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ABSTRACT

The Locally Competitive Algorithm (LCA) [17, 18] was put forward

as a model of primary visual cortex [14, 17] and has been used

extensively as a sparse coding algorithm for multivariate data. LCA

has seen implementations on neuromorphic processors, including

IBM’s TrueNorth processor [10], and Intel’s neuromorphic research

processor, Loihi, which show that it can be very efficient with re-

spect to the power resources it consumes [8]. When combined with

dictionary learning [13], the LCA algorithm encounters synaptic

instability [24], where, as a synapse’s strength grows, its activity in-

creases, further enhancing synaptic strength, leading to a runaway

condition, where synapses become saturated [3, 15]. A number

of approaches have been suggested to stabilize this phenomenon

[1, 2, 5, 7, 12]. Previous work demonstrated that, by extending the

cost function used to generate LCA updates, synaptic normalization

could be achieved, eliminating synaptic runaway [7]. It was also

shown that the resulting algorithm could be implemented in a firing

rate model [7]. Here, we implement a probabilistic approximation

to this firing rate model as a spiking LCA algorithm that includes

dictionary learning and synaptic normalization. The algorithm is

based on a synfire-gated synfire chain-based information control

network in concert with Hebbian synapses [16, 19]. We show that

this algorithm results in correct classification on numeric data taken

from the MNIST dataset.
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1 METHODS

1.1 The LCA Cost and Update Equations

The LCA is a recursive algorithm constructed from an optimization

problem where updates are computed from gradients of a cost

function.

min
a
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Here, s denotes a target signal, often an image, of interest. The

set {𝑎𝑖 : 𝑖 ∈ 1, . . . , 𝑀} denotes coefficients and the set {𝝓𝑖 : 𝑖 ∈

1, . . . , 𝑀} represents dictionary elements. Dictionary elements may

be fixed or learned. The first term in (1) represents the distance

of a linear combination of the dictionary elements from the target

signal. The second term in (1), with parameter 𝜆, represents the 𝐿1
norm of the vector a. When minimized, all but a few elements of a

are non-zero, resulting in a sparse representation of s.

In order to implement this algorithm in a neural circuit, an inter-

nal variable, u, is introduced. In the neural representation, a = 𝑇𝜆 (u),

where 𝑇𝜆 is a neural activity function, which thresholds 𝑢. Thus,

the 𝑎𝑖 are represented by spikes, whereas the 𝑢𝑖 are represented by

membrane potentials in the neural circuit.

A dynamical equation to implement the minimization in (1)

[17, 18] is

𝑢new𝑚 = 𝑢old𝑚 +
1

𝜏

(
⟨𝝓𝑚, s(𝑡)⟩ − 𝑢𝑚 (𝑡) −

∑︁
𝑛≠𝑚

⟨𝝓𝑚, 𝝓𝑛⟩𝑎𝑛 (𝑡)

)
, (2)

where ⟨𝑎, 𝑏⟩ denotes the inner product between vectors a and b.

Here, the sum in the third term on the right implements a recurrent

inhibition that enforces the sparsification of the representation of

s as a linear combination of the dictionary elements, {𝝓𝑖 } with

coefficients 𝑎𝑛 .

By itself, (2) implements LCA with no dictionary learning or

synaptic normalization. An update rule for dictionary learning

may be derived by taking the gradient of (1) with respect to the

dictionary elements [25], 𝝓𝑖 . This results in the synaptic update

Φ
new

= Φ
old + a ⊗ (s − Φa) . (3)

In this update, ⊗ denotes the outer product and the dictionary

matrix Φ = [𝝓1, 𝝓2, . . . , 𝝓𝑀 ].

To normalize the synaptically encoded dictionary elements, we

add a term to the cost that evaluates the summed distance between

column vectors encoded in a dictionarymatrix,Φ, with unit distance.
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Explicitly,

𝐶 (𝚽) =
1

2

∑︁
𝑘∈1,...,𝐾

(𝝓𝑇
𝑘
𝝓𝑘 − 1)

2 . (4)

This convex cost evaluates to 0 if and only if the dictionary elements

{𝝓𝑘 } are all of unit length.

We make use of gradient descent to minimize the cost, whose

derivative with respect to the vector 𝝓𝑘 is

𝜕𝐶

𝜕𝝓𝑘
= ( |𝝓𝑘 |

2 − 1)𝝓𝑘 . (5)

Thus, with update

𝝓new
𝑘

= 𝝓old
𝑘
− 𝜂

𝜕𝐶

𝜕𝝓𝑘
, (6)

𝝓𝑘 will converge to unit length asymptotically with unit probability.

