8 research outputs found

    Graded, Dynamically Routable Information Processing with Synfire-Gated Synfire Chains

    Full text link
    Coherent neural spiking and local field potentials are believed to be signatures of the binding and transfer of information in the brain. Coherent activity has now been measured experimentally in many regions of mammalian cortex. Synfire chains are one of the main theoretical constructs that have been appealed to to describe coherent spiking phenomena. However, for some time, it has been known that synchronous activity in feedforward networks asymptotically either approaches an attractor with fixed waveform and amplitude, or fails to propagate. This has limited their ability to explain graded neuronal responses. Recently, we have shown that pulse-gated synfire chains are capable of propagating graded information coded in mean population current or firing rate amplitudes. In particular, we showed that it is possible to use one synfire chain to provide gating pulses and a second, pulse-gated synfire chain to propagate graded information. We called these circuits synfire-gated synfire chains (SGSCs). Here, we present SGSCs in which graded information can rapidly cascade through a neural circuit, and show a correspondence between this type of transfer and a mean-field model in which gating pulses overlap in time. We show that SGSCs are robust in the presence of variability in population size, pulse timing and synaptic strength. Finally, we demonstrate the computational capabilities of SGSC-based information coding by implementing a self-contained, spike-based, modular neural circuit that is triggered by, then reads in streaming input, processes the input, then makes a decision based on the processed information and shuts itself down

    A Pulse-Gated, Predictive Neural Circuit

    Full text link
    Recent evidence suggests that neural information is encoded in packets and may be flexibly routed from region to region. We have hypothesized that neural circuits are split into sub-circuits where one sub-circuit controls information propagation via pulse gating and a second sub-circuit processes graded information under the control of the first sub-circuit. Using an explicit pulse-gating mechanism, we have been able to show how information may be processed by such pulse-controlled circuits and also how, by allowing the information processing circuit to interact with the gating circuit, decisions can be made. Here, we demonstrate how Hebbian plasticity may be used to supplement our pulse-gated information processing framework by implementing a machine learning algorithm. The resulting neural circuit has a number of structures that are similar to biological neural systems, including a layered structure and information propagation driven by oscillatory gating with a complex frequency spectrum.Comment: This invited paper was presented at the 50th Asilomar Conference on Signals, Systems and Computer

    Spiking LCA in a Neural Circuit with Dictionary Learning and Synaptic Normalization

    Get PDF
    The Locally Competitive Algorithm (LCA) [17, 18] was put forward as a model of primary visual cortex [14, 17] and has been used extensively as a sparse coding algorithm for multivariate data. LCA has seen implementations on neuromorphic processors, including IBM’s TrueNorth processor [10], and Intel’s neuromorphic research processor, Loihi, which show that it can be very efficient with respect to the power resources it consumes [8]. When combined with dictionary learning [13], the LCA algorithm encounters synaptic instability [24], where, as a synapse’s strength grows, its activity increases, further enhancing synaptic strength, leading to a runaway condition, where synapses become saturated [3, 15]. A number of approaches have been suggested to stabilize this phenomenon [1, 2, 5, 7, 12]. Previous work demonstrated that, by extending the cost function used to generate LCA updates, synaptic normalization could be achieved, eliminating synaptic runaway [7]. It was also shown that the resulting algorithm could be implemented in a firing rate model [7]. Here, we implement a probabilistic approximation to this firing rate model as a spiking LCA algorithm that includes dictionary learning and synaptic normalization. The algorithm is based on a synfire-gated synfire chain-based information control network in concert with Hebbian synapses [16, 19]. We show that this algorithm results in correct classification on numeric data taken from the MNIST datase

