing an L×L matrix M of conditional proba-
bilities such that M jk = P (yj|yk) = P (yj ∧ yk)/P (yk) where subscript j is a
row and k a column. The diagonal (bottom left to top right) holds the prior
probabilities, i.e. M jj = P (yj), most clearly seen in Genbase.

30



In text classification, the instance space of an example labelled both A

and B can represent a mixture of A-examples and B-examples. A newspaper

article labelled economy and war may be composed of words relating to both

labels. However, this does not necessarily apply to all domains. An image

containing beach-images and people-images may not be a mix of typical

beach and people, since people generally look somewhat different on a beach

(as opposed to a city street for example), and beaches can also look different

when they are covered in people. The relationships between attributes and

labels in multi-label domains have not yet been fully unravelled or explored

on a large scale in the literature, although in (Read et al., 2010) we conduct

an investigation which showed some of these effects.

2.5 Hierarchical Data

In some cases, the relationships between labels may be explicitly structured

in the dataset in the form of a hierarchy. Consider the hierarchy of 20ng

in Figure 2.511. More expansive and intricate hierarchies also exist, such

as the Reuters RCV1 hierarchy (mentioned in Section 2.2), and also par-

ticularly in genomics data, where a DAG (directly acyclic graph) structure

may also be present; for example the gene ontology (GO) (Ashburner et al.,

2000), functional catalogue (FunCat) (Ruepp et al., 2004) and MIPS (Mewes

et al., 1997) hierarchies. When a hierarchical structure is taken into account

directly by a classification process, this is hierarchical classification. Hierar-

chical classification does not necessarily imply multi-label classification, but

11Note that we made small changes to the hierarchy; namely combining branches
soc→religion→ and talk→religion→ into a single branch: religion→
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Figure 2.5: The 20ng hierarchy.

the two contexts often overlap.

Hierarchical classification can either be carried out internally or externally

to the classification process (or a combination of both approaches). In in-

ternal hierarchical classification, a ‘hierarchical’ classifier models the dataset-

defined hierarchy internally. If the hierarchical structure is not modelled, this

is simply regular ‘flat’ classification. In external hierarchical classification,

which is most commonly used on subject and category hierarchies, regular

‘flat’ multi-label classifiers are arranged in alignment with the hierarchy: an

internal node is a classifier; the branches from it are classifications; the leaf

nodes reached are label predictions. Classifications filter down from a root

node (or root nodes) to the leaves, and all predicted leaf nodes represent a

multi-label prediction. For example, in Figure 2.5, eight classifiers would be

used to predict up to 20 possible labels. The classifier at each internal node

is, by default, ignorant of the hierarchy and only makes local predictions.

A special case is where internal nodes are also considered as possible label
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predictions (Cesa-Bianchi et al., 2006; Kiritchenko, 2005).

We must ask the question: is there a general advantage to hierarchical

classification over a flattened classification problem? For external hierarchi-

cal classification, in terms of predictive performance, much of the literature

indicates that there generally is not. This is due to error propagation, where

errors are propagated down a hierarchy (Cai, 2008; Godbole et al., 2002)

and label-correlation information is lost as classifications proceed downward

toward the leaves: see in Figure 2.5 that any associations between religion

and politics, and comp and sci, are already lost at the first branch despite

the fact that these pairs of labels are likely to be related to each other. The

accuracy of a naive Bayes method was shown by Godbole et al. (2002) to be

similar in both flat and hierarchical contexts. Similar findings were made by

McCallum et al. (1998).

In terms of internal hierarchical classification, a small number of meth-

ods have benefited from the presence of a hierarchy in certain domains; pre-

dominantly microbiology, where expansive and complex ontologies are often

involved. In this context, Vens et al. (2008) implemented hierarchically-

adapted decision-tree classifiers, and report good results. However, such a

specific approach falls outside the focus of this thesis of generally-applicable

methods.

Even external hierarchical approaches are specific approaches in the sense

that they rely on the presence of a hierarchy. It is, however, possible to use

unsupervised methods to construct artificial hierarchies: general methods

for generating a hierarchy from the data, rather than relying on the presence

and quality of a dataset-defined hierarchy. Cai (2008) proposed an approach
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based on agglomerative clustering. Tsoumakas et al. (2008) used a modified

k-means clustering algorithm to create hierarchical structure where there

is none previously defined. Artificial hierarchies can facilitate the interpre-

tation of results and reduce computational complexity in many multi-label

contexts by providing each classifier (at each internal node) with data with a

reduced label space (Tsoumakas et al., 2008). On the other hand, the num-

ber of overall classifiers required in such a scheme may contribute significant

overhead in terms of running time and, in many practical scenarios, may un-

dermine the gains. Improvement in predictive performance under artificial

hierarchies in terms of multi-label classification was largely unsubstantiated,

so we conducted an investigation of our own.

Tables 2.3 and 2.4 display the results (in terms of predictive perfor-

mance, and run time, respectively) of a small experiment using the MULAN

framework (Tsoumakas et al., 2009b) comparing regular flat classification to

two types of artificial hierarchies: random and clustered, as introduced in

(Tsoumakas et al., 2008). The multi-label-specific accuracy evaluation mea-

sure is reviewed in Chapter 3, and the BR and LC methods in Chapter 4.

The results show that hierarchies generally offer little benefit to classifica-

tion. The top-performing algorithm in terms of predictive performance was

in all but two cases one of the standard flat methods. Although on the larger

datasets using a hierarchy does provide considerable relief in terms of run-

ning time, the overhead of a hierarchy caused significant memory problems,

resulting in did not finish (DNF)—as defined in Section 3.4—on IMDB and

Delicious.

To summarise: hierarchical classification is beneficial in too few circum-
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Table 2.3: Predictive performance (in terms of multi-label accuracy – see
Chapter 3) for methods BR and LC (see Chapter 4) in both flat and hierar-
chical classification contexts. Top performing method set in bold for each
dataset. Naive Bayes is the base classifier.

hierarchical LC hierarchical BR

flat BR flat LC clustered random clustered random

Music 0.425 0.519 0.415 0.437 0.428 0.448
Scene 0.430 0.603 0.511 0.524 0.446 0.543

Genbase 0.601 0.340 0.348 0.450 0.390 0.460
Yeast 0.409 0.464 0.430 0.391 0.404 0.392

Medical 0.531 0.663 0.561 0.252 0.568 0.506
Slashdot 0.411 0.486 0.316 0.386 0.341 0.383

20ng 0.309 0.578 0.318 0.387 0.283 0.309
LangLog 0.010 0.098 0.080 0.103 0.043 0.053

Enron 0.170 0.313 0.289 0.189 0.197 0.154
Reuters 0.098 0.278 0.155 0.221 0.202 0.270

TMC2007 0.363 0.525 0.384 0.425 0.410 0.415
Ohsumed 0.229 0.367 0.290 0.303 0.317 0.324

IMDB 0.170 0.137 DNF DNF DNF DNF
Bibtex 0.178 0.198 0.213 0.221 0.228 0.210

MediaMill 0.022 0.250 0.243 0.101 0.260 0.143
Delicious 0.064 0.023 DNF 0.031 DNF DNF

stances to be considered in depth in this thesis, which approaches multi-label

classification in a more general sense. Internal hierarchical classification is

beneficial only in specific domains, whereas general approaches, such as ex-

ternal hierarchical classification under artificially generated hierarchies, give

poor results in terms of predictive performance. However we note that any

multi-label method can be considered in an external hierarchical context, and

thus excluding this approach from the focus of this thesis does not exclude

it from future application to methods presented within.
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Table 2.4: Running time (in seconds) for methods BR and LC in both flat
and hierarchical classification contexts. Fastest method set in bold for each
dataset. Naive Bayes is the base classifier.

hierarchical LC hierarchical BR

flat BR flat LC clustered random clustered random

Music 0.59 0.06 1.19 0.86 1.15 0.99
Scene 2.48 2.20 3.28 2.83 3.96 3.42

Genbase 3.10 1.12 6.29 3.62 6.67 4.17
Yeast 2.22 5.85 4.05 3.37 4.43 4.14

Medical 55.06 19.47 16.10 10.21 19.26 15.58
Slashdot 81.15 105.65 32.31 24.88 39.20 28.25

20ng 792.55 195.90 166.89 88.53 250.51 133.04
LangLog 143.26 50.92 28.36 12.40 33.97 24.72

Enron 102.78 142.58 29.23 22.31 28.83 23.50
Reuters 259.85 320.07 102.80 37.59 109.42 46.14

TMC2007 48.89 269.59 96.15 45.66 96.42 46.71
Ohsumed 664.82 2192.28 132.39 100.72 154.74 117.58

IMDB 8264.12 70248.63 DNF DNF DNF DNF
Bibtex 598.35 1000.75 269.53 118.97 269.97 126.22

MediaMill 537.01 2642.50 887.03 169.97 930.68 222.29
Delicious 1377.72 1515.09 DNF 1768.87 DNF DNF
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2.6 Attribute Preprocessing

Preprocessing in the attribute space (or feature space) of multi-label data can

be done in the same way as in other facets of classification, such as single-label

classification and unsupervised classification (i.e. clustering), where attribute

vectors are used to represent each example. The type of attribute space of

the datasets in our collection was indicated in Table 2.1 as either binary or

numeric.

The number and kind of attributes in the attribute space is determined

through attribute selection, which is generally divided into wrapper and filter

approaches. A wrapper approach selects attributes based on their perfor-

mance in classification, whereas a filter approach selects attributes based

solely on dataset information. The former is generally too slow for large

datasets, so the latter is much more commonly used (Kiritchenko, 2005;

Mladenic and Grobelnik, 1998).

We encoded word information for all our gathered text datasets using the

ubiquitous “bag of words” approach (Lewis, 1998), thus creating a sparse

vector model where X ∈ {0, 1}M , such that the ath element of xi ∈ X

represents the binary presence of the ath word in the ith document. We

account for the top 1000 or so occurring words. The number of attributes

can be very large, particularly in text data, in which case the number of

attributes can be reduced with further attribute selection. In selecting the

best attributes in a multi-label context, it is possible to select attributes in a

label-based fashion (by ranking the attributes with respect to each label, and

then taking the top k overall), or in a label-set-based fashion (by considering

each label set as a single class label, and carrying out attribute selection as
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in any single-label problem). Tsoumakas and Vlahavas (2007) employed the

former technique on TMC2007 as did we with the Reuters data. Kiritchenko

(2005) reviews attribute selection methods in detail.

In the hierarchical context, a distinction exists between local and global

attribute selection (Kiritchenko, 2005), which is a concept parallel to internal

and external hierarchical classification. Global attribute selection involves a

single process for extracting attributes from the dataset (the same as in a

regular flat context) whereas local attribute selection employs a separate

filtering process at each internal node of a hierarchy, so that the attribute

space is more general near the root and increasingly specific nearer the leaf

nodes where sister nodes are more closely related. Note that hierarchical

attribute selection can be carried out even when hierarchical classification

itself is not used. There is a wealth of works that investigate different forms

of hierarchical attribute selection (Bade et al., 2006; Wibowo and Williams,

2002; McCallum et al., 1998; Wang et al., 1999; Zhang et al., 2009).

Other preprocessing strategies include encoding the relationships between

labels and attributes (Ghamrawi and McCallum, 2005; Luo and Zincir-Heywood,

2005; McCallum et al., 1998), as opposed to doing so at classification time. In

(Read et al., 2009a) we uncovered and outlined in detail these relationships,

but this thesis places instead its focus on the task of classification.
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Chapter 3

Multi-label Evaluation

In the single-label context, predictive performance is easily handled under

the traditional accuracy measure, where each test example is either correct

or incorrect, and performance is given by the number of correctly classified

test instances relative to the total number of test instances. In the multi-

label space, predictive performance can be measured in two ways: either as

label-set based evaluation where each label set (i.e. each example) is evaluated

separately, or label-based evaluation where the binary relevance of each indi-

vidual label is evaluated separately. If the traditional accuracy measure is

applied in a label-set based fashion then each label set prediction must match

exactly, which can be too harsh, since even a single false positive or false neg-

ative label makes the example incorrect. On the other hand, if each label

is evaluated as a separate example, this measure tends to be overly lenient

due to the typical sparsity of labels in multi-label data—essentially creating

class-imbalance—where predicting ultra-conservatively is heavily rewarded.

As a result, additional measures of evaluation are needed.

Section 3.1 reviews existing evaluation measures specific to multi-label

classification; Section 3.2 discusses the issue of thresholding functions and
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takes a fresh look at threshold calibration as a part of multi-label evaluation.

Section 3.3 presents a new multi-label log-loss measure. Section 3.4 synthe-

sises these sections in the details of the multi-label setup for the experimental

evaluations in later chapters.

3.1 Multi-label Evaluation Measures

First we consider the basic measures of evaluation just mentioned: label-set-

based ‘accuracy’, which is referred to in the literature as exact match (Equa-

tion 3.1) and label-based ‘accuracy’, measured as Hamming loss (Equation

3.2, where ŷi∆yi is the symmetrical difference between ŷi and yi (the logical

XOR operation). These represent example-based and label-based accuracy,

respectively.

Exact-match(D) =
1

N

N
∑

i=1

1ŷi=yi
(3.1)

Hamming-loss(D) =
1

NL

N
∑

i=1

|ŷi∆yi| (3.2)

A multi-label measure of accuracy was introduced in (Godbole and Sarawagi,

2004) (Equation 3.3). This is the ratio of the size of the union and intersec-

tion of the predicted and actual label sets (represented by the logical AND

and OR operations in bit-vector notation, respectively), taken for each exam-

ple, and averaged over the number of examples. This measure has been used

often in the multi-label literature (Godbole and Sarawagi, 2004; Tsoumakas

and Katakis, 2007; Read et al., 2008). This thesis refers to this measure
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throughout as simply accuracy in a multi-label context.

Accuracy(D) =
1

N

N
∑

i=1

|yi ∧ ŷi|

|yi ∨ ŷi|
(3.3)

The F-measure, commonly used in information retrieval, has also been

popular in multi-label classification (Tsoumakas and Katakis, 2007; Spy-

romitros et al., 2008; Read et al., 2008). For any vector of label associa-

tions z ∈ {0, 1}T , a label is relevant if zj = 1 and predicted if ẑj = 1 (in a

corresponding vector of predicted label associations), and from this we can

define:

• precision as the fraction of predicted relevances which are actually

relevant—(|z ∧ ẑ|)/|ẑ|; and

• recall as the fraction of actual relevances which are also predicted—

(|z ∧ ẑ|)/|z|).

F-measure (F1) is calculated as:

F1(ẑ, z) =
2.0× precision× recall

precision+ recall

We have specified a T -vector z instead of an L-vector y, because in the

multi-label context there are several ways to average this measure, namely:

• micro-averaged; one vector z ≡ [yij, . . . , y
N
L ] (of NL values)

• macro-averaged (by label); L vectors of zj ≡ [y1j , . . . , y
N
j ]

• macro-averaged (by example); N vectors of zi ≡ yi
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test instances
y1 = (1, 0, 1, 0)
ŷ1 = (1, 0, 0, 0)
y2 = (1, 0, 1, 1)
ŷ2 = (1, 0, 1, 1)
y3 = (1, 1, 1, 0)
ŷ3 = (1, 0, 0, 1)

Measure Value

Exact-match 1
3
1 = 0.333

Hamming-loss 4
12

= 0.333

Accuracy 1
3
(1
2
+ 3

3
+ 1

4
) = 0.583

F1-micro = 0.714

F1-macro×L 1
3
(0.67 + 1.0 + 0.4) = 0.689

F1-macro×N 1
4
(1.0 + 0.5 + 0.67 + 0.0) = 0.542

Figure 3.1: An example of various multi-label evaluation measures.

which correspond to three separate measures, defined in Equations 3.4, 3.5,

and 3.6.

F1-micro(D) = F1(z, ẑ) (3.4)

F1-macro×L(D) =
1

L

L
∑

j=0

F1(zj, ẑj) (3.5)

F1-macro×N (D) =
1

N

N
∑

i=0

F1(zi, ẑi) (3.6)

The multi-label accuracy measure is effectively macro averaged by ex-

ample. As pointed out by Tsoumakas et al. (2010), the micro averaged

version of accuracy would be identical, however we note that they did not

consider the macro average by label, which would be different.

In Figure 3.1 the common evaluation measures are illustrated with a toy

problem of three test instances.
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3.1.1 Label-based versus example-based evaluation

Different classifiers perform better under different evaluation measures. Chap-

ter 4 and Chapter 5 will report on both methods which model label sets and

methods which model individual labels. Intuitively, label-set based models

will perform best under label-set based evaluation measures (like exact-

match, accuracy, and F1-macro×N ) and label-based models will per-

form best under label-based evaluation measures (like Hamming-loss and

F1-macro×L), as also noticed in the literature (Dimou et al., 2009).

Because it is possible to select evaluation measures to benefit certain

methods this thesis argues for multiple and contrasting evaluation measures

in any multi-label experiment setup—as detailed in Section 3.4. In discussion

of experiment results, later chapters will expand on, and make references

to, the tendency of classifiers to be advantaged under different evaluation

measures.

3.1.2 Evaluation without making predictions

Many multi-label methods initially predict a vector of real-valued confidence

outputs for each test instance (e.g. posterior probabilities for each label),

to which they apply a function to create a bipartition and thus a label-set

prediction which can be measured under any of the measures reviewed above.

Calibrating this function (usually a threshold function) is discussed in detail

in Section 3.2. First, let us review an alternative: measuring confidence

outputs directly.
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Vens et al. (2008) detail the area under the precision-recall curve (au(prc))

for multi-label evaluation. Instead of calibrating a fixed threshold, this mea-

sure varies a threshold in steps 0.00, 0.02, . . . , 1.00 on the real-valued confi-

dence outputs of a method and records micro-averaged precision and recall at

each step, so as to produce a curve. The area under this curve is the au(prc).

They also consider the average area under the precision-recall curve, i.e. the

curves for each individual label (a macro-averaged scheme), which may ad-

ditionally be weighted by label frequency. They also make a strong case

for precision-recall curves—as opposed to ROC-curves—for multi-label eval-

uation on account of the sparsity of labelling, i.e. the class-skew typical to

multi-label data.

We notice that this technique is not restricted to the F-measure statistics

and can be applied to any of the other measures reviewed so far in this

chapter. Thus measures like the area under the accuracy curve are possible.

To our knowledge this has not been mentioned in the literature. Although

thresholds are still needed for predicting concrete label sets in real-world

scenarios, additional curve-measures may prove interesting. We leave this

investigation for future work.

3.1.3 Hierarchical and ranking evaluation

There exist several special measures for multi-label hierarchical evaluation,

such as h-loss (Cesa-Bianchi et al., 2006), mainly to limit the effect on pre-

dictive performance caused by error propagation (see Section 2.5). These

measures are obviously not relevant to a non-hierarchical context.

There are numerous measures for evaluating a ranking of label relevance;
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for example one-error, coverage, and ranking loss; all reviewed in (Tsoumakas

et al., 2010). These ranking measures consider the order of labels in a rank-

ing. Although real-valued confidence outputs (that can be output by many

multi-label methods) can be viewed as a ranking, we see this as only coinci-

dental to achieving an accurate label-set prediction.

3.2 Threshold Functions in Multi-label Eval-

uation

Creating a bipartition of relevant and irrelevant labels is an ongoing theme in

the multi-label literature. Threshold functions are relevant to all multi-label

methods which can yield multi-label predictions from a vector of confidence

outputs. Well-calibrated thresholds are more likely to result in balanced

label-set prediction (where not too many, nor too few labels are predicted)

and are therefore more more likely to be accurate.

3.2.1 Threshold functions

A multi-label prediction ŷ can be obtained from a confidence output vector

ŵ with a threshold function f .

If threshold values are applied separately to the confidence output of each

label, we call this label-based thresholding; i.e. ŷ = ftL(ŵ) (where tL is an
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L-vector of thresholds where each tj ∈ R) such that:

ŷj =











1 if ŵj ≥ tj

0 if ŵj < tj

.

Such a label-based thresholding function has been used for some time in

the context of text categorisation, e.g. (Yang, 2001), and was also reviewed

by Fan and Lin (2007) in the context of general multi-label classification.

If a single threshold value is applied to all confidence outputs of all labels,

we call this label-set-based thresholding; i.e. ŷ = ft(ŵ) (where t ∈ R is a single

value) such that:

ŷj =











1 if ŵj ≥ t

0 if ŵj < t

We use the latter label-set based scheme. Considering multi-label data by

label-set (i.e. by example) is arguably more natural than considering multi-

label data by label, where each label is treated as if each label pertained

to an independent binary problem. Furthermore, label-set based methods

are arguably less prone to overfitting and only require the calibration of

a single threshold value. Although, as reported by Fan and Lin (2007),

label-based threshold functions can be optimised for label-based evaluation

measures, under label-set based evaluation measures we found that label-

set-based thresholding obtains similar predictive performance to label-based

thresholding.

In many cases, it can be assumed that confidence outputs are posterior
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probabilities, such that each ŵj ∈ [0, 1]. However, this is not always the

case. Some ensemble methods, for example, vote on labels such that each

ŵj ∈ N0. Comparing methods that output different kinds of confidence values

complicates the task of setting an experiment-wide threshold. To take into

account these cases, we normalise ŵ, denoted as w, such that
∑L

j=1w
i
j = 1.0,

which limits the effective range of potential thresholds (from 0.0 to 0.5) and

therefore makes a threshold easier to set for use across all competing methods.

We do note, however, that this procedure is undesirable when working with

methods that only output posterior probabilities, since the semantics of such

outputs are altered by such a transformation.

Consider the following two test instances classified under two different

classification schemes A and B, giving different kinds of outputs, where col-

umn ft(ŵ)→ y gives the range of a threshold under which the correct label

set (y) is achieved:

ŵ = h(x) w = norm(ŵ) y ft(w)→ y

hA(x1) [0.94, 0.02, 0.00, 0.00] [0.98, 0.00, 0.02, 0.00] [1, 0, 0, 0] 0.02 ≤ t < 0.98

hB(x1) [78, 0, 1, 0] [0.99, 0.00, 0.01, 0.00] [1, 0, 0, 0] 0.02 ≤ t < 0.99

hA(x2) [0.90, 0.70, 0.00, 0.10] [0.53, 0.41, 0.00, 0.06] [1, 1, 0, 0] 0.06 ≤ t < 0.41

hB(x2) [65, 80, 2, 9] [0.42, 0.51, 0.01, 0.06] [1, 1, 0, 0] 0.06 ≤ t < 0.42

Note that, after ŵ is normalised to w, any single threshold value of 0.06 ≤

t < 0.41 will lead to the correct classification in all four cases, despite the

fact that the true prediction of both examples sets contain different numbers

of labels and that the confidence outputs of methods A and B are of a totally

different range and scale.

Empty-set predictions are possible (i.e. |ŷ| = 0), particularly if thresholds
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are calibrated too high. However, with a well-calibrated threshold, this is

not generally an issue: we found that eliminating the empty-set condition

by forcing a classification of at least one label (i.e. |ŷ| ≥ 1) using strategies

detailed in (Spyromitros et al., 2008) made a negligible difference to our

experiment results. Furthermore, in many cases it may be desirable to predict

zero labels rather than force unconfident predictions.

3.2.2 Threshold calibration

Figure 3.2 displays the effect of a range of threshold values on the accuracy

statistic of three fundamental multi-label problem transformation methods

with both naive Bayes and support vector machines as base classifiers (note

that logistic outputs are fit to the latter to provide smoother confidence

outputs). Problem transformation methods will be reviewed in detail in

Chapter 4, although these plots are not intended to compare either absolute

or relative performance of the different classification methods, but rather to

illustrate how threshold selection directly affects the predictive performance

of different methods. The figure shows how performance under a particular

threshold is related to the dataset, the multi-label method, and the single-

label base classifier employed by that method. Note that outputs were not

normalised to 1.0 is this case, to show that these effects occur independently

of this optional procedure. The need for threshold calibration on a per-

dataset and per-method basis is clear.