Figure 1: Functional connectivity of the LCA circuit. Neuronal

population names are shown on the left, and their activity is repre-

sented at their activation time. Columns correspond to gating times

during the circuit operation. The figure shows LCA with dictionary

learning, where learning happens at the last phase of the circuit

operation. Connections between populations can be one-to-one,

where the presynaptic neuron is connected to its single homologous

postsynaptic neuron. Alternatively, connections can be one-to-all,

where each presynaptic neuron is connected to all of the neurons

in the postsynaptic population. Synapses can be excitatory or in-

hibitory. A legend of connection types is indicated on the lower

right side of the figure. The firing threshold type is indicated on the

upper right side of the neuronal population. Synaptic update of the

dictionary happens at the potentiation (green) and depression (red)

phases. The gating chain causes the potentiation of the neuronal

population voltages and hence firing activity at the indicated gating

times; thus, information travels only if excitatory gating activates

a population. The postsynaptic outcome of information depends

on the connection type between populations. Below each gating

column, the computed information in 𝑈 and 𝑅 populations is de-

noted mathematically.

1.2 Neural Considerations for Implementing

LCA

In order to implement the updates in this algorithm in a neural

circuit, we consider a spiking model of a synfire-gated synfire chain

Figure 2: Functional connectivity of the normalization circuit.

This diagram is depicted analogously to Fig. 1, where layer activities

are shown as a function of time. See description in Fig. 1.

[16, 20ś23, 27]. Here, information is gated via potentiating spikes

from a presynaptic neuron to a postsynaptic neuron, implementing

the synaptic transform, Φ,

𝑢post
gate
←−−− 𝑇𝜆 (Φ bpre) , (7)

where bpre is a vector of presynaptic spikes from a presynaptic

neuron and 𝑢post is a postsynaptic current.

The gate itself is implemented synaptically by connecting a neu-

ron in the synfire chain with a postsynaptic neuron in b. Voltages

(or, similarly, thresholds) are set such that neither the gating neuron

nor the presynaptic (information-carrying) neuron will cause the

postsynaptic neuron to fire. However, if the spikes are concurrent,

then the information-carrying spike is potentiated by the gating

spike, and the information propagates downstream.

It is important to note that in some parts of our neural circuit,

instead of 𝑇𝜆 , the usual activity function with a fixed threshold,

we will use 𝑇 rand
𝜆

. 𝑇 rand
𝜆

is a random threshold activity function

(implemented on Intel’s neuromorphic research processor, Loihi, for

instance). We use this activity function in order to generate spikes

with a firing rate proportional to 𝝓𝑖 in the following way: we gate

the value 1 into an element of apre, i.e., apre = [0, . . . , 0, 1, 0, . . . , 0] ≡

1𝑖 . With a random threshold,

𝑓post = ⟨𝑇
rand
𝜆
(Φ bpre)⟩ ≈ 𝝓𝑖 . (8)

Above, ⟨⟩𝑇 indicates a time average and 1𝑖 indicates the value 1 in

the 𝑖’th element of apre.

By using this gated transform capability, in concert with a single

rank-one Hebbian update,

Φ← Φ + bpre ⊗ bpost , (9)

we can probabilistically implement a synaptic update,

Φ← Φ + ⟨b𝑡pre ⊗ b
𝑡
post⟩𝑇 . (10)
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1.3 Spiking Neural Circuit Implementation of

LCA with Dictionary Learning and

Normalization

In Fig. 1, we depict the functional connectivity of the combined

LCA and dictionary learning circuits.

At the beginning of each iteration, the image input of the LCA

circuit is encoded in 𝑆 , and activity, 𝑎 = 𝑇𝜆 (𝑈 ), is gated into the

circuit via gating population 𝑔0. This activity is then gated via the

𝑔1 gating population through the synaptic matrix, Φ, to 𝑈 ′ via a

random threshold, causing the𝑈 ′ neural register to spike with prob-

ability, Pr(𝑈 ′) = Φ𝑎. The activity in𝑈 is simultaneously propagated

to the memory population,𝑚, via a standard threshold such that it

contains 𝑎.𝑈 ′ is then gated via 𝑔2 to𝑈𝑚 with a random threshold

and 𝑈 is gated with delay through one-to-one inhibitory synapses

such that 𝑈𝑚 now spikes with probability Pr(𝑈𝑚) = (ΦΦ
𝑇 − 𝐼 )𝑎.

This spiking activity is then gated back to the register 𝑈 , which, at

this point, contains a new iterate of 𝑢 (see Eq. 2).