    How models of canonical microcircuits implement cognitive functions

    Get PDF
    Major cognitive functions such as language, memory, and decision-making are thought to rely on distributed networks of a large number of fundamental neural elements, called canonical microcircuits. A mechanistic understanding of the interaction of these canonical microcircuits promises a better comprehension of cognitive functions as well as their potential disorders and corresponding treatment techniques. This thesis establishes a generative modeling framework that rests on canonical microcircuits and employs it to investigate composite mechanisms of cognitive functions. A generic, biologically plausible neural mass model was derived to parsimoniously represent conceivable architectures of canonical microcircuits. Time domain simulations and bifurcation and stability analyses were used to evaluate the model’s capability for basic information processing operations in response to transient stimulations, namely signal flow gating and working memory. Analysis shows that these basic operations rest upon the bistable activity of a neural population and the selectivity for the stimulus’ intensity and temporal consistency and transiency. In the model’s state space, this selectivity is marked by the distance of the system’s working point to a saddle-node bifurcation and the existence of a Hopf separatrix. The local network balance, in regard of synaptic gains, is shown to modify the model’s state space and thus its operational repertoire. Among the investigated architectures, only a three-population model that separates input-receiving and output-emitting excitatory populations exhibits the necessary state space characteristics. It is thus specified as minimal canonical microcircuit. In this three-population model, facilitative feedback information modifies the retention of sensory feedforward information. Consequently, meta-circuits of two hierarchically interacting minimal canonical microcircuits feature a temporal processing history that enables state-dependent processing operations. The relevance of these composite operations is demonstrated for the neural operations of priming and structure-building. Structure-building, that is the sequential and selective activation of neural circuits, is identified as an essential mechanism in a neural network for syntax parsing. This insight into cognitive processing proves the modeling framework’s potential in neurocognitive research. This thesis substantiates the connectionist notion that higher processing operations emerge from the combination of minimal processing elements and advances the understanding how cognitive functions are implemented in the neocortical matter of the brain.Kognitive Fähigkeiten wie Sprache, Gedächtnis und Entscheidungsfindung resultieren vermutlich aus der Interaktion vieler fundamentaler neuronaler Elemente, sogenannter kanonischer Schaltkreise. Eine vertiefte Einsicht in das Zusammenwirken dieser kanonischen Schaltkreise verspricht ein besseres Verständnis kognitiver Fähigkeiten, möglicher Funktionsstörungen und Therapieansätze. Die vorliegende Dissertation untersucht ein generatives Modell kanonischer Schaltkreise und erforscht mit dessen Hilfe die Zusammensetzung kognitiver Fähigkeiten aus konstitutiven Mechanismen neuronaler Interaktion. Es wurde ein biologisch-plausibles neuronales Massenmodell erstellt, das mögliche Architekturen kanonischer Schaltkreise generisch berücksichtigt. Anhand von Simulationen sowie Bifurkations- und Stabilitätsanalysen wurde untersucht, inwiefern das Modell grundlegende Operationen der Informationsverarbeitung, nämlich Selektion und temporäre Speicherung einer transienten Stimulation, unterstützt. Die Untersuchung zeigt, dass eine bistabile Aktivität einer neuronalen Population und die Beurteilung der Salienz des Signals den grundlegenden Operationen zugrunde liegen. Die Beurteilung der Salienz beruht dabei hinsichtlich der Signalstärke auf dem Abstand des Arbeitspunktes zu einer Sattel-Knoten-Bifurkation und hinsichtlich der Signalkonsistenz und-–vergänglichkeit auf einer Hopf-Separatrix im Zustandsraum des Systems. Die Netzwerkbalance modifiziert diesen Zustandsraum und damit die Funktionsfähigkeit des Modells. Nur ein Drei-Populationenmodell mit getrennten erregenden Populationen für Signalempfang und -emission weist die notwendigen Bedingungen im Zustandsraum auf und genügt der Definition eines minimalen kanonischen Schaltkreises. In diesem Drei-Populationenmodell erleichtert ein Feedbacksignal die Speicherfähigkeit für sensorische Feedforwardsignale. Dementsprechend weisen hierarchisch interagierende minimale kanonische Schaltkreise ein zeitliches Verarbeitungsgedächtnis auf, das zustandsabhängige Verarbeitungsoperationen erlaubt. Die Bedeutung dieser konstitutiven Operationen wird für die neuronalen Operationen Priming und Strukturbildung verdeutlicht. Letztere wurde als wichtiger Mechanismus in einem Netzwerk zur Syntaxanalyse identifiziert und belegt das Potential des Modellansatzes für die neurokognitive Forschung. Diese Dissertation konkretisiert die konnektionistische Ansicht höhere Verarbeitungsoperationen als Ergebnis der Kombination minimaler Verarbeitungselemente zu verstehen und befördert das Verständnis für die Frage wie kognitive Fähigkeiten im Nervengewebe des Gehirns implementiert sind

    Robust Engineering of Dynamic Structures in Complex Networks

    Get PDF
    Populations of nearly identical dynamical systems are ubiquitous in natural and engineered systems, in which each unit plays a crucial role in determining the functioning of the ensemble. Robust and optimal control of such large collections of dynamical units remains a grand challenge, especially, when these units interact and form a complex network. Motivated by compelling practical problems in power systems, neural engineering and quantum control, where individual units often have to work in tandem to achieve a desired dynamic behavior, e.g., maintaining synchronization of generators in a power grid or conveying information in a neuronal network; in this dissertation, we focus on developing novel analytical tools and optimal control policies for large-scale ensembles and networks. To this end, we first formulate and solve an optimal tracking control problem for bilinear systems. We developed an iterative algorithm that synthesizes the optimal control input by solving a sequence of state-dependent differential equations that characterize the optimal solution. This iterative scheme is then extended to treat isolated population or networked systems. We demonstrate the robustness and versatility of the iterative control algorithm through diverse applications from different fields, involving nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI), electrochemistry, neuroscience, and neural engineering. For example, we design synchronization controls for optimal manipulation of spatiotemporal spike patterns in neuron ensembles. Such a task plays an important role in neural systems. Furthermore, we show that the formation of such spatiotemporal patterns is restricted when the network of neurons is only partially controllable. In neural circuitry, for instance, loss of controllability could imply loss of neural functions. In addition, we employ the phase reduction theory to leverage the development of novel control paradigms for cyclic deferrable loads, e.g., air conditioners, that are used to support grid stability through demand response (DR) programs. More importantly, we introduce novel theoretical tools for evaluating DR capacity and bandwidth. We also study pinning control of complex networks, where we establish a control-theoretic approach to identifying the most influential nodes in both undirected and directed complex networks. Such pinning strategies have extensive practical implications, e.g., identifying the most influential spreaders in epidemic and social networks, and lead to the discovery of degenerate networks, where the most influential node relocates depending on the coupling strength. This phenomenon had not been discovered until our recent study
    corecore