In multi-label circles (for example in (Tsoumakas and Vlahavas, 2007)), it

is common to consider an arbitrary threshold, e.g. 0.5. Yang (2001) discussed

some more advanced methods of threshold calibration for threshold func-
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(a) Scene with NB as base classifier
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(b) Enron with NB as base classifier
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(c) Scene with SVMs as base classifier
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(d) Enron with SVMs as base classifier

Figure 3.2: Accuracy with respect to threshold for methods BR, LC, RT (see
Chapter 4) on Scene and Enron with naive Bayes (NB) and support vector
machines (SVMs) as base classifiers.
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tions used in text categorisation circles in a binary context i.e. label-based

threshold functions:

• An internal validation method (Ival), where each threshold tj ∈ tL is

calibrated like any parameter, by testing a set of values on a selection

or selections of the training data, and selecting the value (or average of

the values) which results in the best performance under some chosen

measure of evaluation.

• The proportional cut method (Pcut), where each threshold tj is chosen

according to the frequency at which label yj is relevant in the training

data (to approximate the same frequency in the testing data).

These methods can also be implemented in a label-set-based fashion (which

is our preference, as explained in Section 3.2.1).

It is clear from Figure 3.2 that arbitrary thresholds are inappropriate in

a general setting. Ival can produce good thresholds but at a potentially

huge computational cost, as was our experience in (Read, 2008). In all the

large-scale experiments of this thesis (in Chapters 6 and 7) we used a label-

set-based Pcut method, which we found calibrates thresholds as effectively

as Ival but at a negligible computational cost. This is despite the fact

that, unlike Ival, Pcut is not tailored to any particular evaluation mea-

sure. Thus, Pcut is a fast and effective method suitable for general use in

experimental evaluations.

Given threshold function ft : R
L → {0, 1}L under a threshold t, and each

wi obtained beforehand (for computational efficiency) for each test instance

xi|i = 1, . . . , G, label-set-based Pcut chooses the t which minimises the
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difference in label cardinality between the training data and the classified

test data:

PCut = argmin
t

∥

∥

∥
LCard(D)−

( 1

G

G
∑

i=1

|ft(wi)|
)∥

∥

∥

3.2.3 Alternatives to threshold functions

Threshold functions are widely used in the literature, but some methods

may only provide label rankings or poor quality confidence outputs (which

are difficult to calibrate a threshold on). There are other ways to acquire

a concrete label-set prediction without a threshold; essentially by predicting

the number of labels for each test instance (i.e. the top |ŷi| labels from a

ranking for each test instance xi). Existing methods include:

• Assuming prior knowledge of each |yi| (Luo and Zincir-Heywood, 2005)

• The k-per-doc method: each test example is assigned exactly k labels

(∀ŷi : |ŷi| = k) (Lewis, 1992; Yang, 2001)

• A meta method like regression or a multi-class classifier (Tang et al.,

2009)

• Calibrated Label Ranking (CLR): partitioning a ranking with a virtual

label (Fürnkranz et al., 2008)

Assuming prior knowledge of the number of labels for each test instance is

not a valid assumption in the real world, and the k-per-doc method is likely

to perform well only where the number of labels per example is extremely

regular throughout the data (our studies in Chapter 2 indicate the rarity of
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such data). Tang et al. (2009) use a meta multi-class classifier with classes

{2, . . . , L} to predict the number of labels for each ŷi. Fürnkranz et al.

(2008) introduce CLR (which is, arguably, also a meta method). CLR draws

a label set prediction from a ranking by using a virtual label. This label is

calibrated in the ranking so that the relevant labels lie before it. Calibration

is done with L + 1 binary classifiers. Both these methods scale with L; any

meta method implies an extra computational cost.

3.3 Log Loss

In the previous section we saw how a threshold function can produce label-

set predictions from confidence outputs, which can then be evaluated by a

variety of measures. It is also possible to evaluate the confidence outputs

directly. This section details our log loss measure for multi-label evaluation,

which does exactly that.

Even when all competing methods in an experimental evaluation use the

same threshold function, there are limitations: variations in this function

can produce different results under different methods, by allowing more or

fewer labels to be relevant to test instances. To ensure that methods are

not unfairly advantaged by a particular thresholding scheme, we argue that

a large-scale multi-label evaluation should include non-threshold dependent

measures.

Ranking measures do not require a threshold, but are not suitable, since

we are not interested in the order of label relevance. Boutell et al. (2004)

develop several parameterised versions of accuracy to allow different costs
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for false positives and true negatives. This does not require a threshold, but

instead requires additional parameters. In (Read et al., 2009b) we introduced

log loss to multi-label evaluation, which is a less complicated and more general

measure, which supplements au(prc) as a measure not requiring a threshold.

Under log loss, each label error is graded by the confidence at which it

was predicted: predicting false positives with low confidence induces loga-

rithmically less penalty than predicting with high confidence. Log loss can

be defined as in Equation 3.7.

Log-Loss(D) =
1

NL

N
∑

i=1

L
∑

j=1

min(−log-loss(ŵi
j, y

i
j), ln(N))

where log-loss(ŵ, y) = ln(ŵ)y + ln(1− ŵ)(1− y)

(3.7)

This measure includes a dataset-dependent maximum of ln(N) to limit

the magnitudes of the penalty (where N is the number of test examples).

Such a limit has been used in other domains where a log loss function is used,

for example (Tan and Dowe, 2003; Schapire and Singer, 1999), and serves to

smooth the values to prevent a small subset of poorly predicted labels from

greatly distorting the overall error. Log-loss assumes that each confidence

value is between 0.0 and 1.0 inclusive, i.e. essentially posterior probabilities

such that ∀wj : wj ∈ [0, 1] (note that is a different normalisation process to

the one outlined above for thresholding purposes). As a loss metric, the best

possible score for log-loss is 0.0.

Log-loss is distinct from other measures because it punishes poor pre-

diction confidences directly, and with respect to the degree of confidence

(punishing worse errors more harshly). It is thus immune to the effects of
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Where y = [1, 0, 0, 1], ŵ = h(x) = [0.5, 0.0, 0.4, 0.2]:

ŷ = ft(ŵ) t Accuracy Hamming-loss Log-loss

[1, 0, 0, 0] 0.45 0.50 0.25 3.22
[1, 0, 1, 0] 0.35 0.33 0.50 3.22
[1, 0, 1, 1] 0.15 0.67 0.25 3.22

Figure 3.3: Illustration of accuracy, Hamming-loss, and log-loss for
one example (x,y) under different thresholds (t), given a set of prediction
confidences ŵ. Note that we assume that N = 100 (so that the dataset-
dependent limit of ln(N) may be realistic).

threshold calibration and contrasts well with evaluation measures which may

reward guessing labels under low confidence, or ignoring labels even under

high confidence. Also, because log-loss punishes worse errors much more

harshly, it can provide larger margins of contrast between competing meth-

ods. Essentially, log-loss is a kind of information-gain measure which tells

us about how close confidence predictions are to the real label values.

Log-loss is illustrated in Figure 3.3 alongside other measures on a toy

problem of a single test instance. This figure illustrates how a low threshold

under accuracy (and thus guessing two extra labels, even though one of

them is a false positive) can be beneficial and, likewise, a high threshold

under Hamming-loss (where predicting one label is better than predicting

two in this case). Under log-loss the classifier has been penalised for its

relatively high confidence on the third label (which is not relevant to the

instance), and its low confidence on the fourth (which is relevant).

By encouraging quality prediction confidences, log-loss can be useful

for related tasks where the degree of label relevances is important: for a

news article about science and sports with a central theme of science,
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we would expect a higher relevance for the label science. Likewise, an image

may contain both beach and mountains, but pertain to more of one than

the other. Unlike ranking, label relevancy is gauged by real values. We leave

further exploration of this alternative for future work.

Like any measure in multi-label evaluation, log-loss should not stand

alone, but rather be used along with other contrasting measures to form part

of a balanced multi-label evaluation. The following section elaborates the

experiment setup for the major evaluations of this thesis.

3.4 Experimental Setup

Like in the traditional single-label context, extensive experimental evalua-

tion is necessary to empirically confirm method performance. It is worth

discussing experimental setup specifically with respect to multi-label con-

texts, since this area is comparatively new and underdeveloped.

As a result of its relative novelty multi-label classification does not yet

have a standard collection of datasets and many evaluations in the literature

use only one, or a very limited collection. Another issue has been the lack of

comparison between methods: only recently have authors begun to compare

their work to a variety of other competitive methods from the literature.

Due to the extra label dimension of multi-label data any multi-label ex-

perimental setup should compare method performance with multiple and

contrasting evaluation measures. The major evaluations of this thesis use

the following measures:
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Measure name Measure type Requires threshold

accuracy label-set based yes

exact-match label-set based yes

au(prc) label based no

F1-macro×L label based yes

log-loss label based no

Additionally, we consider running times. All thresholds are calibrated con-

sistently and universally using the label-set based proportional cut (Pcut)

method detailed in Section 3.2. Note that sometimes, for small pilot experi-

ments, we display the results of fewer measures for brevity.

During this research we developed our own multi-label framework to im-

plement and evaluate our methods as well as other methods from the litera-

ture. This framework, which includes the classification and multi-label meth-

ods detailed in this thesis, is a multilabel extention of WEKA (Hall et al.,

2009) (MEKA) is available at: http://sourceforge.net/projects/meka/.

In recent years, other software has been developed, most notably the

MULAN framework1 (Tsoumakas et al., 2009b)—also based on WEKA—

which implements well-known methods from the literature. MEKA has a

wrapper for MULAN so as to include these methods in our evaluations.

Our standard setup is 5× 2 fold cross validation (five rounds; two folds)

on standard-sized datasets, and a 60%/40% train/test split on the larger

datasets (due to the large running times incurred by the slower methods).

The approximate partition between ‘standard’ and ‘large’ datasets was made

1http://sourceforge.net/projects/mulan/
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in Table 2.1 with large datasets following the horizontal line.

We use two statistical comparisons. An appropriate test for comparing

the performance of multiple methods directly against a particular method

is the corrected paired t-test (Nadeau and Bengio, 2003); significance is de-

termined under a p value of 0.05. Additionally, we used the Nemenyi test

(Demšar, 2006) to compare between multiple classifiers. The Nemenyi test

has been observed as not as sensitive (Cheng and Hüllermeier, 2009) but,

since it tests significance over a collection of datasets, it has the additional

advantage that it can be employed on the results of a train/test split evalu-

ation. We also consider methods’ average ranks.

We run our experiments on 3 GHz machines allowing for 2 Gigabytes

of memory. We define did not finish (DNF) unable to complete on a given

dataset, either due to lack of memory or exceeding the time of ten days.

Minor deviations from this setup and other experiment details algorithm

specifics, parameter configurations, and so on will be made explicit in the

main experimental sections.

In the course of this research we have several times expanded the col-

lection of publicly available datasets, compared to notable methods in the

literature, and used multiple evaluation measures. We continue to do so in

the experimental sections of this thesis. Two major empirical evaluations

appear in Chapters 6 and 7.
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Chapter 4

Problem Transformation

Problem transformation is the process whereby a multi-label problem is trans-

formed into one or more single-label problems. In this scheme, single-label

classifiers are employed, and their single-label predictions are transformed

into a multi-label prediction. An alternative to problem transformation is

algorithm adaptation where an existing single-label algorithm is adapted di-

rectly for the purpose of multi-label classification. These two approaches are

discussed in (Tsoumakas and Katakis, 2007).

The prime advantage of problem transformation is flexibility. By ab-

stracting away from a specific classifier, any off-the-shelf single-label classifier

can be used to suit requirements. Depending on the problem context, some

classifiers may demonstrate better performance than others.

Algorithm adaptation methods are usually designed with a specific do-

main in mind. For example, decision trees are typically used on biologi-

cal datasets (Clare and King, 2001; Vens et al., 2008) where they perform

well and provide interpretable models, while Bayes-based mixture models are

commonly used specifically on text data (McCallum, 1999). Additional work

on algorithm adaptation is reviewed in Chapter 5. The advantage of problem
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transformation is that it can abstract away from classifier specifics and be

more generally applicable by focussing on issues relevant to all multi-label

domains such as modelling label correlations.

Moreover, algorithm adaptation methods almost invariably involve prob-

lem transformation internally, which can often be applied generically to a

range of classifiers. Therefore, many algorithm adaptation methods can also

be applied generally to external problem transformation approaches, which

are the focus of this thesis.

This chapter reviews, compares, and contrasts fundamental problem trans-

formation methods that are found in variations and combinations throughout

the multi-label literature. Chapter 5 will provide a general review of ap-

proaches in the literature, many of which use directly—or draw inspiration

from—these fundamental methods.

4.1 The Problem Reduction Method

Before we review the fundamental methods, let us quickly look at a primitive

form of problem transformation: problem reduction, reviewed in (Tsoumakas

and Katakis, 2007). By eliminating certain labels, or examples, it is possible

to reduce a multi-label problem to a single-label problem. Essentially there

are two basic problem-reduction approaches, either

1. remove all examples (x,y) where |y| > 1 from the dataset; or

2. remove (|y| − 1) labels from each label set y.

Both approaches result in a dataset with strictly one label to each example

(∀(x,y) ∈ D : |y| = 1), i.e. a single-label problem.

59



It is clear, however, that in both cases considerable information may be

lost, and performance will suffer accordingly. For this reason, such primitive

methods have never been seriously considered in the literature, and can be

safely discarded from further analysis.

We now proceed to the fundamental problem transformation methods

which are widely used throughout the literature. The advantages and disad-

vantages of each method will be further discussed in Chapter 5.

4.2 Fundamental Problem Transformation

4.2.1 The Binary Relevance method (BR)

The most well-known and widely documented problem transformation method

is the binary relevance method (BR) (Tsoumakas and Katakis, 2007; Godbole

and Sarawagi, 2004; Zhang and Zhou, 2005). BR transforms any multi-label

problem into L binary problems1. Each binary classifier is then responsible

for predicting the association of a single label (one binary problem for each

label). Using the notation from Section 1.4, a formal overview of the process

is as follows.

Transformation (x,y)→ {(x, yj)|j = 1, . . . , L}

Classifier h = (h1, . . . , hL) : X → {0, 1}
L

Classification ŷ = [y1, . . . , yL] = [h1(x), . . . , hL(x)]

1BR-type methods are occasionally referred to in the literature as ensemble methods
because they involve multiple binary classifiers. However, none of these classifiers is multi-
label capable. Throughout this thesis we use the term ensemble strictly in the sense of an
ensemble of multi-label methods.
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Thus, BR is made up of L classifiers hj|j = 1, . . . , L. Each hj is trained

with all (xi, y
i
j)|i = 1, . . . , N . For each test instance, each hj predicts the

binary association of the jth label.

Although conceptually simple and relatively fast, it is widely recognised

that BR does not explicitly model label correlations (Park and Fürnkranz,

2008; Elisseeff and Weston, 2001; Yan et al., 2007; Godbole and Sarawagi,

2004; Zhang and Zhou, 2007b) since it constructs a decision boundary in-

dividually for each label. BR can also be affected by class-imbalance (Ráez

et al., 2004) since, due to the typical sparsity of labels in multi-label data,

each binary classifier is likely to have far more negative examples than posi-

tive.

4.2.2 The Pairwise Classification method (PW)

Whereas BR is a “one-vs-rest” paradigm (as it is known in multi-class clas-

sification) where one classifier is associated with the relevance of each label,

pairwise classification (PW) is a “one-vs-one” paradigm where one classifier

is associated with each pair of labels. Hence, instead of L binary prob-

lems, P = L(L−1)
2

binary problems are formed: one for each pair. Typically

(Hüllermeier et al., 2008; Fürnkranz et al., 2008), each pairwise problem is

made up of examples with which either labels (but not both) are associated,

thus forming a decision boundary for these two labels. The process contains

the following elements.

Transformation (x,y)→ {(x, yj)|yj ⊗ yk = 1, 1 ≤ j < k ≤ L}

Classifier h : X → {0, 1}P
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Classification ŷ = f(hj,k(x)|1 ≤ j < k ≤ L)

where f : {0, 1}P → {0, 1}L is a function which, given an input instance,

takes the output of all pairwise classifiers as input and outputs a multi-label

prediction for that instance.

Note that, unlike the relevance classifications of BR, the pairwise compar-

isons of PW do not result immediately in a label set, but rather a set of pairwise

preferences, and this additional function f is necessary to create a multi-label

prediction (also discussed in Chapter 3). In (Park and Fürnkranz, 2008)

the votes of all pairwise preferences are aggregated to produce confidence

outputs, to which a threshold function can be applied. However, thresh-

old functions are surprisingly uncommon for PW methods, perhaps because

associated confidence outputs are difficult to calibrate a threshold for, as

suggested by Petrovskiy (2006). The widely cited CLR method (Fürnkranz

et al., 2008) calibrates a virtual label to bipartition a ranking for producing

label-set predictions with a PW method.

Time complexity is an issue for PW: it is quadratic with respect to the

number of labels. PW approaches have also been criticised for not dealing

well with overlapping labels and struggling to establish disjoint assignments

in the multi-label context (Petrovskiy, 2006; Ráez et al., 2004).

4.2.3 The Label Combination method (LC)

Another fundamental problem transformation method is the label combina-

tion method (LC) or label power-set method. LC treats all label sets as atomic

(single) labels to form a single-label problem in which the set of single labels

represents all distinct label sets in the multi-label training data. Thus the
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label of each single-label example is in fact a multi-label set, and hence the

following notation.

Transformation (x,y)→ (x, c)|c ≡ y

Classifier h : X → Y ′ where Y ′ = {c|c ≡ y, ∃x : (x,y) ∈ D}

Classification ŷ = ĉ = h(x)

Although LC can take into account label correlations directly, unlike the

binary models of BR and PW, it can only classify new examples with label sets

it has already seen in the training set i.e. it can overfit the training data. LC

can also be computationally complex (Tsoumakas and Vlahavas, 2007; Read

et al., 2008; Cheng and Hüllermeier, 2009; Veloso et al., 2007) since it requires

as many class labels in the single-label transformation as there are distinct

label sets in the training data—worst case min(L, 2L − 1)—, and many of

these labels are likely to be very sparse with respect to training examples.

4.2.4 The Ranking and Threshold method (RT)

The ranking and threshold method (RT) trains a multi-class problem, and

relies on a thresholding function to make multiple predictions per instance.

We described thresholding in Section 3.2: all labels associated with a confi-

dence value greater than a threshold form the multi-label prediction. RT is

detailed in (Tsoumakas and Katakis, 2007): each multi-labelled example is

decomposed into multiple single-label (multi-class) examples—one for each

relevant label—by duplicating the instance space of each training example
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and assigning one of the relevant labels to each new example. The result-

ing L-class dataset can be used to train any single-label multi-class-capable

classifier. The process is as follows.

Transformation (x,y)→ {(x, c)|c ≡ j, yj = 1}

Classifier h : X → R
L

Classification ŷ = ft(h(x))

where ft : R
L → {0, 1}L is a threshold function under threshold t.

Although threshold functions are widespread, RT’s transformation is rarely

used in the literature. A disadvantage of this classification method is the re-

liance on classifier confidence outputs, which may be difficult to threshold,

or may not be output at all by some classifiers. Also—duplicate instances

being associated with different class labels in the transformed data compli-

cate modelling decision boundaries. Similarly to BR, this method does not

explicitly model label correlations.

4.3 Problem Transformation Complexity

Table 4.1 provides a summary of the fundamental problem transformation

methods and the dataset dimension with the strongest influence on their

complexity. The methods clearly vary in terms of their worst case scenarios,

memory use, and running time.

We see that BR scales linearly with L, whereas PW scales quadratically,

although each of PW’s binary classifiers is likely to be trained on fewer than

N examples. LC only instantiates one single-label classifier, but the number
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Table 4.1: The problem transformation methods, the dataset measurement
to which they predominantly scale, the number of single-label classifiers em-
ployed, and the number of single-labels and the number of examples each of
those classifiers deals with.

method scales with #classifiers #lbls/classifier #exs/classifier
BR L L 2 N
PW L L(L− 1)/2 2 ≤ N
LC #Dist(D) 1 #Dist(D) N
RT LCard(D) 1 L N × LCard(D)

where #Dist(D) =
∣

∣{y|∃x : (x,y) ∈ D}
∣

∣

of class labels of this classifier is bound to the number of distinct label sets

in the training data (#Dist), which may be as high as N (the number of

distinct examples in the training data). RT also involves only a single classifier

and the number of class labels grows only linearly to the number of labels,

but in this case the number of training examples grows with the LCard of

the training set.

4.4 Single-label Base Classifier Selection

Problem transformation methods offer the flexibility of using any single-label

base classifier. It is important, therefore, to consider the effect that the

choice of single-label classifiers has, both on predictive performance and the

computational complexity of the overall process.

Table 4.2 provides a list of well-known single-label classifiers which have

been used in the multi-label literature, either employed by problem transfor-

mation methods or in modified form as algorithm adaptation methods (as

Chapter 5 will review).
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Table 4.2: Single-label classifiers used in the multi-label literature.

Key Name [Citation] (WEKA implementation)

NB Naive Bayes (John and Langley, 1995) NaiveBayes

SVM Support Vector Machines (Platt, 1999) SMO

DT Decision Trees (Quinlan, 1986) J48

kNN k Nearest Neighbor (Wang et al., 2000) IBk

NN Neural Networks (Haykin, 1998) MultilabelPerceptron

DR Decision Rules (Cohen, 1995) JRip

SVMs are a popular choice (Tsoumakas and Vlahavas, 2007; Tang et al.,

2009; Godbole and Sarawagi, 2004; Read et al., 2008) due to their reputed

predictive power, although for multi-class problems (such as those produced

by LC and RT) SMO uses an internal pairwise-coupling method which scales

exponentially with respect to the number of class labels. k-nearest neigh-

bor (kNN) methods are also popular in multi-label classification (Zhang and

Zhou, 2007a; Spyromitros et al., 2008; Cheng and Hüllermeier, 2009) but,

since every kNN query scales linearly in the number of training examples,

this can be an expensive scheme for large training sets. Naive Bayes has

been used where other methods would be too computationally expensive

(Tsoumakas et al., 2008).

To the best of our knowledge, only one general study of single-label al-

gorithms in the context of problem transformation has been carried out (by

Tsoumakas and Katakis (2007)). We extended this study both with respect

to the number of problem transformation methods and the range of base

classifiers. We tested each of the four main problem transformation meth-

ods (described in this chapter) with each of the six single-label base classi-

fiers (listed in Table 4.2)—giving a total of 24 classification schemes—in a
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train/test scenario on the first 10 datasets of Table 2.1. Table 4.3 displays

some results—a list of the methods which got the top rank on at least one

dataset for at least one of the two evaluation measures.

SMO is found in the list of the top methods under all problem transfor-

mation methods except RT. RT performs well with, for example, NaiveBayes,

which provide smoother confidence predictions to which a threshold is more

effectively applied. J48 appears on the list under binary transformations (BR

and PW). Only partially observable in the table is that MultilayerPerceptron

and JRip only perform well and under time and memory constraints under

BR (and even then, not always).

SMO provides the best trade off between predictive performance and com-

putational complexity: it is slower than some other classifiers, but fast enough

to finish within limits even under LC; it gets by far the most top-rankings

across datasets. For that reason it is our classifier of choice for most of

the experimental evaluation in this thesis. Alternative choices would be de-

cision trees or naive Bayes where, in terms of predictive performance, the

former (J48) is most beneficial on binary transformations and the former

(NaiveBayes) is most beneficial on multi-class transformations.

Not shown in the table (for brevity) is that different methods perform

distinctively under different datasets, which is further justification for work-

ing with problem transformation methods in a general setting rather than

being confined to specific algorithms that may be suitable only for specific

domains.
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Table 4.3: The best 12 combinations of problem transformation (PT) and
single-label base-classifier (SL); in terms of the number of wins across 10
datasets (note ties are possible) by accuracy and F1-macro×L, the num-
ber of datasets each method could finish on within 24 hours, and the number
of wins as proportions of the datasets that were finished.

no. of wins (/10) % of wins

PT SL by acc. by F1×L #Fin. by acc. by F1×L

LC SMO 5.0 3.0 10 0.50 0.30
BR Perceptron 1.0 1.0 3 0.33 0.33
PW SMO 1.0 1.0 4 0.25 0.25
BR JRip 1.0 2.0 10 0.10 0.20
PW J48 1.0 0.0 10 0.10 0.00
LC NaiveBayes 1.0 0.0 10 0.10 0.00
BR J48 0.0 1.0 9 0.00 0.11
RT NaiveBayes 0.0 1.0 10 0.00 0.10
BR SMO 0.0 1.0 10 0.00 0.10
LC IBk 0.0 1.0 10 0.00 0.10
BR IBk 0.0 1.0 10 0.00 0.10
RT IBk 0.0 1.0 10 0.00 0.10
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4.4.1 Single-label base classifier optimisation

The performance of many single-label classifiers can often be improved by

optimising their respective parameters. For example, Dimou et al. (2009)

employ the LIBSVM library to tune the parameters of SVMs. However, fine-

tuning parameters is intensive, classifier-specific, and not directly related to

multi-label classification performance, and we instead use default parameters

for the single-label classifiers wherever possible (such as those provided by

WEKA (Hall et al., 2009)).
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Chapter 5

Prior Work

Chapter 4 reviewed problem transformation approaches for multi-label clas-

sification. As well as standalone methods, these approaches constitute the

core of many algorithm adaptation methods. This chapter reviews the most

relevant and most significant contributions to the multi-label literature.

The first part of this chapter reviews work embracing the most com-

mon problem transformation paradigms. Following sections review algorithm

adaptation methods. The final part summarises prior work specifically with

respect to efficiency and scalability to large datasets.

5.1 BR Methods

BR is arguably the most well-known multi-label method. It is simple to

implement and has been used as a baseline method throughout the multi-

label literature. In Chapter 4, we saw that the fact that BR does not explicitly

model label relationships was widely claimed, and that this is often used to

justify alternative approaches. Some methods, however, combat this problem

of BR directly.
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In the main contribution of (Godbole and Sarawagi, 2004), BR classifica-

tion outputs are stacked into a separate meta classifier along with the original

feature space, creating a two-stage classification process which can learn label

correlations in the data. We refer to this method as meta-BR (MBR). The meta

process implies an extra iteration on both training and test data, as well as

internal classifications on the training data to acquire the label outputs for

the secondary training step. Tsoumakas et al. (2009a) exploit the redun-

dancy among the models of the MBR scheme to improve the overall efficiency

of the process.

A method reviewed in (Schapire and Singer, 1999) uses a meta scheme

with a Hamming distance metric to map the confidence predictions of a

single-label classifier to label sets which have been observed in the training

data. The subset with the shortest Hamming distance to the predictions is

chosen as the predicted set. When applied to the binary outputs of BR we

refer to this method as subset-mapped BR (SMBR).

The classifier chains (CC) problem transformation method, which we

present in Chapter 7, models label correlations without leaving the BR paradigm.

It uses a stacking-like process, but unlike MBR, this process runs in a chain

and therefore does not require a meta step or internal cross validation for

training.

A BR-based boosting algorithm is introduced in (Yan et al., 2007). Binary

models are trained on subsets of the example and attribute spaces (N and

M). It reduces redundancy in the learning space and by sharing binary

models between labels and thereby also reduces complexity. This is a related

aim and approach to the work in (Tsoumakas et al., 2009a), but involving a
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boosting ensemble instead of MBR’s stacking method.

The work in (Ji et al., 2008) is a general framework for extracting shared

subspaces in a BR approach, where a second part to the method depends

on the representations in this shared subspace. This shared subspace mod-

els label correlations. However, despite using an approximation algorithm,

the resulting method is computationally expensive, which is reflected in the

experimental setup, where only relatively small samples of 1000 training in-

stances are used.

Apart from not modelling label correlations, a secondary issue relating

to BR is class-label imbalance. Ráez et al. (2004) focus on this issue with

respect to text categorisation by overweighting positive examples in the BR

models. This work is also involved in a real-time environment and on large

collections, and the authors discover that classification speed can be improved

with marginal effect on predictive performance by ignoring rare class labels

altogether (at least with respect to their text data corpus).

5.2 PW Methods

PW-methods have predominantly been used in ranking schemes (as mentioned

in Section 4.2.2) since, unlike BR, the classification phase results in a set of

pairwise preferences which give rise more naturally to a ranking than a label

set prediction. A well known example of PW-ranking is the ranking by pairwise

comparison scheme (RPC) (Hüllermeier et al., 2008), which obtains a ranking

by counting the votes received by each label.

The CLR scheme (Fürnkranz et al., 2008) arguably best completes the task
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of multi-label classification by extending RPC with calibrated label ranking to

create a bipartition of relevant and irrelevant labels (as mentioned in Section

3.2.3): a virtual label partitions a ranking into relevant and irrelevant labels

to form a concrete label-set prediction for any test instance. An additional

L binary classifiers approximating the standard BR problem are required to

calibrate this label at training time. CLR has become a heavily cited work,

and we compare with it in our experimental evaluations.

Due to the inherent large number of classifiers under a PW scheme (quadratic

with respect to L), most PW approaches use efficient single-label base clas-

sifiers to improve scalability. CLR, for example, was presented with simple

perceptrons. MLPP (Menćıa and Fürnkranz, 2008) is another PW scheme that

trains one perceptron for each possible class-label pair. As explained by the

authors of this work—although MLPP performs better than the related BR-

based perceptron algorithm MMP (see Section 5.7)—as a PW method, it scales

quadratically with L rather than linearly.

It was shown specifically by Loza Menćıa and Fürnkranz (2008), that a

PW-based classifier can scale to large L by using simple perceptrons. This

classifier is DMLPP, a modified version of MLPP which includes a special adap-

tation: rather than having to maintain the (L(L − 1))/2 models normally

associated with PW, it instead keeps all examples in memory and builds mod-

els dynamically (i.e. a lazy scheme) for each prediction it is required to make.

Hence, time and memory in terms of L is sharply reduced in a trade for in-

creased time complexity in terms of N at prediction time.

These latter two schemes focussed specifically on obtaining and evalu-

ating a multi-label ranking (a CLR scheme could have been used—but at a
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computational cost), and were applied specifically to text-categorisation. PW

loses some of the advantages of an external problem transformation method

if it is restricted to certain classification schemes. DMLPP could be viewed as

an algorithm-adaptation approach and, as such, is inevitably restricted to

certain base classifiers and domains.

PW has been criticised for failing to establish disjoint label assignments

in the multi-label context, as noticed by Petrovskiy (2006), who deals better

with overlapping-labels in PW by accompanying each binary model by two

additional probabilistic models to isolate the overlapping attribute space. A

threshold function is then applied to the resulting pairwise probabilities to

produce a concrete label-set prediction. This approach shows high predictive

performance in comparison with some other methods, although the authors

discuss a computational bottleneck of this method on large datasets.

An RPC-based PW approach introduced in (Park and Fürnkranz, 2008) is

able to learn from label constraints, such as that the presence of a label

always implies the presence of another label, or that two labels never occur

together. Such constraints are found most commonly in hierarchical and

structured data.

5.3 LC Methods

LC was used in the relatively early work by Boutell et al. (2004) on image

classification with the Scene dataset. Scene, however, is a relatively small

dataset. The fact that LC scales quite poorly (quadratically with the number

of distinct label sets) has inhibited its widespread use as an off-the-shelf
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method.

RAkEL (RAndom K-labEL subsets) (Tsoumakas and Vlahavas, 2007) trains

m random subsets of k labels using LC models under an ensemble scheme

using a threshold to produce label-set predictions from the votes of all m

models at testing time. RAkEL’s complexity is thus limited by k instead of

L, where k ≤ L. This method has become one of the most well known in

the multi-label literature and a standard benchmark in many evaluations,

including our own.

In Chapter 6 we present the pruned sets method (PS) (Read, 2008; Read

et al., 2008), which is also based on LC. PS reduces the complexity of LC

by pruning away infrequent label sets and thereby, under the typical label-

skew of multi-label data, greatly reducing the number of sets which must be

represented as class labels. Our ensemble version of this method (EPS) shows

even higher predictive performance while still maintaining scalability.

5.4 Decision Trees and Boosting

Decision trees have been modified to support multi-label classification, and

are especially popular in bioinformatics on account of their interpretability

(Struyf et al., 2005). In the most well known decision-tree adaptation—

(Clare and King, 2001)—the authors modify the expression for entropy of

the C4.5 algorithm to allow the tree to predict a label vector, as opposed to

a single class label. In this way, a tree model can give a multi-label prediction

at the leaves. This adaptation was applied to genomics data. Decision tree

methods are also frequently used in hierarchical settings, such as by Struyf
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et al. (2005) and Vens et al. (2008).

The BoosTexter system (Schapire and Singer, 2000) was for some time

considered the state-of-the-art in multi-label classification and ranking. Boos-

Texter supplies AdaBoost.MH and AdaBoost.MR, both of which are a multi-

label adaptation of the well-known AdaBoost boosting paradigm. An ini-

tial transformation phase transforms each example (x,y) into L examples

(x, c1), . . . , (x, cL) where cj = 2yj − 1 (i.e. cj ∈ {−1,+1}). Over this

distribution, the weight of the incorrectly classified training examples are

incremented as per regular boosting. AdaBoost.MH minimizes Hamming

loss (where any positive signs (+1) become the label-set prediction) and

AdaBoost.MR minimises the ranking loss (i.e. a ranking focussed method).

Improving these algorithms, including threshold selection, was a focus of the

work in (Kiritchenko, 2005). An extended version—adapted decision tree

boosting (ADT Boost.MH)—was presented in (De Comité et al., 2003).

These AdaBoost methods have mainly been used in bioinformatics ap-

plications (where boosting and decision trees are particularly popular (Kir-

itchenko, 2005)). Although they can also work with textual datasets, they

scale poorly with L and can fail to perform well on sparse data (Freund and

Schapire, 1999). This family of methods has been recognised as having high

computational complexity (Petrovskiy, 2006).

5.5 Lazy Methods

Lazy methods have come to form an important part of the multi-label liter-

ature.
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One of the first lazy multi-label methods was the MLkNN method (Zhang

and Zhou, 2007a) which adapts the k-Nearest Neighbor (kNN) algorithm for

multi-label classification using Bayesian relevance. For each test instance

x, MLkNN takes the k nearest examples, (x1,y1), (x2,y2), . . . , (xk,yk), and

counts the number of occurrences of each label in this neighborhood (i.e.

the relevances across all y1, . . . ,yk) and combines this count with the prior

probabilities of each label in the training data. The authors recommend

setting k = 10, noting that the number of nearest neighbors has little effect on

performance. MLkNN has become a very well-known method in the literature,

and we compare with it in experimental evaluation.

I’d would say that there first stage is identical, but that they process the

neighbourhood differently. And with regard to the neighbourhood both are

clearly BR-like (unless I missed something about MLkNN), but one is more

sophisticated than the other.

Spyromitros et al. (2008) review various lazy methods for multi-label

learning, and present BRkNN, which is essentially identical to MLkNN in its

first stage, but processes the label counts in the neighborhood without re-

gard for prior probabilities. Additionally, they produce two extensions to

eliminate the case where empty sets are predicted. This is relevant to BR

because BR will produce an empty set |y| = 0 for any test instance for which

all its binary models predict 0 (here it is suggested that such a classifica-

tion should be treated as erroneous). Upon encountering this condition, one

extension (a) selects the label with the highest confidence and a second al-

ternative extension (b) outputs the [s] nearest labels where s is the average

size of the label sets of the k nearest neighbors. Unsurprisingly, extension
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(a) provides best results for Scene, whereas extension (b) provides best re-

sults for Yeast, due to the label cardinality composition of these respective

datasets (LCard(Scene) ≈ 1.0, LCard(Yeast) > 4.0).

In the real world, forcing a classification so that |y| > 0 is not always

a good idea, in particular when active learning is used, or wherever empty

predictions are preferred over poor predictions. Neither of these extensions

would have any effect under au(prc) or our log-loss evaluation measure.

Relatively recently Cheng and Hüllermeier (2009) expanded on the work

on lazy classification and introduced IBLR: a method which combines instance-

based learning and logistic regression. IBLR takes label correlations into ac-

count by using the labels of neighboring examples as extra attributes in a

meta logistic regression scheme. This secondary step is, in effect, a speciali-

sation of the stacking procedure of the MBR paradigm.

MLAC (Veloso et al., 2007) is an associative classification approach that is

also lazy, since it only completes the training process with respect to each

test-instance as the test instance is given. It introduces multi-label class as-

sociation rules as a way to model label correlations and dependencies among

labels.

5.6 Probabilistic methods

A generative mixture model for multi-label text categorisation is proposed in

(McCallum, 1999), which assumes that each document instance is generated

by a mixture of (i.e. potentially multiple) single-label documents. This work

employs naive Bayes with the expectation-maximisation (EM) algorithm to
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estimate the model and mixture parameters, i.e. word distributions and the

weights for each label.

Ueda and Saito (2002) present a similar work employing generative mix-

ture models. Probabilistic methods like these explicitly model label correla-

tions in a comparable fashion to LC. They therefore do not require a thresh-

old or |ŷ|-predicting function (like RT- and PW-based classification schemes—

Section 3.2 discussed such functions). We note, however, that these meth-

ods are almost invariably applied to text-categorisation. In Section 2.3 we

mentioned that an example labelled {A,B} is not necessarily a mixture of

A-examples and B-examples, although this is often the case in text categori-

sation, and perhaps this is why the mixture model methods focus on this

domain, and have not really been applied to other domains such as image

classification.

Streich and Buhmann (2008) present a generative method where the con-

tribution of each label to a given instance is estimated. Ghamrawi and Mc-

Callum (2005) present two models which are trained using data in which

label co-occurrences have been captured by conditional probability models.

Both models can capture arbitrary label-label relationships as additional at-

tributes, and the second model also parameterises relationships between la-

bels and attributes (i.e. words, in this case).

In a related approach, Sun et al. (2008) use a hypergraph method to

model label correlations which, despite a proposed approximate formulation,

induces high computational complexity.

Vilar and José (2004) work with multinomial naive Bayes on text data,

using a thresholding strategy to bipartition a ranking so as to produce a label-
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set prediction for each test instance. They also note that their thresholding

approach can be applied to the BR method, although its application to a

single model showed better results.

5.7 Neural Networks and Support Vector Ma-

chines

Section 5.2 reviewed the use of simple perceptrons as a base classifier for

several PW approaches (for example CLR, MLPP, and DMLPP). There also exist

several algorithm adaptations of neural models for multi-label classification.

The multi-label multi-class perceptron (MMP) (Crammer and Singer, 2003)

is a BR-based ranking algorithm adapted from a perceptron model. Like most

other multi-label neural-network approaches, the authors specifically study

ranking quality on text collections. MMP is an online algorithm that works

in rounds and can take a variety of ranking loss functions. MMP improves

on BR, where BR is used for ranking with perceptrons as the base classifier,

although this is not necessarily surprising because BR is not known for its

ranking ability.

BP-MLL (Zhang and Zhou, 2006) is a neural network adaptation, which

adapts the error function of a back-propagation algorithm so as to account for

multiple labels in the learning process. Oliveira et al. (2008) adapt a proba-

bilistic neural network algorithm for multi-label classification. Sapozhnikova

(2009) modifies adaptive resonance theory neural networks for multi-label

classification by encoding associations between input and target vectors.

SVMs are well known for their classification power, and as Section 4.4
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showed, often perform very well in problem transformation contexts. There

have also been specific adaptations.

Rank-SVM (Elisseeff and Weston, 2001) uses kernel SVM as a ranking

function, and attempts to minimize ranking loss while maintaining a large

margin. Ranking loss is the percentage of label pairs which are ordered

incorrectly. A threshold function can be applied to the ranking to obtain a

label-set classification and, more recently, Jiang et al. (2008) applied the CLR

label-calibration scheme to this method, however the main focus of Rank-SVM

is a ranking. Although showing superior performance to the aforementioned

BoosTexter system in a ranking evaluation, the computational complexity

of Rank-SVM (O(N2L) in terms of time) is too high for many datasets, as

noticed by Petrovskiy (2006).

Tang et al. (2009) adapt a one-vs-one multi-class linear SVM implemen-

tation (as opposed to the one-vs-rest implementation of SMO) to produce a

multi-label ranking as a vector of confidence scores, where one score pertains

to each label. They review various threshold calibration methods which could

be applied to the confidence outputs to produce a label-set prediction, but

decide on a multi-class meta method to predict each |ŷi| i.e. the number of

top labels from the ranking which form the predicted set for each instance.

They experiment with training the meta method on both the scores and just

the ranking.

In addition to the main contribution of their MBR method, Godbole and

Sarawagi (2004) describe an SVM-specific modification, wherein training ex-

amples that are close to the hyperplane are removed.
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5.8 Other Methods

MMAC (Thabtah et al., 2004) uses an associative classification method for

multi-label classification. MMAC learns new rules iteratively until it has cov-

ered all training examples, then merges rules with similar preconditions into

single rules. The method is related to the LC method where labels are treated

in combinations, but deal with rankings for evaluation. MuLAM (Chan and Fre-

itas, 2006) details another rule-based adaptation method, where the authors

adapt an earlier single-label version of their ant-colony algorithm to work in

a multi-label bioinformatics domain.

The InsDiff method (Zhang and Zhou, 2007b) computes a prototype

vector for each label by averaging all the instances that are associated with

that label. Each training example is then transformed into a bag of L ex-

amples (one for each label), where each instance in this bag is the difference

between the original instance and the jth prototype vector. In its second

stage, InsDiff learns from the transformed training set. This approach em-

braces the multi-label multi-instance paradigm.

5.9 Efficient Multi-label Classification

In this section, we summarise the methods in the literature with respect to

their scalability, and tractability on large datasets.

First, let us quickly review the general method of artificial hierarchies,

as presented in (Tsoumakas et al., 2008) and discussed in Section 2.5. This

method decomposes a multi-label classification problem into a local-hierarchical

arrangement, where each classifier is concerned with a subset of the label set,
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as a way of reducing time complexity. Although such methods can reduce

running times as compared with regular flat classification, they do so at a

cost of predictive performance and often require significant memory-space

overhead. On the other hand, since these methods are not specific to any

particular classification scheme, our methods can employ them whenever de-

sired, although this is not a focus of this thesis. Using predefined hierarchical

structure relies on hierarchically-arranged datasets and success in this area

has mainly been specific to algorithm adaptations in the bioinformatics do-

main (Vens et al., 2008; Kiritchenko, 2005; Barutcuoglu et al., 2006) and are

thus not generally applicable.

Many approaches reviewed in this chapter scale to large data sources by

using very efficient classifiers, either in an algorithm adaptation or as base

classifiers in problem transformation. Naive Bayes is a common choice for this

context, used both as an algorithm adaptation, for example (McCallum, 1999;

Ueda and Saito, 2002), and problem transformation, for example (Tsoumakas

et al., 2008). Simple perceptrons have also been popular (Fürnkranz et al.,

2008; Menćıa and Fürnkranz, 2008; Loza Menćıa and Fürnkranz, 2008), espe-

cially in PW approaches. Most probabilistic and lightweight neural approaches

tend to be focussed on document ranking for text categorisation and as such,

are more specialist methods which have so far not yet been shown to be gen-

erally applicable. In most cases, lightweight classifiers are used because the

learning task would not otherwise have been tractable; these approaches are

certainly efficient but—we argue—not general, as they cannot adapt easily

to different data. This thesis focusses on methods of high predictive perfor-

mance across a range of data, as well as efficiency.
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Decision tree adaptations are generally very efficient because a single deci-

sion tree model can carry out multi-label predictions. However, such models

are usually specific to biological domains, as in (Clare and King, 2001), and

designed to perform on a hierarchical structure, as in (Vens et al., 2008).

In the general multi-label context, other methods have been approached in-

stead. We have previously discussed the relative inflexibility of algorithm

adaptation methods when it comes to finding scalable and generally applica-

ble methods.

More intensive classification schemes like Rank-SVM and in BoosTexter

have so far proved less scalable. Tang et al. (2009) provide a relatively

efficient SVM-based scheme which scales to training sets of N = 12, 300

and L = 23, although these statistics refer to two different training sets,

both of which are relatively small compared with many of the datasets in

our collection (listed in Table 2.1) upon which we later test our problem

transformation methods (in Chapters 6 and 7). We also note that this method

requires training a multi-class meta method to give the size of each label-set

prediction.

Most methods which scale to large datasets are based upon BR. For text

data where L is large, Ráez et al. (2004) found that they could ignore rare la-

bels altogether (i.e. removed binary models) to achieve increased performance

in imbalanced text-categorisation problems. (Tsoumakas et al., 2009a) and

(Yan et al., 2007) share binary models between labels and the latter also

takes subsets of the feature set. These strategies are all generally applicable

to BR and we will discuss them again in later chapters.

The following two chapters introduce our novel methods. In the experi-
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mental evaluations of these chapters we will often refer to methods that have

been described here.
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Chapter 6

Pruned Sets

In (Read, 2008) we introduced the pruned sets method. This method improves

on the well known label-combination method (LC), achieving a much reduced

running time, and scalability to larger datasets, and better predictive per-

formance. In (Read et al., 2008) we improved this method and introduced

an ensemble of pruned sets which proved highly competitive against other

methods in the literature. This chapter introduces further improvements

to these methods and greatly expands the analysis and evaluation of their

performance.

6.1 Issues with LC

By treating every label combination in the training data as a unique class

label in a single-label problem, LC directly takes into account label corre-

lations and, as a result, often performs much better than BR. However, a

major disadvantage of LC is the number of class labels it must represent in

its problem transformation: one for each distinct label set which exists in

the training data (a worst case of min(N, 2L − 1) class labels). This has a
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direct implication on complexity and limits of scalability, and additionally

leads to over-fitting the training data, and a sparsity of training examples to

class labels in the single-label transformation, since many label combinations

are likely to occur very infrequently in the data (often pertaining to a single

example).

We now review our pruned sets method, which tackles the disadvantages

of LC by concerning itself with a simpler and more balanced representation

of the data.

6.2 The Pruned Sets Method (PS)

Consider the graphs in Figure 6.1, which are derived from theMedical dataset.

The nodes represent the labels of this dataset, and each edge represents a

co-occurrence between two labels. In the initial graph, each edge represents

at least one co-occurrence. In the second graph, each edge represents at least

two co-occurrences, i.e. the examples where the label set only occurs once in

the training data have been pruned from the training set. When all edges

represent at least three co-occurrences, this leaves a relatively simple graph

which still represents 92% of all examples. Such simplified representations

are the basis for the pruned sets method (PS).

The Medical dataset is not a special case. Section 2.1 already discussed

how multi-label datasets typically display label skew where a significant pro-

portion of label sets occur relatively infrequently, while a small proportion

of the label combinations occur very frequently. Figure 6.2 illustrates this

across datasets by plotting the ‘long tail’ effect where label combinations are
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Figure 6.1: Label co-occurrences in the Medical dataset.
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Figure 6.2: Label combinations are plotted by their frequency for datasets
across the collection.

plotted by frequency in descending order. 20ng is the exception to this rule

because it was artificially compiled with 1000 examples associated with each

label.

The primary motivation behind PS is to use the power of LC’s label-

set-based paradigm to capitalise on the most important label relationships

found within a multi-label dataset, but without succumbing to the same

disadvantages of over-fitting and high running time suffered by LC.

The PS algorithm contains two important steps: a pruning step and a

label-set subsampling step. The pruning step removes infrequently occurring

label sets from the training data. This removes unnecessary and detrimental

complexity from the LC-transformed data by reducing the number of class la-
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bels. However, PS does not simply discard pruned examples, on the grounds

that considerable information can be lost. Rather, PS subsamples the label

sets of these examples for label subsets1 which occur more frequently in the

training data. It then attaches these label sets to the instance of the example,

thus creating new examples, and reintroduces these examples into the train-

ing. In this way, information from the pruned examples is conserved without

the time complexity, since infrequent label sets are much more influential on

an LC-classifier’s running time than the number of training examples. Since

PS focusses only on the core label sets, the tendency to overfit the training

data is also greatly reduced.

The pruning and subsampling steps are each influenced by a parameter.

PS takes these parameters and a set of training examples, and returns a

modified training set upon which an LC-classifier is trained (actually, any

method can be trained on the transformed data but only the LC paradigm

benefits greatly from the reduced number of label sets). The PS algorithm is

outlined in Algorithm 6.1. Figure 6.3 shows the flow of training examples.

Note that count(y,D) simply returns the number of times the label set y

occurs in the training data D. The subsample function will be discussed in

Section 6.2.2.

6.2.1 The pruning parameter (p)

The pruning parameter (p) determines how much pruning to do, where p = 0

defaults to the functionality of LC, p = 1 prunes all examples where the label

1As forewarned in Section 1.4, we will use set notation in this chapter: (x,y) is a
training example; y′ ⊂ y is a label subset, and also a label set if (x,y′) for some x.
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Algorithm 6.1 The PS algorithm; given a training set D, pruning parameter
p, and label-set subsampling parameter n.

PS(D, p, n)

1 D′ ← D
2 DP ← {}
3 � Pruning Step
4 for (x,y) ∈ D:
5 do if count(y,D) ≤ p:
6 then DP ← DP ∪ (x,y)
7 D′ ← D′ \ (x,y)
8 � Subsampling Step
9 for (x,y) ∈ DP :
10 do for y′ ∈ subsample(y,D′, n):
11 do D′ ← D′ ∪ (x,y′)
12 return D′

prune

subsample

D D′
∀(x,y) : count(y,D) > p

∀(x,y) : count(y,D) ≤ p

Figure 6.3: The flow of training examples in the PS algorithm.
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set is unique, p = 2 prunes all examples which occur at most twice, and so

on. p ≥ N would result in the entire training set being pruned.

The parameter p is closely comparable to the minimum support count

known to itemset mining, where every label set could be considered an item-

set. In fact, we will often refer to p by this term, although note that the

minimum support count is actually equivalent to p + 1 as opposed to p in

our notation.

6.2.2 The label-set subsampling parameter (n)

The label set of each pruned example becomes a candidate for label-set sub-

sampling. The subsampling parameter n influences which, and how many

subsets, are drawn from these label sets.

PS subsamples the label sets of pruned examples to create examples which

do meet the pruning criterion. For example, suppose (x,y) where an image x

is associated with a rare label combination y = {sunset, mountain, field}.

We can subsample this label set for more frequently occurring combinations,

like y′
1 = {sunset, mountain} and y′

2 = {sunset, field}, and associate

these sets with x instead, i.e. to create (x,y′
1) and (x,y′

2) to replace (x,y).

In this way, PS preserves information from the example without the associated

complexity of an extra class label for them. However, y′
3 = {mountain} and

y′
4 = {field} are also possible subsets. PS has to decide which are the best

subsets to subsample.

PS only considers subsets which meet the original pruning criterion (any

y′ ⊂ y where count(y′,D) > p). However, using all such subsets from each

label set will introduce unnecessary complexity in the form of new exam-
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ples and potentially hamper predictive performance. A heuristic is needed.

In (Read et al., 2008) we used different configurable subsampling strategies.

We have since discovered that by initially ranking all allowable subsets, the

subsampling process can be simplified: the top n possible label subsets are

used to create new examples for the training set, where n is the configurable

parameter for this process.

Since we wish to preserve as much information as possible about the

relationships within each label set, larger subsets should be given a higher

priority than smaller subsets, since larger sets retain more label-correlation

information. Also, in the interest of maintaining the focus on the core com-

binations, label sets with a higher frequency in the training data should have

a higher priority than less frequently occurring sets. We can embody these

two rules in a compare function for any off-the-shelf sorting algorithm; see

the compare(·, ·) function in Algorithm 6.3. Therefore, given a label set

y, all the subsampling routine has to do is generate all label subsets which

meet the original pruning criterion, sort them in order of priority, and return

the top n sets: see the subsample process in Algorithm 6.2. Algorithm 6.1

showed how these n label sets are introduced into the training set with a

copy of the original instance.

Algorithm 6.2 PS’s subsampling function.

subsample(y,D′, n)

1 � an ordered set of all d subsets of y which occur in D′

2 q = (q1, . . . , qd)← {y
′|y′ ⊂ y, ∃x : (x,y′) ∈ D′}

3 q ← sort(q,compare(·, ·))
4 return {q1, q2, . . . , qmin(n,d)}
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Algorithm 6.3 The compare function used for the sort routine in the
subsampling function.

compare(yA,yB)

1 if |yA| > |yB|
2 then return 1
3 if |yB| > |yA|
4 then return −1
5 if count(yA,D) > count(yB,D)
6 then return 1
7 if count(yB,D) > count(yA,D)
8 then return −1
9 return 0

6.3 Parameter Configuration

The configuration of the p and n parameters clearly affects the performance

of PS. The aim of PS is to be tractable for larger problems (where LC is

not), but also compete with the predictive power of LC. We thus configure

the parameters in a manner most likely to result in the highest possible

predictive performance, while at the same time expecting a reduced running

time over LC.

Clearly, the pruning parameter p offers a trade-off between predictive

performance and training time. Intuitively, more pruning (higher p) reduces

complexity, but too much pruning will have a detrimental effect on predic-

tive performance. This is best viewed under empirical analysis: Figure 6.4

shows the relationship between p and accuracy, and Figure 6.5 shows the

relationship between p and training time. At p = 0, PS is equivalent to
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standard LC. Accuracy is relatively stable for low values of p and begins

to decline under higher values as more pruning is carried out; although this

degradation is often only gradual or even negligible. Training time is invari-

ably reduced dramatically; particularly observable on TMC2007, Ohsumed

and Enron, which are very complex for low values of p, and did not finish at

p = 0 (where LC ≡ PS). They become quickly tractable under even smaller

values of p. Values 1 ≤ p ≤ 5 generally achieve the highest accuracy.

We have so far considered pruning in isolation (without the label-set

subsampling process; i.e. n = 0) and the plots should not be used to gauge

the absolute predictive performance of PS nor relative performance versus

LC. Let us now look at the performance of PS when the subsampling process

is turned on (i.e. n > 0). Table 6.1 shows the effect on accuracy under

p = 1 and p = 3. Figure 6.6 plots the effect of a range of n on training times

for p = 3.

The subsampling function is indeed able to improve the predictive per-

formance of PS, with the exceptions of Yeast, TMC2007, and Enron (we

note that in these cases LCard(D) is high). Label-set subsampling made no

difference to accuracy on Genbase: analysis revealed that although sub-

sampling occurred, it was too infrequent to affect predictions. Training time

increases at most linearly and generally insignificantly. The maximum ef-

fective range of n is closely bound to LCard(D), which is itself invariably

limited. From this analysis we see that n = 1 to 5 is a good range for most

datasets and n = 0 where LCard(D) is high, say > 2.0.

In very rare cases, where the majority of label sets are unique and the

label scheme is irregular, the subsampling process will begin to break down,
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Table 6.1: The effect of the n parameter on accuracy, where p = 1 (top)
and p = 3 (bottom).

p = 1

n 20ng Enron Genb. L.Log Med. Music Ohsu. Reut. Slash. TMC. Yeast

0 0.587 0.280 0.989 0.131 0.775 0.559 0.391 0.066 0.484 0.512 0.536

1 0.588 0.309 0.137 0.770 0.564 0.393 0.490 0.480 0.508 0.532
2 0.589 0.292 0.126 0.786 0.565 0.392 0.493 0.478 0.510 0.526
3 0.287 0.113 0.564 0.394 0.477 0.507 0.533
4 0.284 0.110 0.562 0.390 0.483 0.509 0.526
5 0.263 0.111 0.389 0.484 0.510 0.529
6 0.272 0.110 0.391 0.486 0.509 0.531
7 0.259 0.527
8 0.254 0.530

p = 3

n 20ng Enron Genb. L.Log Med. Music Ohsu. Reut. Slash. TMC. Yeast

0 0.588 0.283 0.980 0.130 0.774 0.360 0.391 0.487 0.483 0.514 0.538

1 0.589 0.282 0.137 0.772 0.352 0.397 0.491 0.477 0.508 0.533
2 0.591 0.266 0.123 0.784 0.353 0.394 0.494 0.487 0.510 0.525
3 0.589 0.270 0.106 0.783 0.360 0.397 0.495 0.488 0.508 0.524
4 0.590 0.258 0.096 0.371 0.394 0.489 0.487 0.510 0.521
5 0.591 0.253 0.098 0.373 0.392 0.489 0.508 0.520
6 0.247 0.488 0.510 0.514
7 0.244 0.506 0.509
8 0.241 0.505

since too many label sets are pruned away and subsampling may not be

possible. Such cases usually indicate an extraordinary lack of regularity in

the data, and the dataset in question may not be interesting as a multi-label

problem (or BR could be safely used instead). For this reason, we believe

that such worst cases generally need not be seriously considered, although

in Section 6.5 we describe a modification to the subsample method to deal

with this scenario.

Both the p and n parameters can be tuned using internal cross validation

on the training set or a hold out set, as we reported in (Read et al., 2008).

However, as Section 6.9 shows, with the simplified parameterisation of the

subsampling mechanism presented in this chapter, ad hoc values can suffice
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and, in an ensemble scheme (presented in Section 6.7), good results can be

obtained by selecting from a range of values for each ensemble member.

6.4 Time Complexity

It is difficult to use the theoretical time complexity of PS as a guide to actual

performance, since PS’s worst-case scenarios (such as where every label set is

unique) are unlikely to occur in practice. Generally, we can say that although

the theoretical worst-case time complexity is equivalent to LC, the real-world

average time complexity is expected to be much better.

The previous sections considered PS’s parameter values on time complex-

ity individually. Let us now consider the relationship they have on each other

and the effect they have together on overall complexity.

The most complex configuration for PS involves low values of p (less prun-

ing) and high values of n (more subsampling). However, in practice these

worst cases are inversely dependent on each other. Less pruning implies

fewer examples for subsampling, and more subsampling is only possible when

more pruning is carried out. The value of p has the strongest effect on time

complexity. We can say that when p = 1, a PS transformation will have

PUniq(D) fewer class labels than an LC transformation and there will be at

most n×NP more examples where NP is the number of pruned examples.
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6.5 PS as an Itemset Problem

It is easy to notice a connection between PS and itemset mining, when label

sets are considered as itemsets. We have already pointed out how the p

parameter resembles the support count of itemset problems.

It is possible to modify PS’s subsampling process so that it generates and

considers all frequent itemsets rather than just frequently occurring label sets.

Let us quickly clarify some terminology:

• y is a frequently occurring label set if it meets the minimum support

count; i.e. count(y,D) > p.

• y′ is a frequent itemset if it is a frequently occurring label set or is a

subset of such a set; i.e. y′ ⊆ y.

For example, suppose: {a, b, c} and {b, c, d} have a count of 1, thus not

meeting a minimum support of 2 (p = 1). These sets are therefore not

frequent. However, {b}, {c} and {b, c} are frequent.

At first glance this seems an appealing extension to PS, since PS would

then not be restricted to only the label combinations in the training data,

and may therefore reduce the effects of overfitting. However, it turns out

that such a process detracts from the advantages of the PS paradigm in two

crucial ways: by not modelling label combinations exactly as they are found

in the data, and by increasing the complexity of the training process.

We confirmed that in practice, for almost all datasets, applying itemset

mining techniques to PS increases computational complexity without ben-

efiting predictive performance. However, there are exceptions: where the

percentage of label sets that are unique (PUniq(D)) and label cardinality
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(LCard(D)) are both high, PS’s subsampling process may begin to break

down. This is the case for Enron. An itemset-inspired modification replaces

line 2 of the subsample function (Algorithm 6.2) with:

q ← (q1, . . . , qd) = S, where S is the set of all frequent itemsets generated

from y with respect to D′.

Given this modification, the worst case only holds where every label set

in the training data is unique and no frequent itemsets exist. We are not

aware of any such dataset in the real world.

Although PS is generally better without itemset mining techniques ap-

plied to it, it must be nevertheless acknowledged that, on account of being

restricted to only the label combinations in the training set, PSmay encounter

problems with over-fitting when dataset labelling is irregular. Alternatives

to itemsets are presented in the following sections.

6.6 PS with a Threshold Function

PS can improve the predictive performance of LC and run much faster. How-

ever, it still retains one of LC’s cited flaws: it is only able to classify new

examples with label-subsets observed previously in the training data. This

makes it vulnerable to datasets like Enron with very irregular labelling. To

overcome this problem, PS needs to be able to form new label sets at classi-

fication time.

In (Read, 2008) we presented a modification to PS which can form new

label sets at classification time by using a threshold function: PSt (threshold

functions were reviewed in Section 3.2). Unlike itemset mining strategies,
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this adaptation does not affect the time complexity at training time. The

classification process of PSt is outlined in Figure 6.4 and an example is il-

lustrated in Figure 6.7 which utilises the threshold function ft of Section

3.2.

PSt requires that the base classifier, which predicts label combinations (as

single labels), can provide confidence outputs for each of these combinations.

Let these confidence outputs be a vector ŵ′ ∈ R
L′

where ŵ′
k is the confidence

associated with the kth label in Y ′: Y ′ = {y′
k|k = 1, . . . , L′} is the set of

class labels in the transformed single-label problem, each of which is a y-type

labelset (vector), i.e. a label combination. Note that we are using prime (′)

to denote variables relating to the single-label space.

Algorithm 6.4 The prediction algorithm of PSt.

Classify(x, h, ft)

1 global Y ′
� the transformed single-label space

2 w′ = h(x) � confidence outputs RL′

with respect to Y ′

3 ŵ ← R
L
� confidence outputs for the multi-label space

4 for k ← 1, . . . , L′

5 do
6 y′ ← Y ′

k

7 ŵj ←
∑L

j=0 y
′
jw

′
k

8 return ft(ŵ)

The advantage of PSt is that it can form new label sets at classification

time, and in this way handles irregular labelling, where many test instances

are associated with label combinations which have not been observed in the

training set. A disadvantage, however, is the reliance on prediction confidence

distributions of the base classifier. Different base classifiers give different
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Y ′ ↓/Y → { 1 2 3 4 5 6 } ↓ ŵ′ = h(x)′

y1 = [ 0 0 1 1 0 0 ] ŵ′
1 = 0.8

y2 = [ 1 0 0 1 0 1 ] ŵ′
2 = 0.4

y3 = [ 0 1 0 0 0 0 ] ŵ′
3 = 0.0

y4 = [ 0 0 1 0 0 1 ] ŵ′
4 = 0.6

y5 = [ 1 1 0 0 0 0 ] ŵ′
5 = 0.0

ŵ = [ 0.40 0.00 1.40 1.20 0.00 1.00 ]
w = [ 0.10 0.00 0.35 0.30 0.00 0.25 ] (normalised)

ŷ = ft(w) = [ 0 0 1 1 0 1 ] t = 0.2

Figure 6.7: An example of PSt’s prediction for given values of Y ,Y ′,t, and ŵ′

for a test instance x.

confidence distributions, and some may not provide a quality distribution, or

even a distribution at all. In the next section we discuss an ensemble method

which can also form new combinations at classification time, but does not

rely on base classifier prediction confidence distributions to do so.

6.7 Ensembles of Pruned Sets (EPS)

In this section we present ensembles of pruned sets (EPS), a method which

employs PS in an ensemble framework, and uses a voting scheme to produce

the prediction confidences instead of the prediction confidences of the single-

label classifier like PSt. Whereas PSt can perform well in particular domains

with base classifiers like naive Bayes (which provide smooth confidence out-

puts), EPS provides a powerful and general framework. This comes at a cost

in performance but is justified by the improvement in predictive performance.

PS is particularly suited to an ensemble due to its fast build times. And,
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if each PS classifier models different core label sets of the training set, then an

ensemble can form new label combinations at prediction time by compiling

label-set predictions via a simple voting procedure and a threshold function.

The ensemble thus overcomes the disadvantage of standalone PS in a more

general and powerful way than PSt, and counters any over-fitting effects of

the pruning process. Ensembles are well known for their effect of increasing

overall predictive performance, and allowing parallelism. Moreover, ensem-

bles are inherently scalable: a larger ensemble (more models/iterations) may

achieve better predictions and a smaller ensemble results in lower running-

times.

EPS’s training algorithm is outlined in Algorithm 6.5. This algorithm can

be used with any multi-label-capable classifier, but works particularly well

with PS. Many methods work well under a bagging ensemble (Breiman, 1996),

where each model is trained on a bag of N examples that are selected with

replacement from the training set D. However, PS’s label-set subsampling

function already duplicates instances and therefore further duplications of

examples in the ensemble scheme are not necessary. Thus, our ensemble

scheme takes simple subsets of the training set without replacement (we found

subsets of around 62% work best). In the context of using PS models, our

ensemble scheme is both faster and provides superior predictive performance

than bagging. Experimental results in Tables 6.5, 6.6 and 6.7 in the following

section show this.

The voting scheme used for classification is detailed in Algorithm 6.6. It

is also generic. It uses a threshold function to draw a label set from the

confidence outputs (which are votes).
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Algorithm 6.5 A generic ensemble training algorithm for multi-label clas-
sifiers.

Train(D, h,m, c)

1 � D training set
2 � h a multi-label classifier
3 � m number of models
4 � c percentage of D for each model
5 for k ← 1 to m
6 do hk ← h.copy()
7 � k is used as random seed
8 D ← randomize(D, k)
9 D′ ← c% of D
10 hk.train(D

′)

Algorithm 6.6 A generic ensemble classification algorithm for multi-label
classifiers.

Classify(x, h1,...,m, ft)

1 � x test instance
2 � h1,...,m multi-label classifiers
3 � ft threshold function
4 ŵ ← R

L

5 for k ← 1 to m
6 do ŷ = hk(x)
7 for j = 1 to L
8 do ŵj ← ŵj + ŷj
9 � multi-label prediction via threshold function
10 return ft(ŵ)
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6.8 Related Work

LC has not frequently been employed directly in the literature; likely due to

its computational complexity, which makes it intractable on most datasets.

Boutell et al. (2004) use an LC method on Scene, although this dataset is

quite small.

Algorithm adaptation methods, such as the mixture model by McCallum

(1999) and the association rule learner by Thabtah et al. (2004), have em-

braced the LC paradigm by treating combinations of labels as single labels.

RAkEL (Tsoumakas and Vlahavas, 2007) is certainly the most well known

LC-based problem transformation approach. RAkEL trains LC methods on the

subsets of the label set of size k, thus incurring complexity quadratic with k

rather than L. These LC methods are run in an ensemble. EPS is compared

with RAkEL in the experiments that follow.

6.9 Experiments

In this section we compare PS methods to LC, and the ensemble version EPS

to a variety of state-of-the-art methods. Section 3.4 detailed our typical

experimental setup.

6.9.1 PS against LC

Initially we compare PS with the standard LC method directly. We consider

two parameter configurations for PS (the reason behind the choice of 2.0 was

explained in Section 6.3):
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Model Parameters

PS1 p = 1, n =











if (LCard(D) > 2.0) 0

otherwise 3

PS2 p = 3, n = (same as above)

We also compare these versions of PS with the threshold extension (PSt).

Table 6.2 displays the results of 5× 2 cross validation for two predictive-

performance measures with statistical significance indicated according to a

corrected paired t-test. Table 6.3 displays running times, and Figure 6.8 plots

a selection of these. SMO is the base classifier here but, since thresholding

functions are dependent on the confidence output distributions of the base

classifier, we also carry out this experiment using J48 and provide the results

of predictive performance in Table 6.4 for comparison.

PS1 and PS2 show statistically significant gain over LC on three datasets

under accuracy and on five datasets under Hamming-loss. In the latter

case, all statistically significant differences are in favour of PS except Genbase

for PS2. Comparatively, the PSt methods struggle where SMO is used, due

to the relatively poor confidence predictions which this classifier is able to

provide (since by default, this classifier does not fit logistic models to SVM

outputs).

The experiment with J48 as the base classifier illustrates two points.

Firstly, that the gains of PS over LC can be reproduced with base classi-

fiers other than SMO—in fact the relative improvement in performance is

even greater in this case. Secondly, it shows how the performance of PSt is

relatively higher when smoother prediction confidences are provided. This
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Figure 6.8: Time measurements.
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performance is particularly significant for the Enron dataset—as expected—,

and LangLog. On both these datasets the PSt schemes are the best overall

method in terms of accuracy, and also do well under Hamming-loss.

Although the gains made by PS over LC could be viewed as modest in

terms of predictive performance, the reduction in running time is very sig-

nificant, especially on datasets like Reuters, Enron, and LangLog. These

datasets all have relatively high LCard(D) and PUniq(D) values, which

indicate that many class labels are generated by an LC transformation. PS

prunes infrequent sets (which would otherwise be class labels) out of the

training data and is up to orders of magnitude faster.

We would expect PS to achieve relatively higher predictive performance

for methods if the p and n parameters were tuned individually for each

dataset, as we did in (Read et al., 2008) with internal cross validation.

However, our main focus for predictive performance is EPS, where we in-

vest computational complexity in ensemble iterations rather than fine-tuning

parameters, so as to compete with state-of-the-art methods in the literature.

6.9.2 Comparing EPS with a bagging and a simple en-

semble

To show the advantage of the simple subset ensemble as opposed to bagging

in the context of PS, we compare the performance of PS2 in 10 iterations in

both schemes. Results are provided in Tables 6.5 (accuracy), 6.6 (exact-

match), and 6.7 (running time). Our ensemble scheme often achieves sta-

tistically significant predictive performance and, as expected, is generally

around twice as fast: EPS with simple subsets of 62% of the training set sees

109



38% fewer training examples than EPS under bagging.

6.9.3 EPS against state-of-the-art methods

We compared EPS to a range of state-of-the-art methods: the competitive

and well-known LC-based RAkEL, the PW-based CLR, and the kNN-adapted

MLkNN, all of which were reviewed in Chapter 5—thus providing a variety

of competing methods. We also included standard BR, a common base-line

method in much of the multi-label literature.

Both EPS and RAkEL rely on parameter configurations. We created two

configurations of each as follows:

Method Name #Models Model Parameters

EPS1 m = 10 p = 1, n = {1—3}

EPS2 m = 50 p = {1—5}, n = {1—3}

RAkEL1 m = 10 k = L/2

RAkEL2 m = L× 2 k = 3

{·—·} indicates that a number was chosen randomly from a range (inclusive)

We found these configurations to work well in terms of predictive perfor-

mance, as did the authors of RAkEL for their method. Configurations ‘1’ allow

for more complexity to take into account label correlations, and configura-

tions ‘2’ allow for more iterations and a slightly more efficiently configured

base method. In configuration ‘2’, where EPS has an ensemble size of 50,

selecting from a range of values for each PS model becomes appropriate: all

models should capture the core label combinations, while some models will
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provide relief in terms of computational complexity. The discussion and il-

lustrations in Section 6.3 provide the intuition for these configurations of p

and n. We used SMO for all problem transformation methods (which excludes

kNN-adapted MLkNN).

Predictive performance is examined for four evaluation measures: accu-

racy (Table 6.8); exact-match (Table 6.9); au(prc) (Table 6.10); F1-

macro×L (Table 6.11); and log-loss (Table 6.12) – all under 5 × 2 cross

validation with significance under a corrected paired t-test indicated against

EPS2 (note that numbers are directly comparable with Table 6.2 involving

standalone PS). Additionally, running times are displayed in Table 6.13. A

missing result indicates did not finish within time and memory constraints

(as defined in Section 3.4). Corresponding tables for the Nemenyi test which

include the average ranks and values for each method can be found in Ap-

pendix A.1.

EPS is overall much stronger than standalone PS. Although statistical

significance does not apply between tables, we see that in terms of accuracy

EPS is able to improve results by up to five percentage points on Enron as

well as considerable gains across nearly all datasets, with the exception of

Genbase, and also arguably Medical.

EPS also performs well against state-of-the-art methods across the various

datasets and evaluation measures, as demonstrated by many statistically

significant results across the tables. EPS clearly dominates under the exact-

match measure. This illustrates a strong advantage of EPS: it learns label

correlations directly—i.e. by label set—as they are observed in the training

set. This is also done to a lesser extent by RAkEL1, and this method also
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does relatively well under exact-match. On the other hand, these label-

set based methods can do relatively more poorly on label-based evaluation

measures—like F1-macro×L—where RAkEL performs well. However, taking

into account the gains on other datasets, and the margins of those gains, EPS

is the dominant method overall.

The base method BR is easily outperformed by the other methods, espe-

cially on Enron, Reuters, and Scene, where EPS2 achieved up to nearly 20

percentage points more under accuracy and au(prc). Both configurations

of EPS perform well, EPS1 particularly under accuracy, and EPS2 particu-

larly under au(prc). Both MLkNN and CLR perform particularly well under

log-loss.

Note that it is not unusual that methods can differ in terms of statistical

significance even though the values shown in the table are identical. More

significant figures would reveal a difference. The standand deviations are

very low, hence they are omitted from the table (as many significant figures

would be required to display them).

BR is the fastest method, which we expect due to the simplicity of its

binary models. EPS1 is on average the fastest of the LC-based methods, even

compared with simple LC (which we see when comparing between Tables

6.3 and 6.13). CLR performs relatively fast where L is small, but proves in-

tractable otherwise. MLkNN performs very fast, however, this is not a fair

comparison since MLkNN is a kNN-adapted method, whereas the other meth-

ods use SMO as their base classifier. By using more efficient base classifiers

(e.g. a kNN classifier in this context), problem transformation methods like

EPS can perform faster. However, we used SMO for its predictive power in this
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context—which is reflected in the results.

6.9.4 Experiments on large datasets

Finally, we ran the methods on large datasets. The methods were run in

a train/test scenario, and problem transformation methods employed J48

as the base classifier (again this does not affect MLkNN). The change in base

classifier allowed more competing methods to scale to the dimensions of more

datasets and, also shows that, as generally applicable methods, the gains of

our methods are not restricted to a certain classification paradigm.

Did not finish (DNF) is represented by a missing result. Results for

predictive performance are displayed in Table 6.14, although results are too

sparse (caused by many DNFs) to learn much from a Nemenyi test.

The high performance of EPS on smaller datasets is mirrored in the results

on large datasets, particularly under au(prc), where EPS2 is often several

percentage points clear of its nearest competitor. EPS again performs par-

ticularly well under the exact-match measure due to its ability to learn

complete label sets. EPS gets the most number of wins over the experiment.

Only on F1-macro×L—an evaluation measure which favours label-based

methods like BR—does it not perform notably strongly.

RAkEL2 performs relatively better on some of the larger datasets, as does

BR. This hints that modelling entire label sets directly is not as much of

an advantage where very large numbers of training examples are available:

RAKEL2 models smaller label combinations than RAKEL1, and the trend of its

better predictive performance was not apparent on smaller datasets.

EPS fails to perform well only on Delicious on account of this dataset
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having too many unique label sets (indicated by its very high PUniq(D)

value in Table 2.1). Pruning all these sets reduces the dataset to only a

handful of training examples, as indicated by the unusually fast training

time (when other methods fail to even finish). Although Delicious is more

related to tagging than a typical multi-label problem, it shows a situation

where EPS’s pruning and subsambling breaks down. We also see that CLR

achieves unusually low predictive performance on MediaMill.

Large datasets push the scalability limits of several of the algorithms.

Only BR and MLkNN are able to complete on all datasets, although recall

that the latter is not a fair comparison because of its different base scheme.

EPS fails to scale all the way to the extremes of the IMDB, and EPS2 also

fails on MediaMill. We note that these datasets did not exist when we first

introduced PS in (Read, 2008), and only more recently have datasets of this

scale been commonly used for evaluations. However, we note that generally

both versions of EPS are faster than RAkEL for the same datasets, and EPS1

results in fewer DNFs than any other comparable method except BR (other

methods ran out of available memory). In particular on TMC2007, EPS is

several times faster than its closest competitor.

6.10 Conclusions and Future Work

In this chapter we have introduced and empirically demonstrated the effec-

tiveness of the PS-paradigm. The main contributions were clearly demon-

strated: 1) PS considerably reduces the running time of the standard LC

method; and 2) as an ensemble framework, EPS was able to outperform a
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variety of state-of-the-art methods from the literature in terms of overall

predictive performance.

Although EPS’s running times were similar to RAkEL (specifically RAkEL2),

we note that EPS can continue scaling to faster running times by pruning

more at the base models. RAkEL2 (where k = 3) represents close to the limit

of scalability (which would be k = 2), yet already in terms of predictive

performance, RAkEL2 is not as powerful either RAkEL1 (where k = L
2
) or

EPS on several datasets (i.e. Scene, Slashdot and Yeast). Given this gap in

predictive performance, it could be argued that EPS could afford to select

higher values of p and still remain competitive. Figures 6.4 and 6.5 provide

an indication of potential reductions in running time relative to predictive

performance. It is also notable that EPS is able to achieve its relatively low

running time while still modelling complete label sets.

6.10.1 Limitations and future work.

We knew that PS’s running time is never worse than LC and we saw that

in practice it is much better. However, its performance is highly dependent

on the underlying labelling scheme of the dataset. For atypical datasets

where labelling displays very little regularity EPS ran into problems, such as

on Delicious, where it obtained poor accuracy, and IMDB where it was

unable to complete under the configured parameters. Both PS’s parameters

affect both efficiency and predictive performance, and the optimum values

for these parameters are also dataset-dependent. In the following chapter we

address these limitations with a new parameterless method based on the BR

paradigm.
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PS is a general method for multi-label classification as much as it is a spe-

cific multi-label classifier, and can be incorporated easily into other methods.

EPS was just one example of this. RAkEL’s ensemble wrapper around LC could

already to scale better than LC itself, and we expect that it could scale even

higher if PS was used in this ensemble instead, to combine the scalability ad-

vantages of both methods, although we leave this experimentation for future

work.
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Table 6.2: PS methods vs. LC: Predictive performance (with SMO).

Accuracy

Dataset LC PS1 PSt
2

PS2 PSt
1

Music 0.463 0.469 0.515 ⊕ 0.497 0.519 ⊕
Scene 0.717 0.720 ⊕ 0.675 • 0.720 ⊕ 0.674 •
Yeast 0.525 0.527 0.504 • 0.527 0.506 •
Genbase 0.971 0.966 • 0.943 • 0.958 • 0.963
Medical 0.745 0.754 ⊕ 0.702 • 0.754 ⊕ 0.700 •
Slashdot 0.500 0.500 0.379 • 0.502 0.357 •
20ng 0.677 0.676 0.600 • 0.676 0.602 •
LangLog 0.171 0.144 • 0.132 • 0.120 • 0.124 •
Enron 0.412 0.403 • 0.387 • 0.390 • 0.390 •
Reuters 0.490 0.497 ⊕ 0.422 • 0.497 ⊕ 0.404 •

⊕, • statistically significant improvement or degradation vs. LC

Hamming-loss

Dataset LC PS1 PSt
2

PS2 PSt
1

Music 0.237 0.234 0.228 0.223 0.226
Scene 0.096 0.095 ⊕ 0.107 • 0.095 ⊕ 0.107 •
Yeast 0.210 0.209 0.224 • 0.209 ⊕ 0.222 •
Genbase 0.003 0.004 0.007 • 0.005 • 0.005
Medical 0.013 0.012 ⊕ 0.015 • 0.012 ⊕ 0.015 •
Slashdot 0.049 0.049 0.060 • 0.049 0.063 •
20ng 0.033 0.033 0.038 • 0.033 0.038 •
LangLog 0.022 0.018 ⊕ 0.026 • 0.017 ⊕ 0.026 •
Enron 0.057 0.057 ⊕ 0.066 • 0.058 0.064 •
Reuters 0.013 0.013 ⊕ 0.015 • 0.012 ⊕ 0.015 •

⊕, • statistically significant improvement or degradation vs. LC
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Table 6.3: PS methods vs. LC: Time performance (with SMO).

Running Time (seconds)

Dataset LC PS1 PSt
2

PS2 PSt
1

Music 2.35 1.63 • 1.21 • 0.96 • 1.86 •
Scene 1.72 1.56 • 2.53 ⊕ 1.48 • 2.63 ⊕
Yeast 89.34 31.67 • 15.01 • 12.48 • 35.65 •
Genbase 2.82 1.43 • 1.07 • 0.92 • 1.59 •
Medical 19.25 5.94 • 2.72 • 2.48 • 6.36 •
Slashdot 59.67 23.15 • 12.89 • 10.89 • 25.54 •
20ng 65.24 60.13 • 71.21 ⊕ 57.29 • 73.76 ⊕
LangLog 149.25 20.28 • 7.72 • 7.00 • 21.69 •
Enron 746.73 36.89 • 5.15 • 4.81 • 38.61 •
Reuters 1058.39 148.71 • 55.59 • 43.56 • 168.52 •

⊕, • statistically significant improvement or degradation vs. LC
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Table 6.4: PS methods vs. LC: Predictive performance (with J48).

Accuracy

Dataset LC PS1 PSt
2

PS2 PSt
1

Music 0.424 0.400 0.427 0.423 0.423
Scene 0.572 0.576 0.575 0.577 ⊕ 0.573
Yeast 0.395 0.413 ⊕ 0.422 ⊕ 0.415 ⊕ 0.417 ⊕
Genbase 0.963 0.964 0.947 • 0.956 • 0.964
Medical 0.716 0.728 0.722 0.726 0.723
Slashdot 0.430 0.435 0.433 0.440 0.423
20ng 0.601 0.602 0.595 • 0.602 0.594 •
LangLog 0.091 0.112 ⊕ 0.130 ⊕ 0.107 ⊕ 0.112 ⊕
Enron 0.320 0.347 ⊕ 0.366 ⊕ 0.353 ⊕ 0.360 ⊕
Reuters 0.389 0.405 ⊕ 0.410 ⊕ 0.413 ⊕ 0.397 ⊕

⊕, • statistically significant improvement or degradation vs. LC

Hamming-loss

Dataset LC PS1 PSt
2

PS2 PSt
1

Music 0.280 0.288 0.280 0.279 0.278
Scene 0.150 0.148 0.146 ⊕ 0.147 ⊕ 0.146
Yeast 0.286 0.275 ⊕ 0.269 ⊕ 0.272 ⊕ 0.271 ⊕
Genbase 0.004 0.004 0.005 • 0.005 0.004
Medical 0.014 0.014 0.014 0.013 ⊕ 0.014
Slashdot 0.058 0.058 0.056 0.056 ⊕ 0.055
20ng 0.041 0.041 0.041 • 0.040 0.041 •
LangLog 0.027 0.023 ⊕ 0.027 ⊕ 0.021 ⊕ 0.027 ⊕
Enron 0.075 0.066 ⊕ 0.069 ⊕ 0.064 ⊕ 0.069 ⊕
Reuters 0.018 0.016 ⊕ 0.016 ⊕ 0.015 ⊕ 0.016 ⊕

⊕, • statistically significant improvement or degradation vs. LC
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Table 6.5: EPS vs. EPS-Bagging: Accuracy (with SMO).

Dataset EPS-Bag. EPS

Music 0.56±0.02 0.57±0.01
Scene 0.73±0.01 0.73±0.01
Yeast 0.54±0.01 0.55±0.01 ⊕
Genbase 0.96±0.01 0.97±0.01 ⊕
Medical 0.75±0.01 0.75±0.01
Slashdot 0.51±0.01 0.51±0.01
20ng 0.67±0.00 0.68±0.00 ⊕
LangLog 0.16±0.01 0.17±0.01 ⊕
Enron 0.44±0.01 0.45±0.01 ⊕
Reuters 0.50±0.01 0.50±0.01 •

⊕, • statistically significant improvement or degradation vs. EPS-Bagging

Table 6.6: EPS vs. EPS-Bagging: Exact-match (with SMO).

Dataset EPS-Bag. EPS

Music 0.30±0.02 0.32±0.02
Scene 0.68±0.02 0.69±0.02
Yeast 0.23±0.01 0.24±0.01 ⊕
Genbase 0.92±0.02 0.94±0.01 ⊕
Medical 0.66±0.02 0.65±0.02
Slashdot 0.43±0.01 0.43±0.01
20ng 0.66±0.00 0.66±0.00 ⊕
LangLog 0.23±0.01 0.25±0.01 ⊕
Enron 0.13±0.01 0.14±0.01
Reuters 0.39±0.01 0.38±0.01

⊕, • statistically significant improvement or degradation vs. EPS-Bagging
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Table 6.7: EPS vs. EPS-Bagging: Running time.

Dataset EPS-Bag. EPS

Music 85.34± 9.29 10.30± 1.64 •
Scene 13.14± 2.80 8.41± 0.64 •
Yeast 175.72±173.21 86.02± 4.45 •
Genbase 12.30± 12.03 8.56± 0.89 •
Medical 35.53± 35.15 19.16± 2.77 •
Slashdot 102.47±179.84 53.84± 5.18 •
20ng 11.29± 17.62 7.02± 6.91 •
LangLog 97.09± 60.63 47.20± 3.67 •
Enron 155.28± 58.53 35.13± 5.69 •
Reuters 537.10±754.99 223.43±34.79 •

⊕, • statistically significantly slower or faster vs. EPS-Bagging

Table 6.8: EPS2 vs. state-of-the-art methods: Accuracy.

Dataset EPS2 EPS1 RAk1 BR RAk2 CLR MLkNN

Music 0.57 0.57 0.58 0.50 • 0.58 0.54 • 0.40 •
Scene 0.74 0.73 0.72 • 0.58 • 0.72 • 0.71 • 0.71 •
Yeast 0.55 0.55 0.55 0.50 • 0.54 • 0.53 • 0.54 •
Genbase 0.95 0.97 ⊕ 0.98 ⊕ 0.98 ⊕ 0.98 ⊕ 0.95
Medical 0.75 0.75 0.76 ⊕ 0.73 • 0.75 0.62 •
Slashdot 0.52 0.51 • 0.50 • 0.43 • 0.47 • 0.30 •
20ng 0.69 0.68 • 0.69 • 0.58 • 0.65 • 0.65 • 0.37 •
LangLog 0.18 0.17 • 0.16 • 0.11 • 0.12 • 0.12 •
Enron 0.44 0.45 ⊕ 0.46 ⊕ 0.39 • 0.42 • 0.35 •
Reuters 0.50 0.50 • 0.45 • 0.32 • 0.30 • 0.44 •

⊕, • statistically significant improvement or degradation
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Table 6.9: EPS2 vs. state-of-the-art methods: Exact-match.

Dataset EPS2 EPS1 RAk1 BR RAk2 CLR MLkNN

Music 0.32 0.32 0.31 0.26 • 0.31 0.27 • 0.13 •
Scene 0.68 0.69 ⊕ 0.66 • 0.51 • 0.67 • 0.66 • 0.64 •
Yeast 0.23 0.24 ⊕ 0.22 • 0.15 • 0.17 • 0.17 • 0.18 •
Genbase 0.90 0.94 ⊕ 0.97 ⊕ 0.97 ⊕ 0.97 ⊕ 0.90
Medical 0.64 0.65 ⊕ 0.66 ⊕ 0.65 0.65 0.50 •
Slashdot 0.43 0.43 0.41 • 0.34 • 0.36 • 0.24 •
20ng 0.66 0.66 • 0.66 • 0.50 • 0.59 • 0.60 • 0.30 •
LangLog 0.26 0.25 • 0.24 • 0.22 • 0.22 • 0.19 •
Enron 0.14 0.14 0.14 0.11 • 0.11 • 0.01 •
Reuters 0.38 0.38 0.36 • 0.27 • 0.25 • 0.29 •

⊕, • statistically significant improvement or degradation

Table 6.10: EPS2 vs. state-of-the-art methods: au(prc).

Dataset EPS2 EPS1 RAk1 BR RAk2 CLR MLkNN

Music 0.68 0.67 • 0.66 • 0.60 • 0.66 • 0.68 0.53 •
Scene 0.81 0.78 • 0.72 • 0.62 • 0.72 • 0.76 • 0.81
Yeast 0.65 0.64 • 0.63 • 0.58 • 0.63 • 0.66 0.69 ⊕
Genbase 0.95 0.96 ⊕ 0.98 ⊕ 0.98 ⊕ 0.98 ⊕ 0.97 ⊕
Medical 0.76 0.75 • 0.74 • 0.70 • 0.73 • 0.66 •
Slashdot 0.54 0.50 • 0.42 • 0.37 • 0.40 • 0.27 •
20ng 0.77 0.73 • 0.65 • 0.56 • 0.62 • 0.62 • 0.44 •
LangLog 0.12 0.10 • 0.09 • 0.07 • 0.08 • 0.11 •
Enron 0.43 0.45 ⊕ 0.46 ⊕ 0.36 • 0.42 • 0.46 ⊕
Reuters 0.42 0.38 • 0.33 • 0.26 • 0.25 • 0.45 ⊕

⊕, • statistically significant improvement or degradation
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Table 6.11: EPS2 vs. state-of-the-art methods: F1-macro×L.

Dataset EPS2 EPS1 RAk1 BR RAk2 CLR MLkNN

Music 0.67 0.66 0.67 0.60 • 0.67 0.62 • 0.46 •
Scene 0.76 0.76 • 0.75 • 0.68 • 0.75 • 0.74 • 0.75 •
Yeast 0.41 0.41 0.41 0.33 • 0.39 • 0.38 • 0.40 •
Genbase 0.57 0.64 ⊕ 0.76 ⊕ 0.77 ⊕ 0.76 ⊕ 0.59
Medical 0.29 0.31 ⊕ 0.36 ⊕ 0.35 ⊕ 0.35 ⊕ 0.23 •
Slashdot 0.33 0.33 0.35 ⊕ 0.34 0.35 ⊕ 0.16 •
20ng 0.72 0.71 • 0.70 • 0.66 • 0.69 • 0.70 • 0.43 •
LangLog 0.05 0.05 0.06 ⊕ 0.05 • 0.05 0.04 •
Enron 0.14 0.16 ⊕ 0.21 ⊕ 0.20 ⊕ 0.21 ⊕ 0.10 •
Reuters 0.24 0.26 ⊕ 0.28 ⊕ 0.22 • 0.21 0.25 ⊕

⊕, • statistically significant improvement or degradation

Table 6.12: EPS2 vs. state-of-the-art methods: Log-loss.

Dataset EPS2 EPS1 RAk1 BR RAk2 CLR MLkNN

Music 3.54 3.72 • 4.13 • 5.92 • 4.04 • 3.28 ⊕ 3.74 •
Scene 1.59 1.90 • 2.59 • 3.83 • 2.48 • 2.00 • 1.38 ⊕
Yeast 11.70 12.44 • 13.32 • 16.30 • 14.01 • 10.47 ⊕ 10.16 ⊕
Genbase 0.78 0.70 ⊕ 0.54 ⊕ 0.53 ⊕ 0.53 ⊕ 0.77
Medical 2.08 2.23 • 2.27 • 2.60 • 2.41 • 2.54 •
Slashdot 3.76 4.41 • 5.60 • 6.37 • 5.78 • 3.71
20ng 1.90 2.36 • 3.39 • 4.57 • 3.73 • 3.35 • 3.01 •
LangLog 7.31 7.82 • 8.57 • 8.15 • 8.22 • 5.19 ⊕
Enron 11.86 12.29 • 12.40 • 14.51 • 12.90 • 10.34 ⊕
Reuters 6.27 7.06 • 8.17 • 8.99 • 9.12 • 4.57 ⊕

⊕, • statistically significant improvement or degradation
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Table 6.13: EPS vs. state-of-the-art methods: Running time (seconds).

Dataset BR EPS1 RAk1 EPS2 RAk2 CLR MLkNN

Music 0 13 3 42 2 0 0
Scene 6 12 14 46 14 5 3
Yeast 6 232 99 461 24 12 1
Genbase 2 11 14 44 11 2
Medical 3 36 32 87 13 0
Slashdot 17 129 83 338 95 1
20ng 507 257 1097 1230 3371 854 98
LangLog 17 97 255 222 124 3
Enron 21 164 1004 226 163 2
Reuters 22 780 1210 1604 190 4
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Table 6.14: Large datasets: Predictive performance (with J48).

Accuracy and per-dataset (rank) across methods

Dataset BR CLR EPS1 EPS2 MLkNN RAkEL1 RAkEL2

TMC2007 0.468 (5) 0.453 (6) 0.477 (4) 0.492 (2) 0.453 (6) 0.482 (3) 0.495 (1)
Ohsumed 0.410 (6) 0.424 (3) 0.420 (4) 0.449 (1) 0.221 (7) 0.417 (5) 0.425 (2)

IMDB 0.219 (2) 0.230 (1)
Bibtex 0.319 (1) 0.300 (3) 0.317 (2) 0.182 (6) 0.285 (5) 0.298 (4)

MediaMill 0.362 (5) 0.415 (3) 0.426 (1) 0.424 (2) 0.412 (4)
Delicious 0.188 (2) 0.003 (4) 0.024 (3) 0.203 (1)

Exact-match and per-dataset (rank) across methods

Dataset BR CLR EPS1 EPS2 MLkNN RAkEL1 RAkEL2

TMC2007 0.181 (5) 0.164 (7) 0.193 (3) 0.207 (1) 0.176 (6) 0.189 (4) 0.202 (2)
Ohsumed 0.196 (3) 0.181 (6) 0.197 (2) 0.217 (1) 0.056 (7) 0.195 (4) 0.184 (5)

IMDB 0.045 (2) 0.051 (1)
Bibtex 0.116 (3) 0.136 (1) 0.133 (2) 0.042 (6) 0.090 (5) 0.101 (4)

MediaMill 0.028 (4) 0.014 (5) 0.071 (1) 0.061 (2) 0.053 (3)
Delicious 0.002 (3) 0.004 (1) 0.003 (2) 0.001 (4)

au(prc) and per-dataset (rank) across methods

Dataset BR CLR EPS1 EPS2 MLkNN RAkEL1 RAkEL2

TMC2007 0.503 (6) 0.463 (7) 0.567 (2) 0.591 (1) 0.553 (4) 0.550 (5) 0.555 (3)
Ohsumed 0.406 (6) 0.420 (5) 0.481 (2) 0.534 (1) 0.263 (7) 0.433 (3) 0.428 (4)

IMDB 0.217 (2) 0.248 (1)
Bibtex 0.290 (3) 0.293 (2) 0.338 (1) 0.225 (6) 0.286 (4) 0.262 (5)

MediaMill 0.374 (4) 0.044 (5) 0.548 (2) 0.550 (1) 0.510 (3)
Delicious 0.125 (1) 0.023 (3) 0.023 (3) 0.124 (2)

F1-macro×L and per-dataset (rank) across methods

Dataset BR CLR EPS1 EPS2 MLkNN RAkEL1 RAkEL2

TMC2007 0.517 (3) 0.455 (6) 0.489 (5) 0.499 (4) 0.425 (7) 0.518 (2) 0.530 (1)
Ohsumed 0.398 (3) 0.408 (1) 0.376 (6) 0.399 (2) 0.097 (7) 0.380 (5) 0.390 (4)

IMDB 0.085 (1) 0.045 (2)
Bibtex 0.287 (2) 0.188 (5) 0.216 (4) 0.152 (6) 0.244 (3) 0.297 (1)

MediaMill 0.146 (4) 0.102 (5) 0.149 (3) 0.153 (2) 0.163 (1)
Delicious 0.085 (2) 0.004 (4) 0.014 (3) 0.099 (1)

Log-loss and per-dataset (rank) across methods

Dataset BR CLR EPS1 EPS2 MLkNN RAkEL1 RAkEL2

TMC2007 5.8 (5) 5.8 (5) 5.2 (3) 4.4 (1) 4.6 (2) 5.6 (4) 5.8 (5)
Ohsumed 5.7 (4) 5.3 (6) 5.9 (3) 4.6 (1) 5.4 (5) 7.0 (2) 7.1 (6)

IMDB 7.5 (2) 6.5 (1)
Bibtex 10.0 (1) 13.1 (5) 11.0 (3) 10.8 (2) 12.3 (4) 13.5 (6)

MediaMill 18.9 (5) 18.7 (4) 16.7 (2) 13.9 (1) 18.3 (3)
Delicious 109.7 (2) 152.2 (3) 157.2 (4) 105.7 (1)

125



Chapter 7

Classifier Chains

In (Read et al., 2009b) we introduced classifier chains for multi-label clas-

sification. The primary goal of this method is to overcome the issues of BR,

while retaining its advantages. An ensemble version of classifier chains is able

to compete with state-of-the-art methods and scale to large datasets. This

chapter presents classifier chains, additionally details improvements to the

ensemble process, and carries out a more extensive experimental evaluation.

7.1 In Defence of Binary Methods

The binary relevance (BR) approach is widely discarded in the literature on

the basis of its label independence assumption. There is good reason for

this. Most methods in the literature use BR as a baseline method and are

easily able to improve its predictive performance. However, let us review the

advantages of BR, which are rarely discussed.

BR is theoretically simple, and resistant to combination-overfitting, since

it does not expect examples to be associated with previously-observed combi-

nations of labels (as in LC methods), and can therefore easily handle irregular
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labelling. Since labels have a one-to-one relationship with binary models, la-

bels can in theory be added and removed without affecting the rest of the

model.

One of the most important advantages of BR is its computational complex-

ity as compared with other methods. Given a constant number of examples

BR scales linearly with the number of labels, whereas PW methods require a

number of models quadratic to the number of labels and, although LC and

RT-based methods involve only a single model, this model must learn multiple

class labels.

We next present the classifier chains method, which overcomes the label

independence assumption of BR while maintaining many of BR’s favourable

aspects, including its low computational complexity.

7.2 The Classifier Chains Method (CC)

The classifier chain model (CC) involves L binary transformations—one for

each label—as in BR. CC is different from BR in that the attribute space for

each binary model is extended with the 0/1 label relevances of all previous

classifiers; thus forming a classifier chain. The training procedure is out-

lined in Algorithm 7.1. Figure 7.1 illustrates the process with an example,

contrasting it with that of BR.

Hence a chain h = (h1, . . . , hL) of binary classifiers is formed. Each clas-

sifier hj in the chain is responsible for learning and predicting the binary

association of the jth label given the attribute space, augmented by all prior

binary relevance predictions in the chain. Note that, although the original
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Algorithm 7.1 CC’s training phase.

Training(D = {(x1,y1), . . . , (xN ,yN)})

1 for j = 1, . . . , L
2 do� the jth binary transformation and training
3 D′

j ← {}
4 for (x,y) ∈ D
5 do x′ ← [x1, . . . , xP , y1, . . . , yj−1]
6 D′

j ← D′
j ∪ (x′, yj)

7 � train hj to predict binary relevance of yj
8 hj : D

′
j → {0, 1}

9 � return a classifier chain
10 return (h1, . . . , hL)

instance x in Figure 7.1 has binary attributes, instances may also be com-

posed of other types of attributes such as numerical values. The chained

attributes, however, are always binary.

It is straightforward to obtain classifications from this chain. The clas-

sification process begins at the first classifier h1 and propagates predictions

along the chain: the jth binary classifier predicts the relevance of the jth

label, given the attribute space augmented by the predictions of all previ-

ous binary classifiers in the chain. This prediction process is outlined in

Algorithm 7.2.

This chaining method passes label information efficiently between classi-

fiers, allowing CC to learn label correlation information and thus overcoming

the problem of BR that label correlations cannot be explicitly taken into

account at prediction time.

The order of the chain itself (which is determined by the order of the label
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Figure 7.1: Transformation under BR and CC for (x,y) where y = [1, 0, 0, 1, 0]
and x = [0, 1, 0, 1, 0, 0, 1, 1, 0] (assuming, for simplicity, a binary attribute
space). Each classifier hj is trained to predict yj ∈ {0, 1}.

(a) BR’s transformation

h : x→ y

h1: [0,1,0,1,0,0,1,1,0] 1
h2: [0,1,0,1,0,0,1,1,0] 0
h3: [0,1,0,1,0,0,1,1,0] 0
h4: [0,1,0,1,0,0,1,1,0] 1
h5: [0,1,0,1,0,0,1,1,0] 0

(b) CC’s transformation

h : x′ → y

h1: [0,1,0,1,0,0,1,1,0] 1
h2: [0,1,0,1,0,0,1,1,0,1] 0
h3: [0,1,0,1,0,0,1,1,0,1,0] 0
h4: [0,1,0,1,0,0,1,1,0,1,0,0] 1
h5: [0,1,0,1,0,0,1,1,0,1,0,0,1] 0

Algorithm 7.2 CC’s prediction phase for a test instance x.

classify(x)

1 � global (h1, . . . , hL)
2 ŷ = [ŷ1, . . . , ŷL] � a vector where each ŷj = 0
3 for j = 1,. . . ,L
4 do x′ ← [x1, . . . , xP , ŷ1, . . . , ŷj−1]
5 ŷj ← hj(x

′)
6 return ŷ

indices in label-set vector representations of y and ŷ) clearly has an effect

on predictive performance. Possible heuristics for selecting a chain order for

CC could be based on label correlations measured in the training data; or

the performance of the binary classifiers (determined by internal validation).

However, we discovered that an ensemble framework, in which a different

random chain ordering is used at each iteration, is a more powerful alterna-

tive. Section 7.4 presents this framework. First let us take a closer look at

the time complexity of the CC method as compared with other methods.
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7.3 Time Complexity

Although an average of L/2 attributes is added to each instance, the size of

the label space—L—is limited in practice, and therefore the computational

complexity of CC can be very close to BR. BR’s complexity is O(L×f(M,N)),

where f(M,N) is the complexity of the underlying learner. CC’s complexity

is O(L×f(M+L,N)), i.e. a penalty is incurred for having up to L additional

attributes. Assuming a linear base learner (with respect to the number of

attributes), CC’s complexity becomes O(L×M ×N +L×L×N), where the

first term dominates as long as L < M , which we already expect (see the

assumptions outlined in Chapter 1), and therefore the effective complexity

of CC is O(L×M ×N), which is identical to BR’s complexity.

We can see how this translates into practice: Figure 7.2 shows how dif-

ferent methods scale with respect to the size of the label space (L). For this

plot, we have generated artificial datasets to vary the size of L in a con-

trolled fashion with a constant N = 5000, M = 500 (numeric attributes),

and LCard(D) = 1.0+n0.15 where L = 2n (a rough approximation suitable

for measuring time complexity). For this purpose, we used the framework

for generating synthetic multi-label data that we introduced in (Read et al.,

2009a). For Figure 7.3 the same analysis is carried out, but varying instead

the number of examples N with a constant L = 10 and M = 20 (again, nu-

meric attributes). Note that, although we have often used N to refer to the

number of training examples, here N is the number of training and testing

examples, in a 60 : 40 ratio. A selection of algorithms were run on these

datasets to analyse their running time with respect to L and N . SMO is

the base learner for all problem transformation methods (this excludes IBLR
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Figure 7.2: Running times for methods on artificial datasets with L =
2, 4, . . . , 256 (note the logarithmic scale).

which is an adaptation of kNN and logistic regression).

We emphasise that some lines end prematurely in both plots, which in-

dicates that algorithms were unable to complete due to lack of memory (we

allowed 1GB).

With respect to the number of labels (L), the binary method BR scales

approximately linearly, and CC only diverges from BR when L > 128. As

expected, CLR is very sensitive to L with respect to memory. It becomes

intractable when L > 64 (at L = 128 this method would need 16256 models).

LC is able to complete up to L = 128, at which point its greater-than-linear

complexity with respect to L is already clear. RAkEL appears to scale about
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Figure 7.3: Running times for methods on artificial datasets with N =
100, 200, . . . , 819200 (note the logarithmic scale).
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linearly, but the memory it uses also prevent it from finishing when L = 256,

and having multiple models makes it take even longer than LC in this context.

IBLR’s running times are initially almost constant with respect to L (which

is plausible: counting the number of labels in a neighborhood can be a very

efficient operation) but memory requirements obviously become high, since

this method does not finish when L = 256.

With respect to the number of examples (N), LC and RAkEL both scale

much higher than other methods for lower numbers of examples, and neither

complete when N = 819200. As expected, the kNN-based IBLR scales worst

for large N , since kNN is N -sensitive; not completing when N > 204800.

Under our assumptions (see Section 1.1) L is inherently limited in scope and

not expected to grow without bound. This does not apply to N , and, as N

becomes larger, kNN methods will reach their natural limits of scalability.

Only CC, BR, and CLR (which needs in this case only L(L−1)/2 = 10∗9/2 = 45

classifiers) completes when N = 819200. Under SMO, CC’s running time is

progressively affected by the additional attributes in terms of time, but it is

the only method that explicitly models label correlations to complete for the

full range of N .

Overall, only the binary methods BR and CC scale to the extremes in both

dataset dimensions. IBLR scales well with respect to L in terms of running

time, but not with respect to N and vice versa for CLR. For growing N , RAkEL

is able to improve its running time over LC, but neither can complete on the

largest numbers of labels and examples.
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7.4 Ensembles of Classifier Chains (ECC)

Chapter 6 discussed the benefits of using ensembles and provided positive

results with respect to the EPS method. We now present ensembles of clas-

sifier chains (ECC). Unlike EPS, instances are not already being duplicated

within the multi-label models, and therefore a standard bagging scheme is

appropriate. Thus, in this chapter we obtain better results than in (Read

et al., 2009b) where we used a simple-subset ensemble.

ECC trains m CC classifiers using a standard bagging scheme, where the

binary models of each chain are ordered according to a random seed. Each

model is then likely to be unique and can predict different label sets from

other models. The label sets are combined across models as votes into a final

label-set prediction with the classification scheme outlined in Algorithm 6.6.

We also employ BR under this generic ensemble framework to create an

ensemble of binary relevance classifiers (EBR). As far as we are aware, such a

scheme had not been previously evaluated in the literature until the work in

(Read et al., 2009b). Comparing with EBR empirically will help to evaluate

and analyse the performance of ECC.

With respect to computational complexity, ECC is O(m × CC) for m it-

erations. Section 7.7 on future work discusses how this complexity can be

reduced.

7.5 Related Work

Chapter 5 reviewed work related to CC, most notably the MBR and SMBR

methods.
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MBR uses BR’s binary outputs as additional attributes in a meta classifier

to take into account label correlations in a BR-scheme. IBLR can be seen

as a specialisation of the MBR approach using kNN with logistic regression

as the meta method. CC also uses binary outputs as additional attributes.

However, CC does not require the additional meta classifier and its associated

complexity (i.e. the extra iterations of the data at training and testing time

for the meta classifier).

SMBR involves a faster meta process, which maps BR’s binary outputs di-

rectly to label sets from the training set, and therefore does not require inter-

nal classification at training time. However, this method is not as adaptable

as CC, since it can only fit label sets which were observed in the training data.

In this sense, SMBR suffers some of the disadvantages of LC.

7.6 Experiments

7.6.1 CC against BR and related methods.

Initially we compare standalone CC to BR and BR-related methods MBR and

SMBR, which we reproduce in our framework.

Results of a 5 × 2 cross validation experiment are shown in Table 7.1

under a corrected paired t-test against CC on various evaluation measures. A

selection of running times are plotted in Figure 7.4. SMO is used as the base

classifier. These results show the value of CC’s chaining method. Overall, CC

improves convincingly over both the default BR method and related methods

MBR and SMBR, with the exception of the small Music dataset. Most perfor-

mance gains are statistically significant and the running times support the
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theory presented in Section 7.3: BR is naturally the fastest and in practice the

complexity added to BR by CC is not noticeable except when L is relatively

large such as in Reuters. In some cases, CC or SMBR are even faster than BR,

although this can be attributed to minor variations in implementation and

run-time conditions. MBR’s two-stage stacking process means that its running

times are roughly twice that of BR.

7.6.2 ECC against state-of-the-art methods.

As the main focus of our evaluation, we compare the ensemble method ECC

to EBR and various state-of-the-art algorithms. MLkNN has arguably been

superceded recently by the newer IBLR (which is also of interest since it

is closely related to MBR), so we compare with this method instead. We

also compare with CLR, RAkEL, and our own EPS method from Chapter 6.

The parameter variations for the latter two methods are described in the

evaluation section of that chapter. We also create two variations of both EBR

and ECC: EBR1 and ECC1 carry out 10 iterations, and EBR2 and ECC2 carry out

50 iterations.

Again we perform 5 × 2 cross validation and record significance under a

corrected paired t-test with SMO as the base classifier for problem transfor-

mation methods (excluding kNN- and logistic regression-based IBLR). The

results are displayed in Tables 7.2 (accuracy), 7.3 (exact-match), 7.4

(au(prc)), 7.5 (F1-macro×L), 7.6 (log-loss), and 7.7 (running-time).

Corresponding tables for the Nemenyi test, which include average ranks and

values, can be found in Appendix A.2.

The results show that ECC is the dominant method. This is particu-

136



Figure 7.4: Time measurements.

(a) Training times (seconds).

 0

 10

 20

 30

 40

 50

 60

 70

Slashdot

Reuters
LangLog

Enron
Medical

Yeast

CC
BR

SMBR
MBR

(b) Testing times (seconds).

 0

 5

 10

 15

 20

 25

 30

 35

Slashdot

Reuters
LangLog

Enron
Medical

Yeast

CC
BR

SMBR
MBR

137



larly clear under log-loss and au(prc), where ECC2 excels. Even though

log-loss and au(prc) are label-based evaluation measures (and, as such,

should favour BR-type methods like CC), ECC is not designed to optimise either

of them. Furthermore, ECC performs well overall, even under label-set-based

evaluation measures like accuracy. Only under exact-match do other meth-

ods (namely EPS1,2 and RAkEL1) have a noticeable advantage because they

model label sets.

ECC is thus consistent in its high performance across all the datasets, and

there are no results where ECC performs poorly, unlike—for example—IBLR

on Enron, CLR on Music, or RAk1 on LangLog.

Generally IBLR performs well on log-loss relative to other measures.

CLR performs well on several datasets but its complexity prohibits its com-

pletion on anything but small-L datasets.

The effectiveness of ECC’s chaining method is further demonstrated in

comparison with EBR – these methods only differ in terms of the chaining

method. ECC gains a clear advantage overall, and particularly on datasets

like Reuters and evaluation measures like exact-match.

On the other hand, EBR (specifically EBR2) performs surprisingly well in

some areas—like on Slashdot and 20ng—as compared with other methods.

This is interesting, considering that this method is simply an ensemble of the

baseline method BR.

Both EBR and ECC make consistent gains with respect to the number of

iterations: EBR2 and ECC2 (50 iterations) perform significantly better than

EBR1 and ECC1 (10 iterations), particularly under accuracy and au(prc).
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7.6.3 Experiments on large datasets.

We also run the competing methods on large datasets, with the same setup we

used in Chapter 6: a train/test scenario, where the problem transformation

methods employ J48 as the base classifier (which excludes IBLR).

Results for predictive performance are displayed in Table 7.8. Although

too many methods did not finish (DNF)—shown as missing values in the

table—to learn much from a statistical significance test, the ranks (across

methods, for each dataset) are included. Table 7.9 displays corresponding

run-time results.

Again ECC excels in terms of predictive performance. However, on large

datasets, performance is best under the label-set-based measures accuracy

and exact-match, more so than label-based measures. The fact that ECC

now does particularly well under label-set evaluation hints that, given enough

training instances, variance in the labelling is reduced so much by the chain

model that ECC begins to behave more like label-set methods (i.e. RAkEL and

EPS) which model label-set combinations. Although this could be partially

due to the change in base classifier, we see also on standard datasets that

ECC was relatively better at exact-match on larger datasets (e.g. Reuters)

than smaller datasets (e.g. Music).

Thus, label-set-based methods begin to overfit large training sets in terms

of label-correlations. Moreover EBR performs particularly well on large datasets,

which also lends weight to the intuition that when high numbers of training

examples are involved methods get relatively less benefit for modelling label

correlations because it is possible to model individual labels so well.

Section 7.3 discussed the time complexity of various methods, which was

139



mostly borne out in the experiments on large datasets. IBLR runs out of mem-

ory dealing with large-L and slows down considerably under many training

examples; CLR only performs where L is small; and in spite of high worst-case

complexity, EPS can perform reasonably in practice on most datasets.

On several datasets, ECC’s running times can be up to several times greater

than other methods. This is mainly regarding large datasets of large L (e.g.

Bibtex, Delicious, and MediaMill). However, the fact that EBR’s running

times are about as high on these datasets (with the exception of Delicious)

leads us to conclude that the number of binary models is the biggest influ-

ence on these times, rather than the extra binary attributes in the attribute

space of the binary transformations for the CC models. Although the compet-

ing methods have a higher theoretical computational complexity, they often

perform efficiently in practice. However, this speed comes at a price: these

methods often either fail to perform well (for example CLR on MediaMill,

RAkEL on Bibtex, and EPS on Delicious), or fail to perform within memory

bounds. The latter case is clear, as the binary methods are the only methods

able to finish on all the large datasets.

Thus, although ECC can be time-intensive, its running time is straight-

forward to estimate and theoretically lower than other methods and it can

deal with the entire collection of datasets under memory constraints. And,

importantly, its predictive performance is correspondingly as reliable.
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7.7 Limitations and Future Work

7.7.1 Achieving more efficient chains

When L becomes large relative to M or N CC performs notably slower than

BR, for example on LangLog and Reuters. This is due to the extra attribute

space added to BR, which is up to L−1 extra attributes (in the final transfor-

mation in the chain). Clearly, this issue is exacerbated for multiple models,

i.e. ECC.

Further work can make the running time of CC much closer to BR with-

out significant degradation of predictive performance. Analysis in Chapter 2

showed that domain-dependent label correlations are invariably only a small

subset of all possible label correlations, and therefore a partial chain can

in theory sufficiently model any dataset: each binary model of a classifier

chain would only need to model a subset of the binary outputs from previous

models in the chain (where correlations are significant). Correlations can be

detected and measured with, for example, the correlation coefficient mea-

sure introduced by Tsoumakas et al. (2009a). Depending on the correlations

detected, running time—especially on large-L datasets—could be improved

substantially. In future work we intend to investigate this.

The results on large datasets also suggest that when the number of train-

ing examples grows very large, modelling label correlations not only becomes

less effective, but may even eventually become a hinderence. Therefore,

chained classifiers with fewer additional attributes in their transformed prob-

lem may even achieve higher predictive performance as well as greater effi-

ciency.
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7.7.2 Achieving more efficient ensembles

As well as the issue of chain length, ECC can face a problem with the number

of models it requires in some contexts—a problem it shares with EBR. Even

though each ensemble iteration only deals with simple binary models, these

are complete with respect to the attribute space and training set (X and D).

Under m iterations, ECC creates m × L binary models, each of which sees

N transformed instances. ECC2 requires nearly 8, 000 models on the Bibtex

dataset, and over 20 million training examples are drawn from IMDB over

m = 10 iterations. The results clearly illustrated the time costs.

Existing work on BR-related problems have addressed the issue of com-

plexity across all dimensions with a variety of strategies and, because CC is

based closely on BR, it can also employ these strategies.

Ráez et al. (2004) show that the most imbalanced binary classifiers from

a BR transformation can be removed entirely for a significant reduction of

computational complexity without significantly hindering predictive perfor-

mance. We suggest that any lost performance could be recovered (or even

improved upon) by building a single-model method (e.g. PS) on these labels.

Another strategy discussed by Ráez et al. (2004) is down-sampling: select-

ing fewer negative examples for each binary model to reduce binary imbal-

ances (to improve prediction), with the additional benefit of reduced training

time.

As well as the label and example space, it is also possible to sub-sample

the attribute space; an approach used by Yan et al. (2007). In this way,

each binary model contains fewer than M attributes, but hopefully these

attributes are the ones relevant to that particular binary problem.
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Given the results reported by these methods we can expect large reduc-

tions in training time when applied to ECC.

7.8 Summary and Conclusions

The dominance of CC over BR and related methods, and that of ECC over

EBR and state-of-the-art methods, showed the value of classifier chains: CC

can model label correlations for higher predictive performance without over-

fitting the training data and without incurring significant increases in running

time over BR, and ECC provides even higher predictive performance on account

of being less prone to variations in the labelling scheme than other methods.

There were no cases where ECC failed to perform well and it usually per-

forms best. Unlike other competing methods like RAkEL and EPS, ECC requires

no parameter configuration other than the generic ensemble parameter of the

number of iterations, which is intuitive to calibrate: more iterations provide

better performance at a calculable cost of time complexity. As such, ECC can

be seen as a good generally-applicable ‘off the shelf’ method: it is easily con-

figurable, has a relatively low worst case time performance, and it is robust

with respect to predictive performance across a variety of datasets.

Even without additional improvements to efficiency, we can say that CC

and ECC are both scalable methods. CC does not suffer from the same mem-

ory limitations of single-model multi-class transformations (e.g. EPS, RAkEL)

or meta methods (e.g. MBR, IBLR), and ECC successfully trained on all the

datasets in our collection.

143



Table 7.1: CC vs. related methods: Predictive performance.

Accuracy

Dataset CC BR SMBR MBR

Music 0.45±0.05 0.50±0.01 ⊕ 0.52±0.01 ⊕ 0.52±0.01 ⊕
Scene 0.67±0.01 0.58±0.01 • 0.62±0.01 • 0.61±0.01 •
Yeast 0.51±0.01 0.50±0.01 • 0.51±0.01 0.50±0.01 •
Genbase 0.98±0.01 0.98±0.01 0.97±0.02 0.98±0.01
Medical 0.76±0.01 0.73±0.01 • 0.73±0.01 • 0.73±0.01 •
Slashdot 0.46±0.01 0.43±0.01 • 0.45±0.01 • 0.44±0.01 •
20ng 0.62±0.00 0.58±0.00 • 0.59±0.00 • 0.58±0.00 •
LangLog 0.11±0.01 0.11±0.01 0.11±0.01 0.11±0.01
Enron 0.40±0.01 0.39±0.01 • 0.41±0.01 ⊕ 0.39±0.01 •
Reuters 0.40±0.02 0.32±0.00 • 0.33±0.01 • 0.32±0.01 •

⊕, • statistically significant improvement or degradation vs. CC

Exact-match

Dataset CC BR SMBR MBR

Music 0.26±0.02 0.26±0.02 0.27±0.02 0.27±0.01
Scene 0.62±0.01 0.51±0.01 • 0.57±0.01 • 0.55±0.01 •
Yeast 0.20±0.01 0.15±0.01 • 0.18±0.01 • 0.15±0.01 •
Genbase 0.97±0.01 0.97±0.01 0.95±0.02 • 0.97±0.01
Medical 0.68±0.02 0.65±0.02 • 0.66±0.02 • 0.65±0.02 •
Slashdot 0.38±0.01 0.34±0.01 • 0.37±0.01 • 0.34±0.01 •
20ng 0.57±0.01 0.50±0.01 • 0.56±0.00 • 0.51±0.01 •
LangLog 0.22±0.01 0.22±0.01 0.23±0.01 0.22±0.01
Enron 0.12±0.01 0.11±0.01 • 0.14±0.01 ⊕ 0.11±0.01 •
Reuters 0.34±0.01 0.27±0.01 • 0.29±0.01 • 0.27±0.01 •

⊕, • statistically significant improvement or degradation vs. CC

F1-macro×L

Dataset CC BR SMBR MBR

Music 0.26±0.02 0.26±0.02 0.27±0.02 0.27±0.01
Scene 0.62±0.01 0.51±0.01 • 0.57±0.01 • 0.55±0.01 •
Yeast 0.20±0.01 0.15±0.01 • 0.18±0.01 • 0.15±0.01 •
Genbase 0.97±0.01 0.97±0.01 0.95±0.02 • 0.97±0.01
Medical 0.68±0.02 0.65±0.02 • 0.66±0.02 • 0.65±0.02 •
Slashdot 0.38±0.01 0.34±0.01 • 0.37±0.01 • 0.34±0.01 •
20ng 0.57±0.01 0.50±0.01 • 0.56±0.00 • 0.51±0.01 •
LangLog 0.22±0.01 0.22±0.01 0.23±0.01 0.22±0.01
Enron 0.12±0.01 0.11±0.01 • 0.14±0.01 ⊕ 0.11±0.01 •
Reuters 0.34±0.01 0.27±0.01 • 0.29±0.01 • 0.27±0.01 •

⊕, • statistically significant improvement or degradation vs. CC

144



Table 7.2: ECC2 vs. other methods: Accuracy.

Dataset ECC2 EPS1 EPS2 RAkEL1 ECC1 EBR1 EBR2 RAk2 IBLR CLR

Music 0.56 0.57 0.57⊕ 0.57 ⊕ 0.55• 0.55 0.55 0.58⊕ 0.56 0.54•
Scene 0.71 0.73⊕ 0.74⊕ 0.72 0.70• 0.69• 0.71 • 0.72 0.73⊕ 0.71•
Yeast 0.54 0.55⊕ 0.55⊕ 0.54 ⊕ 0.53• 0.53• 0.53 • 0.53 0.54 0.53•
Genbase 0.98 0.97 • 0.95 • 0.98 0.98 0.98 0.98 0.98⊕ 0.95 •
Medical 0.79 0.75 • 0.75 • 0.76 • 0.78• 0.77• 0.78 0.52 • 0.54 •
Slashdot 0.52 0.51 • 0.52 • 0.51 • 0.51• 0.51• 0.53⊕ 0.47 • 0.26 •
20ng 0.69 0.68 • 0.69 0.69 • 0.68• 0.68• 0.70⊕ 0.65 • 0.39 • 0.65•
LangLog 0.17 0.17 0.18⊕ 0.16 • 0.14• 0.14• 0.18 0.11 • 0.04 •
Enron 0.47 0.45 • 0.44 • 0.46 • 0.46• 0.46• 0.47 • 0.42 • 0.34 •
Reuters 0.49 0.50⊕ 0.50⊕ 0.45 • 0.46• 0.37• 0.41 • 0.30 • 0.38 •

⊕, • statistically significant improvement or degradation vs. ECC2

Table 7.3: ECC2 vs. other methods: Exact-match.

Dataset ECC2 EPS1 EPS2 RAk1 ECC1 EBR1 EBR2 RAk2 IBLR CLR

Music 0.29 0.32⊕ 0.32⊕ 0.31⊕ 0.27 0.26• 0.27 • 0.32⊕ 0.30 0.27 •
Scene 0.65 0.69⊕ 0.68⊕ 0.66⊕ 0.64 0.63• 0.65 0.67⊕ 0.66⊕ 0.66⊕
Yeast 0.19 0.24⊕ 0.23⊕ 0.22⊕ 0.19 0.15• 0.15 • 0.16 0.19 0.17 •
Genbase 0.95 0.94 0.90 • 0.96⊕ 0.95 0.95 0.95 0.97⊕ 0.91 •
Medical 0.69 0.65 • 0.64 • 0.67 • 0.68• 0.67• 0.68 • 0.45 • 0.42 •
Slashdot 0.42 0.43⊕ 0.43⊕ 0.42 0.42 0.42 0.42⊕ 0.36 • 0.15 •
20ng 0.64 0.66⊕ 0.66⊕ 0.66⊕ 0.63• 0.63• 0.65⊕ 0.59 • 0.32 • 0.60 •
LangLog 0.25 0.25 0.26⊕ 0.24 • 0.22• 0.22• 0.25 0.21 • 0.14 •
Enron 0.12 0.14⊕ 0.14⊕ 0.14⊕ 0.12 0.11• 0.12 • 0.11 • 0.02 •
Reuters 0.34 0.38⊕ 0.38⊕ 0.36⊕ 0.32• 0.26• 0.29 • 0.25 • 0.25 •

⊕, • statistically significant improvement or degradation vs. ECC2

Table 7.4: ECC2 vs. other methods: au(prc).

Dataset ECC2 EPS1 EPS2 RAk1 ECC1 EBR1 EBR2 RAk2 IBLR CLR

Music 0.69 0.67• 0.68 • 0.66• 0.68• 0.67• 0.68 • 0.67• 0.69 0.68•
Scene 0.81 0.78• 0.81 0.72• 0.78• 0.73• 0.77 • 0.72• 0.82⊕ 0.76•
Yeast 0.67 0.64• 0.65 • 0.63• 0.66• 0.64• 0.64 • 0.62• 0.69⊕ 0.66•
Genbase 0.99 0.96• 0.95 • 0.98• 0.98 0.98 0.98 0.98 0.96 •
Medical 0.81 0.75• 0.76 • 0.74• 0.79• 0.78• 0.80 • 0.51• 0.59 •
Slashdot 0.57 0.50• 0.54 • 0.43• 0.52• 0.48• 0.54 • 0.40• 0.29 •
20ng 0.79 0.73• 0.77 • 0.65• 0.75• 0.70• 0.75 • 0.62• 0.47 • 0.62•
LangLog 0.10 0.10 0.12⊕ 0.09• 0.08• 0.08• 0.11⊕ 0.07• 0.06 •
Enron 0.53 0.45• 0.43 • 0.46• 0.51• 0.51• 0.52 • 0.42• 0.45 •
Reuters 0.42 0.38• 0.42 0.33• 0.37• 0.34• 0.37 • 0.25• 0.40 •

⊕, • statistically significant improvement or degradation vs. ECC2
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Table 7.5: ECC2 vs. other methods: F1-macro×L.

Dataset ECC2 EPS1 EPS2 RAk1 ECC1 EBR1 EBR2 RAk2 IBLR CLR

Music 0.66 0.66 0.67⊕ 0.67⊕ 0.65• 0.64• 0.65 • 0.67⊕ 0.66 0.62 •
Scene 0.75 0.76 0.76⊕ 0.74 0.73• 0.73• 0.74 • 0.75 0.75 0.74 •
Yeast 0.37 0.41⊕ 0.41⊕ 0.41⊕ 0.37 0.37 0.37 0.38 0.41⊕ 0.38⊕
Genbase 0.75 0.64 • 0.57 • 0.76 0.75 0.75 0.75 0.76 0.63 •
Medical 0.35 0.31 • 0.29 • 0.35 0.35 0.35 0.35 0.25 0.20 •
Slashdot 0.36 0.33 • 0.33 • 0.35 0.34• 0.34• 0.36 0.35 0.15 •
20ng 0.73 0.71 • 0.72 • 0.70 • 0.71• 0.71• 0.73 • 0.69 • 0.45 • 0.70 •
LangLog 0.06 0.05 0.05 0.06⊕ 0.05 0.05 0.06 0.05 0.02 •
Enron 0.20 0.16 • 0.14 • 0.21⊕ 0.20 0.20 0.20 0.21⊕ 0.13 •
Reuters 0.27 0.26 • 0.24 • 0.28 0.27 0.27 0.28⊕ 0.21 • 0.19 •

⊕, • statistically significant improvement or degradation vs. ECC2

Table 7.6: ECC2 vs. other methods: Log-loss.

Dataset ECC2 EPS1 EPS2 RAk1 ECC1 EBR1 EBR2 RAk2 IBLR CLR

Music 3.2 3.7• 3.5 • 4.1• 3.5• 3.8• 3.5 • 4.0• 3.2 3.3
Scene 1.4 1.9• 1.6 • 2.6• 1.7• 2.1• 1.7 • 2.5• 1.3⊕ 2.0 •
Yeast 11.3 12.4• 11.7 • 13.4• 12.1• 13.4• 12.7 • 14.4• 10.1⊕ 10.5⊕
Genbase 0.5 0.7• 0.8 • 0.5 0.5 0.5 0.5⊕ 0.5 0.7 •
Medical 1.8 2.2• 2.1 • 2.3• 1.9• 2.0• 1.8 4.1• 3.1 •
Slashdot 3.3 4.4• 3.8 • 5.4• 3.9• 4.4• 3.5 • 5.8• 3.7 •
20ng 1.7 2.4• 1.9 • 3.4• 2.2• 2.5• 2.0 • 3.8• 2.8 • 3.3 •
LangLog 7.6 7.8• 7.3⊕ 8.5• 8.4• 8.4• 7.4⊕ 8.2• 6.8⊕
Enron 10.2 12.3• 11.9 • 12.3• 10.9• 11.0• 10.3 • 12.9• 11.0 •
Reuters 5.9 7.1• 6.3 • 8.1• 7.0• 7.8• 7.3 • 9.1• 5.3⊕

⊕, • statistically significant improvement or degradation vs. ECC2

Table 7.7: All methods: Training time (seconds).

Dataset ECC2 EPS1 EPS2 RAk1 ECC1 EBR1 EBR2 RAk2 IBLR CLR

Music 6 13 42 3 1 1 6 3 0 1
Scene 89 12 46 13 16 19 155 15 6 6
Yeast 150 232 461 157 32 32 163 43 4 20
Genbase 127 11 44 14 30 18 91 13 2
Medical 544 36 87 43 51 25 92 16 2
Slashdot 454 129 338 112 89 89 438 118 3
20ng 6260 257 1230 1122 1553 1755 7933 2612 127 854
LangLog 1202 97 222 284 156 95 448 107 9
Enron 593 164 226 1036 137 102 517 111 6
Reuters 1667 780 1604 1208 185 123 628 115 53
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Table 7.8: Large datasets: Predictive Performance (with J48).

Accuracy and per-dataset (rank) across methods

Dataset EBR ECC1 BR CLR EPS1 IBLR RAk1 RAk2

TMC2007 0.496 (2) 0.499 (1) 0.468 (6) 0.453 (8) 0.477 (5) 0.460 (7) 0.482 (4) 0.495 (3)
Ohsumed 0.461 (2) 0.465 (1) 0.410 (7) 0.424 (4) 0.420 (5) 0.234 (8) 0.417 (6) 0.425 (3)

IMDB 0.243 (1) 0.229 (3) 0.219 (4) 0.234 (2)
Bibtex 0.332 (2) 0.340 (1) 0.319 (3) 0.300 (4) 0.148 (7) 0.285 (6) 0.298 (5)

MediaMill 0.427 (2) 0.429 (1) 0.362 (6) 0.415 (4) 0.426 (3) 0.412 (5)
Delicious 0.206 (1) 0.199 (2) 0.188 (3) 0.003 (4)

Exact-match and per-dataset (rank) across methods

Dataset EBR ECC1 BR CLR EPS1 IBLR RAk1 RAk2

TMC2007 0.196 (3) 0.206 (1) 0.181 (6) 0.164 (8) 0.193 (4) 0.180 (7) 0.189 (5) 0.202 (2)
Ohsumed 0.220 (2) 0.223 (1) 0.196 (4) 0.181 (7) 0.197 (3) 0.071 (8) 0.195 (5) 0.184 (6)

IMDB 0.054 (1) 0.049 (3) 0.045 (4) 0.054 (1)
Bibtex 0.108 (4) 0.125 (2) 0.116 (3) 0.136 (1) 0.032 (7) 0.090 (6) 0.101 (5)

MediaMill 0.056 (3) 0.064 (2) 0.028 (5) 0.014 (6) 0.071 (1) 0.053 (4)
Delicious 0.003 (3) 0.005 (1) 0.002 (4) 0.004 (2)

au(prc) and per-dataset (rank) across methods

Dataset EBR ECC1 BR CLR EPS1 IBLR RAk1 RAk2

TMC2007 0.587 (2) 0.591 (1) 0.503 (7) 0.463 (8) 0.567 (3) 0.561 (4) 0.550 (6) 0.555 (5)
Ohsumed 0.480 (2) 0.479 (3) 0.406 (7) 0.420 (6) 0.481 (1) 0.287 (8) 0.433 (4) 0.428 (5)

IMDB 0.226 (3) 0.228 (2) 0.217 (4) 0.253 (1)
Bibtex 0.337 (1) 0.334 (2) 0.290 (4) 0.293 (3) 0.145 (7) 0.286 (5) 0.262 (6)

MediaMill 0.554 (1) 0.551 (2) 0.374 (5) 0.044 (6) 0.548 (3) 0.510 (4)
Delicious 0.172 (1) 0.143 (2) 0.125 (3) 0.023 (4)

F1-macro×L and per-dataset (rank) across methods

Dataset EBR ECC1 BR CLR EPS1 IBLR RAk1 RAk2

TMC2007 0.534 (2) 0.535 (1) 0.517 (5) 0.455 (7) 0.489 (6) 0.436 (8) 0.518 (4) 0.530 (3)
Ohsumed 0.427 (2) 0.430 (1) 0.398 (4) 0.408 (3) 0.376 (7) 0.111 (8) 0.380 (6) 0.390 (5)

IMDB 0.082 (2) 0.074 (3) 0.085 (1) 0.048 (4)
Bibtex 0.300 (1) 0.299 (2) 0.287 (4) 0.188 (6) 0.115 (7) 0.244 (5) 0.297 (3)

MediaMill 0.163 (1) 0.148 (4) 0.146 (5) 0.102 (6) 0.149 (3) 0.163 (1)
Delicious 0.113 (2) 0.127 (1) 0.085 (3) 0.004 (4)

Log-loss and per-dataset (rank) across methods

Dataset EBR ECC1 BR CLR EPS1 IBLR RAk1 RAk2

TMC2007 5.0 (3) 4.9 (2) 5.8 (7) 5.8 (5) 5.2 (4) 4.4 (1) 5.6 (6) 5.8 (8)
Ohsumed 5.9 (4) 5.9 (5) 5.7 (3) 5.3 (2) 5.9 (6) 5.3 (1) 7.0 (2) 7.1 (8)

IMDB 14.2 (4) 12.3 (3) 7.5 (2) 6.4 (1)
Bibtex 11.0 (2) 11.1 (3) 10.0 (1) 13.1 (6) 12.8 (5) 12.3 (4) 13.5 (7)

MediaMill 16.1 (1) 16.2 (2) 18.9 (6) 18.7 (5) 16.7 (3) 18.3 (4)
Delicious 120.4 (2) 120.4 (3) 109.7 (1) 152.2 (4)
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Table 7.9: Large datasets: Running time (seconds).

Dataset EBR ECC1 BR CLR EPS1 IBLR RAk1 RAk2

TMC2007 2.6e04 2.3e04 3.4e03 6.6e03 9.4e02 4.6e02 2.0e03 1.6e04
Ohsumed 1.1e05 7.7e04 6.6e03 1.3e04 4.0e03 1.2e02 7.0e03 2.6e04
IMDB 8.3e05 8.4e05 9.3e04 4.0e03
Bibtex 7.7e03 1.5e04 1.0e03 6.3e02 3.1e02 8.5e02 7.9e03
MediaMill 2.7e04 2.8e04 1.8e03 6.6e03 4.4e03 8.2e03
Delicious 4.1e04 6.1e05 9.1e03 1.3e02
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Chapter 8

Conclusions

This thesis addressed multi-label classification, where examples may be as-

sociated with multiple labels. In recent years sources of real-world data with

multi-label associations have proliferated and this is reflected in the academic

literature where the work on multi-label classification is expanding rapidly.

Multi-label data sources are progressively becoming more numerous, com-

ing from more diverse domains, and of larger size. The focus of this research

was creating general scalable methods; methods which:

• are generally applicable to a variety of domains;

• can compete with modern methods in the literature; and importantly

• can scale to large datasets.

This chapter briefly summarises this thesis, synthesises its contributions,

and discusses future work.
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8.1 Summary

Chapter 2 reviewed sources of multi-label data and introduced our dataset

collection, which included new datasets; and explained how multi-label data

involves an extra dimension: not only can multiple labels be associated with

a single example, but many correlations exist between labels.

Chapter 3 explained the implications of the multi-label dimension on

evaluation: predictive performance can either be evaluated by label or by

label-set. This chapter also looked in depth into threshold functions and

their calibration, and introduced a log loss measure to multi-label evaluation.

Chapter 4 reviewed and defended problem transformation; the paradigm

for multi-label classification which was the focus of this research owing to its

flexibility and general applicability, where different off-the-shelf single-label

classifiers can be employed to suit requirements.

Chapter 5 reviewed significant multi-label approaches in the literature;

both problem transformation methods as well as the alternative algorithm

adaptation methods.

Chapter 6 presented the pruned sets method.

Chapter 7 presented the classifier chains method.

8.2 Contributions

This thesis identified a paucity in the literature on multi-label methods that

are both general and scalable. Most existing methods could be identified

approximately as belonging to one of two approaches. Methods of the first

approach typically invest computational complexity into modelling label cor-
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relations or decision boundaries and, as a result, often achieve high predictive

performance, but are generally intractable on large datasets. Examples in-

clude the label combination and pairwise problem transformation methods,

and numerous support vector machine and meta method adaptations. Meth-

ods of the second approach are typically efficient, and can deal with large

datasets, but are specialised for a particular domain or even a particular

dataset or hierarchical context, and are therefore not generally applicable.

Examples include decision tree adaptations in the microbiological domain

(often involved with an ontology specialisation), and probabilistic and neural-

network adaptations for application to text data. Methods of this approach

are either simply unable to achieve competitive predictive performance as

a trade off for their emphasis on efficiency, or perform well only in a very

specific context.

The major contributions of this thesis are two novel problem transfor-

mation classification methods: the pruned sets method (in Chapter 6) and

the classifier chains method (in Chapter 7). These methods fill a gap in

the range of available methods in the literature. They are both general and

scalable methods: able to achieve high predictive performance across many

domains and tractable on large datasets.

Other contributions are a new evaluation measure and datasets, and an

ensemble of binary relevance method. The extent of our experimental eval-

uations also contributes generally to the depth of conclusions which can be

drawn with respect to the multi-label literature.
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8.2.1 Pruned Sets

The label combination method, where label sets become single-labels in the

transformed problem, can be powerful on small problems since it directly

models label correlations, but its ability to scale to larger problems is com-

promised on most datasets by the number of resulting single-labels. Fur-

thermore, this method tends to overfit training data with relatively irregular

labelling, and results in poor predictive performance.

The pruned sets method leverages the label skew inherent to many do-

mains to focus on core label correlations, by pruning infrequent label sets

from the data and subsampling them for frequent label sets to retain instance-

space and label-correlation information. A pruned sets transformation thereby

produces a single-label problem with far fewer class labels than a label combi-

nation transformation: this reduces overfitting and makes the problem much

more tractable.

As compared with the label combination method, under empirical evalu-

ation, the pruned sets method:

• reduces running times by up to two orders of magnitude; and

• achieves higher predictive performance overall.

An even greater contribution in terms of predictive power was ensembles

of pruned sets, which:

• outperformed a variety of state-of-the-art methods from the literature

in most contexts, especially under label-set-based evaluation; and

• scaled to large datasets, even when configured for maximum predictive

performance.
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8.2.2 Classifier Chains

The simple and intuitive binary relevance problem transformation method

has often been used to scale to large datasets since it requires only a single

binary model for each label. However, it had been often overlooked in the lit-

erature on account of its low predictive performance owing to its assumption

of label independence.

The classifier chains method overcomes the label independence assump-

tion of the binary relevance context by linking binary classifiers in a chain,

along which label correlation information is passed efficiently in the attribute

space of each transformed problem and, thus, unlike related methods using a

meta-scheme, its complexity is bounded closely to that of the simple binary

relevance method.

Thus, when compared empirically to related methods, the classifier chains

method:

• has lower running time, close to that of the binary relevance method;

and

• achieves superior predictive performance.

An ensemble of classifier chains eliminated the issue of chain order, thereby

providing an even more robust and powerful method, which did not require

parameter configuration other than the number of ensemble iterations. In

empirical evaluation this method:

• achieved significantly better predictive performance than a variety of

state-of-the-art methods, especially under label-based evaluation;
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• performed well across the entire collection of datasets (unlike other

methods that performed poorly on some types of data); and

• scaled to all large datasets in the collection within memory bounds.

8.2.3 Overall contributions

Pruned sets and classifier chains are both general and scalable methods.

As general methods, they are more than specific algorithmic contributions,

and can be employed by meta methods or be considered as meta methods

themselves. As problem transformation methods they are able to embrace

different learning paradigms with different base classifiers; either to adapt to

a specific domain or to scale to even larger data. The ensemble frameworks

presented in this thesis was example of a meta method application, to which

both methods proved well suited, as the empirical evaluations showed. We

report a further meta method adaptation in recent work (Read et al., 2010),

which presents an implementation of the pruned sets paradigm at the leaves

of an incremental decision tree learner.

The scalability and adaptability of both classifier chains and problem

transformation for a variety of contexts and dimensions ensures that they

can remain relevant in the evolving and expanding area of multi-label classi-

fication.

8.2.4 Other contributions

The effectiveness of ensembles in multi-label classification was further demon-

strated by the contribution of ensembles of binary relevance models. This
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method performed much better than the standalone binary relevance method,

which was often used in the literature only as a baseline method, and proved

suitable for very large datasets to which they scaled well and outperformed

other modern methods in several contexts of experimental evaluation.

The experimental evaluations of this thesis provided, arguably, one of the

most thorough empirical analyses in the multi-label literature; with respect

to the number and variety of evaluation methods (including the introduction

of multi-label log loss), the broad selection of classification methods, and the

number and variety of datasets. This setting thus allowed the more in depth

evaluation and comparison of the performance of existing methods in the

literature in a variety of contexts.

The experimental framework and the methods developed during this

research is freely available as open-source Java software, along with our

datasets, at:

http://meka.sourceforge.net

8.3 Future Work

The trend to larger data sources is clear, both in the real world and the

academic literature.

This thesis discussed various strategies for scaling to even larger datasets

without serious degradation in predictive performance: we showed how pruned

sets scale higher by more pruning, and we explained how classifier chains

can eliminate redundancy in the learning space. As these methods already

demonstrated a margin of predictive performance over other methods in the
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literature, configurations for much greater efficiency at a small to negligible

trade-off in predictive performance are acceptable for large gains in efficiency.

Building hierarchical structures for these methods would further contribute

to their scalability. As larger datasets become more numerous, we look for-

ward to experimenting with such such configurations in more demanding

scenarios.

Like all transformation methods, pruned sets and classifier chains can

employ more efficient base classifiers for even faster running times. This

thesis considered relatively demanding classification methods like support

vector machines and decision trees. Future work will consider classifiers like

simple and efficient perceptrons and probabilistic methods, and investigate

the relationship between efficiency and relative predictive performance in

these settings.

This thesis showed that training multi-label classifiers with an ever-larger

number of examples begins to cause a qualitative change in predictions.

Specifically, more training examples appeared to produce diminishing re-

turns in terms of predictive performance which can be achieved by modelling

label correlations explicitly. The following observations are made specifically

with respect to large datasets:

• methods which model label correlations directly (e.g. pruned sets) can

overfit the data more often than methods that model correlations indi-

rectly (e.g. classifier chains);

• the extra attributes in the classifier chain transformations can begin to

dominate prediction (a form of overfitting); and
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• the performance of ensembles of (simple) binary relevance models can

be surprisingly high.

This suggests that, given larger numbers of training examples, labels can

be modelled so well individually that reducing variance by modelling label

correlations is relatively less effective. Hence, as the number of examples

grows ever larger, method configurations may achieve higher predictive per-

formance by further reductions of overfitting rather than modelling label

correlations. Future work will expand this issue.

In the general machine learning literature data streams have already

gained considerable interest as an extreme context for learning, where train-

ing examples arrive continuously and rapidly and the data may exhibit con-

cept change over time (Kirkby, 2007; Bifet et al., 2009). This type of learning

environment usually entails the use of incremental methods, such as naive

Bayes or Hoeffding trees (Domingos and Hulten, 2000)—an incremental tree

classifier.

As scalable problem transformation methods, both pruned sets and clas-

sifier chains can be applied to the data stream scenario simply by employing

incremental base classifiers. Ensemble frameworks are already commonly

used for data streams (Oza and Russell, 2001) and thus the application of

ensembles of pruned sets and ensembles of classifier chains in this context is

natural.

It is straightforward to apply classifier chains to data stream contexts by

using incremental binary base models. In an incremental context, the pruned

sets method needs to be restarted at intervals to take into account variations

in the label sets in the incoming examples, but this may have to be done

157



anyway when there is concept drift. Furthermore, the pruned sets method

is particularly resistant to label-set variation, and any negative effects could

be mitigated by an ensemble framework, like the one we already introduced.

We have already adapted our methods in this way to a framework for

multi-label classification in data streams and carried out experiments with

tens of millions of examples, and report some of the results in (Read et al.,

2010). Our preliminary results are very encouraging, and we look forward to

publishing further findings.
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Appendix A

Nemenyi Tests

The Nemenyi tests here are additional to the corrected paired t-tests included

in Chapter 6 and Chapter 7. Chapter 3 noted that this test is not as sensitive

as the corrected paired t-test, however, additionally to score values, each

method is given a rank, and the final rows of each table give the average

rank and average value for each method. In cases where a method did not

finish under memory bounds on a dataset (as indicated by a missing result),

it should be noted that the average ranking for the method is not adversely

affected by this; whereas the average value should be ignored. Note that

all tables for log-loss and running-time should be read in reverse (lower

numbers and higher rankings are better).
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A.1 Results of the Nemenyi Test for EPS
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Table A.1: EPS and state-of-the-art methods: Accuracy.

Dataset BR EPS1 RAkEL1 EPS2 RAkEL2 CLR MLkNN

Genbase 0.98 (1) 0.97 (4) 0.98 (1) 0.95 (5) 0.98 (1) 0.95 (5)
Enron 0.39 (5) 0.45 (2) 0.46 (1) 0.44 (3) 0.42 (4) 0.35 (6)
Reuters 0.32 (5) 0.50 (1) 0.45 (3) 0.50 (1) 0.30 (6) 0.44 (4)
LangLog 0.11 (6) 0.17 (2) 0.16 (3) 0.18 (1) 0.12 (4) 0.12 (4)
Music 0.50 (6) 0.57 (3) 0.58 (1) 0.57 (3) 0.58 (1) 0.54 (5) 0.40 (7)
Yeast 0.50 (7) 0.55 (1) 0.55 (1) 0.55 (1) 0.54 (4) 0.53 (6) 0.54 (4)
Medical 0.73 (5) 0.75 (2) 0.76 (1) 0.75 (2) 0.75 (2) 0.62 (6)
Slashdot 0.43 (5) 0.51 (2) 0.50 (3) 0.52 (1) 0.47 (4) 0.30 (6)
Scene 0.58 (7) 0.73 (2) 0.72 (3) 0.74 (1) 0.72 (3) 0.71 (5) 0.71 (5)
20NG 0.58 (6) 0.68 (3) 0.69 (1) 0.69 (1) 0.65 (4) 0.65 (4) 0.37 (7)

avg. rank 5.30 2.20 1.80 1.90 3.30 5.00 5.40
avg. value 0.51 0.59 0.58 0.59 0.55 0.61 0.48

Signif. EPS1 ≻ BR, MLkNN; EPS2, RAkEL1 ≻ BR, CLR, MLkNN;

Table A.2: EPS and state-of-the-art methods: Exact-match.

Dataset BR EPS1 RAkEL1 EPS2 RAkEL2 CLR MLkNN

Genbase 0.97 (1) 0.94 (4) 0.97 (1) 0.90 (5) 0.97 (1) 0.90 (5)
Enron 0.11 (4) 0.14 (1) 0.14 (1) 0.14 (1) 0.11 (4) 0.01 (6)
Reuters 0.27 (5) 0.38 (1) 0.36 (3) 0.38 (1) 0.25 (6) 0.29 (4)
LangLog 0.22 (4) 0.25 (2) 0.24 (3) 0.26 (1) 0.22 (4) 0.19 (6)
Music 0.26 (6) 0.32 (1) 0.31 (3) 0.32 (1) 0.31 (3) 0.27 (5) 0.13 (7)
Yeast 0.15 (7) 0.24 (1) 0.22 (3) 0.23 (2) 0.17 (5) 0.17 (5) 0.18 (4)
Medical 0.65 (2) 0.65 (2) 0.66 (1) 0.64 (5) 0.65 (2) 0.50 (6)
Slashdot 0.34 (5) 0.43 (1) 0.41 (3) 0.43 (1) 0.36 (4) 0.24 (6)
Scene 0.51 (7) 0.69 (1) 0.66 (4) 0.68 (2) 0.67 (3) 0.66 (4) 0.64 (6)
20NG 0.50 (6) 0.66 (1) 0.66 (1) 0.66 (1) 0.59 (5) 0.60 (4) 0.30 (7)

avg. rank 4.70 1.50 2.30 2.00 3.70 4.50 5.70
avg. value 0.40 0.47 0.46 0.46 0.43 0.43 0.34

Signif. EPS1 ≻ BR, CLR, MLkNN; RAkEL1, EPS2 ≻ MLkNN;
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Table A.3: EPS and state-of-the-art methods: AU(PRC).

Dataset BR EPS1 RAkEL1 EPS2 RAkEL2 CLR MLkNN

Genbase 0.98 (1) 0.96 (5) 0.98 (1) 0.95 (6) 0.98 (1) 0.97 (4)
Enron 0.36 (6) 0.45 (3) 0.46 (1) 0.43 (4) 0.42 (5) 0.46 (1)
Reuters 0.26 (5) 0.38 (3) 0.33 (4) 0.42 (2) 0.25 (6) 0.45 (1)
LangLog 0.07 (6) 0.10 (3) 0.09 (4) 0.12 (1) 0.08 (5) 0.11 (2)
Music 0.60 (6) 0.67 (3) 0.66 (4) 0.68 (1) 0.66 (4) 0.68 (1) 0.53 (7)
Yeast 0.58 (7) 0.64 (4) 0.63 (5) 0.65 (3) 0.63 (5) 0.66 (2) 0.69 (1)
Medical 0.70 (5) 0.75 (2) 0.74 (3) 0.76 (1) 0.73 (4) 0.66 (6)
Slashdot 0.37 (5) 0.50 (2) 0.42 (3) 0.54 (1) 0.40 (4) 0.27 (6)
Scene 0.62 (7) 0.78 (3) 0.72 (5) 0.81 (1) 0.72 (5) 0.76 (4) 0.81 (1)
20NG 0.56 (6) 0.73 (2) 0.65 (3) 0.77 (1) 0.62 (4) 0.62 (4) 0.44 (7)

avg. rank 5.40 3.00 3.30 2.10 4.30 2.75 3.60
avg. value 0.51 0.60 0.57 0.61 0.55 0.68 0.54

Signif. EPS2 ≻ BR;

Table A.4: EPS and state-of-the-art methods: F1-macro×L.

Dataset BR EPS1 RAkEL1 EPS2 RAkEL2 CLR MLkNN

Genbase 0.77 (1) 0.64 (4) 0.76 (2) 0.57 (6) 0.76 (2) 0.59 (5)
Enron 0.20 (3) 0.16 (4) 0.21 (1) 0.14 (5) 0.21 (1) 0.10 (6)
Reuters 0.22 (5) 0.26 (2) 0.28 (1) 0.24 (4) 0.21 (6) 0.25 (3)
LangLog 0.05 (2) 0.05 (2) 0.06 (1) 0.05 (2) 0.05 (2) 0.04 (6)
Music 0.60 (6) 0.66 (4) 0.67 (1) 0.67 (1) 0.67 (1) 0.62 (5) 0.46 (7)
Yeast 0.33 (7) 0.41 (1) 0.41 (1) 0.41 (1) 0.39 (5) 0.38 (6) 0.40 (4)
Medical 0.35 (2) 0.31 (4) 0.36 (1) 0.29 (5) 0.35 (2) 0.23 (6)
Slashdot 0.34 (3) 0.33 (4) 0.35 (1) 0.33 (4) 0.35 (1) 0.16 (6)
Scene 0.68 (7) 0.76 (1) 0.75 (3) 0.76 (1) 0.75 (3) 0.74 (6) 0.75 (3)
20NG 0.66 (6) 0.71 (2) 0.70 (3) 0.72 (1) 0.69 (5) 0.70 (3) 0.43 (7)

avg. rank 4.20 2.80 1.50 3.00 2.80 5.00 5.30
avg. value 0.42 0.43 0.45 0.42 0.44 0.61 0.34

Signif. RAkEL1 ≻ CLR; MLkNN;
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Table A.5: EPS and state-of-the-art methods: Log-loss.

Dataset BR EPS1 RAkEL1 EPS2 RAkEL2 CLR MLkNN

Genbase 0.5 (5) 0.7 (3) 0.5 (4) 0.8 (1) 0.5 (5) 0.8 (2)
Enron 14.5 (1) 12.3 (4) 12.4 (3) 11.9 (5) 12.9 (2) 10.3 (6)
Reuters 9.0 (2) 7.1 (4) 8.2 (3) 6.3 (5) 9.1 (1) 4.6 (6)
LangLog 8.1 (3) 7.8 (4) 8.6 (1) 7.3 (5) 8.2 (2) 5.2 (6)
Music 5.9 (1) 3.7 (5) 4.1 (2) 3.5 (6) 4.0 (3) 3.3 (7) 3.7 (4)
Yeast 16.3 (1) 12.4 (4) 13.3 (3) 11.7 (5) 14.0 (2) 10.5 (6) 10.2 (7)
Medical 2.6 (1) 2.2 (5) 2.3 (4) 2.1 (6) 2.4 (3) 2.5 (2)
Slashdot 6.4 (1) 4.4 (4) 5.6 (3) 3.8 (5) 5.8 (2) 3.7 (6)
Scene 3.8 (1) 1.9 (5) 2.6 (2) 1.6 (6) 2.5 (3) 2.0 (4) 1.4 (7)
20NG 4.6 (1) 2.4 (6) 3.4 (3) 1.9 (7) 3.7 (2) 3.3 (4) 3.0 (5)

avg. rank 1.70 4.40 2.80 5.10 2.50 5.25 5.10
avg. value 7.18 5.49 6.10 5.08 6.32 4.78 4.54

Signif. BR ≻ EPS2, CLR, MLkNN;

Table A.6: EPS and state-of-the-art methods: Running-time (seconds).

Dataset BR EPS1 RAkEL1 EPS2 RAkEL2 CLR MLkNN

Genbase 2 (5) 11 (4) 14 (2) 44 (1) 11 (3) 2 (6)
Enron 21 (5) 164 (3) 1004 (1) 226 (2) 163 (4) 2 (6)
Reuters 22 (5) 780 (3) 1210 (2) 1604 (1) 190 (4) 4 (6)
LangLog 17 (5) 97 (4) 255 (1) 222 (2) 124 (3) 3 (6)
Music 0 (6) 13 (2) 3 (3) 42 (1) 2 (4) 0 (5) 0 (7)
Yeast 6 (6) 232 (2) 99 (3) 461 (1) 24 (4) 12 (5) 1 (7)
Medical 3 (5) 36 (2) 32 (3) 87 (1) 13 (4) 0 (6)
Slashdot 17 (5) 129 (2) 83 (4) 338 (1) 95 (3) 1 (6)
Scene 6 (5) 12 (4) 14 (3) 46 (1) 14 (2) 5 (6) 3 (7)
20NG 507 (5) 257 (6) 1097 (3) 1230 (2) 3371 (1) 854 (4) 98 (7)

avg. rank 5.20 3.20 2.50 1.30 3.20 5.00 6.40
avg. value 60 173 381 430 401 218 11

Signif. EPS1, RAkEL1, RAkEL2 ≻ MLkNN; EPS2 ≻ BR, CLR, MLkNN
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A.2 Results of the Nemenyi Test for ECC
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Table A.7: ECC and state-of-the-art methods: Accuracy.

Dataset ECC2 RAkEL1 ECC1 EBR1 EBR2 RAkEL2 IBLR CLR

Genbase 0.98 (1) 0.98 (1) 0.98 (1) 0.98 (1) 0.98 (1) 0.98 (1) 0.95 (7)
LangLog 0.17 (2) 0.16 (3) 0.14 (4) 0.14 (4) 0.18 (1) 0.11 (6) 0.04 (7)
Music 0.56 (3) 0.57 (2) 0.55 (5) 0.55 (5) 0.55 (5) 0.58 (1) 0.56 (3) 0.54 (8)
Medical 0.79 (1) 0.76 (5) 0.78 (2) 0.77 (4) 0.78 (2) 0.52 (7) 0.54 (6)
Slashdot 0.52 (2) 0.51 (3) 0.51 (3) 0.51 (3) 0.53 (1) 0.47 (6) 0.26 (7)
Yeast 0.54 (1) 0.54 (1) 0.53 (4) 0.53 (4) 0.53 (4) 0.53 (4) 0.54 (1) 0.53 (4)
Enron 0.47 (1) 0.46 (3) 0.46 (3) 0.46 (3) 0.47 (1) 0.42 (6) 0.34 (7)
20NG 0.69 (2) 0.69 (2) 0.68 (4) 0.68 (4) 0.70 (1) 0.65 (6) 0.39 (8) 0.65 (6)
Reuters 0.49 (1) 0.45 (3) 0.46 (2) 0.37 (6) 0.41 (4) 0.30 (7) 0.38 (5)
Scene 0.71 (4) 0.72 (2) 0.70 (7) 0.69 (8) 0.71 (4) 0.72 (2) 0.73 (1) 0.71 (4)

avg. rank 1.80 2.50 3.50 4.20 2.40 4.60 5.20 5.50
avg. value 0.59 0.58 0.58 0.57 0.58 0.53 0.47 0.61

Signif. ECC2 ≻ IBLR; ECC2 ≻ CLR;

Table A.8: ECC and state-of-the-art methods: AU(PRC).

Dataset ECC2 RAkEL1 ECC1 EBR1 EBR2 RAkEL2 IBLR CLR

Genbase 0.99 (1) 0.98 (2) 0.98 (2) 0.98 (2) 0.98 (2) 0.98 (2) 0.96 (7)
LangLog 0.10 (2) 0.09 (3) 0.08 (4) 0.08 (4) 0.11 (1) 0.07 (6) 0.06 (7)
Music 0.69 (1) 0.66 (8) 0.68 (3) 0.67 (6) 0.68 (3) 0.67 (6) 0.69 (1) 0.68 (3)
Medical 0.81 (1) 0.74 (5) 0.79 (3) 0.78 (4) 0.80 (2) 0.51 (7) 0.59 (6)
Slashdot 0.57 (1) 0.43 (5) 0.52 (3) 0.48 (4) 0.54 (2) 0.40 (6) 0.29 (7)
Yeast 0.67 (2) 0.63 (7) 0.66 (3) 0.64 (5) 0.64 (5) 0.62 (8) 0.69 (1) 0.66 (3)
Enron 0.53 (1) 0.46 (5) 0.51 (3) 0.51 (3) 0.52 (2) 0.42 (7) 0.45 (6)
20NG 0.79 (1) 0.65 (2) 0.62 (3) 0.62 (3)
Reuters 0.42 (1) 0.33 (6) 0.37 (3) 0.34 (5) 0.37 (3) 0.25 (7) 0.40 (2)
Scene 0.81 (2) 0.72 (7) 0.78 (3) 0.73 (6) 0.77 (4) 0.72 (7) 0.82 (1) 0.76 (5)

avg. rank 1.30 5.00 3.00 4.33 2.67 5.90 4.22 3.50
avg. value 0.64 0.57 0.60 0.58 0.60 0.53 0.55 0.68

Signif. ECC2 ≻ RAkEL1; ECC2 ≻ RAkEL2;
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Table A.9: ECC and state-of-the-art methods: Exact-match.

Dataset ECC2 RAkEL1 ECC1 EBR1 EBR2 RAkEL2 IBLR CLR

Genbase 0.95 (3) 0.96 (2) 0.95 (3) 0.95 (3) 0.95 (3) 0.97 (1) 0.91 (7)
LangLog 0.25 (1) 0.24 (3) 0.22 (4) 0.22 (4) 0.25 (1) 0.21 (6) 0.14 (7)
Music 0.29 (4) 0.31 (2) 0.27 (5) 0.26 (8) 0.27 (5) 0.32 (1) 0.30 (3) 0.27 (5)
Medical 0.69 (1) 0.67 (4) 0.68 (2) 0.67 (4) 0.68 (2) 0.45 (6) 0.42 (7)
Slashdot 0.42 (1) 0.42 (1) 0.42 (1) 0.42 (1) 0.42 (1) 0.36 (6) 0.15 (7)
Yeast 0.19 (2) 0.22 (1) 0.19 (2) 0.15 (7) 0.15 (7) 0.16 (6) 0.19 (2) 0.17 (5)
Enron 0.12 (2) 0.14 (1) 0.12 (2) 0.11 (5) 0.12 (2) 0.11 (5) 0.02 (7)
20NG 0.64 (3) 0.66 (1) 0.63 (4) 0.63 (4) 0.65 (2) 0.59 (7) 0.32 (8) 0.60 (6)
Reuters 0.34 (2) 0.36 (1) 0.32 (3) 0.26 (5) 0.29 (4) 0.25 (6) 0.25 (6)
Scene 0.65 (5) 0.66 (2) 0.64 (7) 0.63 (8) 0.65 (5) 0.67 (1) 0.66 (2) 0.66 (2)

avg. rank 2.40 1.80 3.30 4.90 3.20 4.50 5.60 4.50
avg. value 0.45 0.46 0.44 0.43 0.44 0.41 0.34 0.43

Signif. RAkEL1 ≻ IBLR;

Table A.10: ECC and state-of-the-art methods: F1-macro×L.

Dataset EBR2 RAkEL1 ECC1 EBR1 RAkEL2 ECC2 IBLR CLR

Genbase 0.75 (3) 0.76 (1) 0.75 (3) 0.75 (3) 0.76 (1) 0.75 (3) 0.63 (7)
LangLog 0.06 (1) 0.06 (1) 0.05 (4) 0.05 (4) 0.05 (4) 0.06 (1) 0.02 (7)
Music 0.65 (5) 0.67 (1) 0.65 (5) 0.64 (7) 0.67 (1) 0.66 (3) 0.66 (3) 0.62 (8)
Medical 0.35 (1) 0.35 (1) 0.35 (1) 0.35 (1) 0.25 (6) 0.35 (1) 0.20 (7)
Slashdot 0.36 (1) 0.35 (3) 0.34 (5) 0.34 (5) 0.35 (3) 0.36 (1) 0.15 (7)
Yeast 0.37 (5) 0.41 (1) 0.37 (5) 0.37 (5) 0.38 (3) 0.37 (5) 0.41 (1) 0.38 (3)
Enron 0.20 (3) 0.21 (1) 0.20 (3) 0.20 (3) 0.21 (1) 0.20 (3) 0.13 (7)
20NG 0.73 (1) 0.70 (5) 0.71 (3) 0.71 (3) 0.69 (7) 0.73 (1) 0.45 (8) 0.70 (5)
Reuters 0.28 (1) 0.28 (1) 0.27 (3) 0.27 (3) 0.21 (6) 0.27 (3) 0.19 (7)
Scene 0.74 (4) 0.74 (4) 0.73 (7) 0.73 (7) 0.75 (1) 0.75 (1) 0.75 (1) 0.74 (4)

avg. rank 2.50 1.90 3.90 4.10 3.30 2.20 5.50 5.00
avg. value 0.45 0.45 0.44 0.44 0.43 0.45 0.36 0.61

Signif. RAkEL1 ≻ IBLR;
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Table A.11: ECC and state-of-the-art methods: Log-loss.

Dataset ECC2 RAkEL1 ECC1 EBR1 EBR2 RAkEL2 IBLR CLR

Genbase 0.5 (4) 0.5 (2) 0.5 (2) 0.5 (4) 0.5 (4) 0.5 (4) 0.7 (1)
LangLog 7.6 (5) 8.5 (1) 8.4 (2) 8.4 (3) 7.4 (6) 8.2 (4) 6.8 (7)
Music 3.2 (7) 4.1 (1) 3.5 (5) 3.8 (3) 3.5 (4) 4.0 (2) 3.2 (8) 3.3 (6)
Medical 1.8 (6) 2.3 (3) 1.9 (5) 2.0 (4) 1.8 (6) 4.1 (1) 3.1 (2)
Slashdot 3.3 (7) 5.4 (2) 3.9 (4) 4.4 (3) 3.5 (6) 5.8 (1) 3.7 (5)
Yeast 11.3 (6) 13.4 (3) 12.1 (5) 13.4 (2) 12.7 (4) 14.4 (1) 10.1 (8) 10.5 (7)
Enron 10.2 (7) 12.3 (2) 10.9 (5) 11.0 (3) 10.3 (6) 12.9 (1) 11.0 (3)
20NG 1.7 (8) 3.4 (2) 2.2 (6) 2.5 (5) 2.0 (7) 3.8 (1) 2.8 (4) 3.3 (3)
Reuters 5.9 (6) 8.1 (2) 7.0 (5) 7.8 (3) 7.3 (4) 9.1 (1) 5.3 (7)
Scene 1.4 (7) 2.6 (1) 1.7 (6) 2.1 (3) 1.7 (5) 2.5 (2) 1.3 (8) 2.0 (4)

avg. rank 6.30 1.90 4.50 3.30 5.20 1.80 5.30 5.00
avg. value 4.69 6.08 5.21 5.60 5.07 6.52 4.80 4.78

Signif. RAkEL1 ≻ ECC2; RAkEL1 ≻ IBLR; RAkEL;

Table A.12: ECC and state-of-the-art methods: Running-time (seconds).

Dataset ECC2 RAkEL1 ECC1 EBR1 EBR2 RAkEL2 IBLR CLR

Genbase 127 (1) 14 (5) 30 (3) 18 (4) 91 (2) 13 (6) 2 (7)
LangLog 1202 (1) 284 (3) 156 (4) 95 (6) 448 (2) 107 (5) 9 (7)
Music 6 (1) 3 (4) 1 (5) 1 (6) 6 (2) 3 (3) 0 (8) 1 (7)
Medical 544 (1) 43 (4) 51 (3) 25 (5) 92 (2) 16 (6) 2 (7)
Slashdot 454 (1) 112 (4) 89 (6) 89 (5) 438 (2) 118 (3) 3 (7)
Yeast 150 (3) 157 (2) 32 (5) 32 (6) 163 (1) 43 (4) 4 (8) 20 (7)
Enron 593 (2) 1036 (1) 137 (4) 102 (6) 517 (3) 111 (5) 6 (7)
20NG 6260 (2) 1122 (6) 1553 (5) 1755 (4) 7933 (1) 2612 (3) 127 (9) 854 (7)
Reuters 1667 (1) 1208 (2) 185 (4) 123 (5) 628 (3) 115 (6) 53 (7)
Scene 89 (2) 13 (6) 16 (4) 19 (3) 155 (1) 15 (5) 6 (8) 6 (7)

avg. rank 1.50 3.70 4.30 5.00 1.90 4.60 7.50 7.00
avg. value 1109 399 225 226 1047 315 21 220

Signif. EBR2; ECC2; RAkEL1 ≻ IBLR; CLR; BR
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