In the next phase of the circuit, updates to the dictionary are

made. The activity in𝑈 is propagated through the synaptic connec-

tivity, Φ, and the input image is simultaneously propagated to 𝑅,

giving 𝑃 (𝑅) = 𝑆 − Φ𝑎 in the postsynaptic population. At the same

time, the contents of the memory register,𝑚 = 𝑎, are gated with

delay to 𝑈 such that 𝑈 = 𝑎. This causes a Hebbian update since

both 𝑎 and 𝑆 − Φ𝑎 are simultaneously in the pre- and postsynaptic

populations on either side of the synapses containing the dictionary,

Φ. Similar updates are performed in the subsequent step, but the

update is now to the negative weights of Φ. Additionally, the other

sets of synapses encoding Φ (e.g., between 𝑆 and 𝑈 ) in the circuit

must be updated (not shown) in a similar way.

Finally,𝑈 is gated with delay to itself, where a memory register

to hold the contents of𝑈 is not shown.

We note here that since we cannot encode negative numbers in

spikes (spikes cannot be tagged as representing negative informa-

tion), the registers in the LCA neural circuit actually represent pairs

of values, with one of each pair representing ‘positive’ spikes, and

the other member representing ‘negative’ spikes. In Fig. 2, since

the normalization circuit is somewhat simpler, we explicitly show

how this is done.

The functional connectivity and operation of the normalization

circuit are depicted in Fig. 2. The circuit is iterated as many times as

there are dictionary elements, i.e., separate updates are necessary

to normalize each dictionary element in the synaptic connectivity,

Φ. This circuit is interleaved with the LCA and dictionary learning

circuits are shown in Fig. 1.

Propagation of information through the normalization circuit

starts at the𝑈+ population, into which is gated the indicator vector

1𝑖 . This element selects the dictionary element to be probabilistically

normalized subsequently by the circuit. By gating 1𝑖 through the

synapses that encode the positive elements of the dictionary, Φ+,

into𝑅+, where𝑅+ has a random threshold, we find that Pr(𝑅+) = 𝜙+
𝑖
,

and thus, the 𝑅+ register will, on average, encode the 𝑖’th dictionary

element, 𝜙𝑖 . Using the same logic, 1𝑖 is gated through Φ− encoding

Pr(𝑅−) = 𝜙−
𝑖
in 𝑅− . The information in the 𝑅+,− register is then

gated through the transposed dictionary, depositing |𝜙+
𝑖
|2 + |𝜙−

𝑖
|2 −

1 = |𝜙𝑖 |
2 − 1 in the 𝑖’th element of the𝑈+ register. Note that 𝑆𝑃 is a

neuron that outputs a constant value (here indicated as the number

1), which is subtracted from the input to𝑈+, determining the vector

length to which each dictionary element is normalized.

The activity in 𝑅+,− is gated back to these same populations (this

can be done with delays or with memory registers). At this point,

|𝜙+
𝑖
|2 + |𝜙−

𝑖
|2 − 1 has been gated to and probabilistically encoded in

the 𝑖’th element of the𝑈+ register, while simultaneously the vectors

𝜙+
𝑖
and 𝜙−

𝑖
are encoded in 𝑅+,− . Via a Hebbian update, the synaptic

weights are updated, with average increments of ( |𝜙+
𝑖
|2 + |𝜙−

𝑖
|2 −

1)𝜙+
𝑖
and ( |𝜙+

𝑖
|2 + |𝜙−

𝑖
|2 − 1)𝜙−

𝑖
between𝑈+ and 𝑅+,− , respectively.

The dictionary elements between𝑈− and 𝑅+,− are also updated

with connections not shown for clarity.

This normalization circuit is iterated with 𝑖 = 1, . . . , 𝑀 , where 𝑛

is the number of vectors making up the dictionary.

0 Timesteps 30,000

Learned Dictionary

Training Digits

A

B

C

D

First of Five Dictionary Elements, u(t)

All Five Dictionary Elements, u(t)

Initial Learning and Normalization

0 120,000Timesteps

Initial learning and normalization ConvergenceFine tuning of learning and normalization

E

Figure 3: Unsupervised classification with LCA, dictionary

learning, and dictionary normalization during training with

repeated presentations of five digits. A) The internal voltage, 𝑢,

as a function of the timestep, 𝑡 , over 120, 000 training steps. Note

that only the training cycles where 𝑢 responded to input were

included for clarity. All timesteps are shown in B) for all five digits.

In A), we note three epochs during training, an initial learning and

normalization period, fine-tuning once rough dictionary elements

have been learned, then convergence to stereotypical responses.

C) A closeup of the initial epoch of 30, 000 timesteps during which

initial learning and dictionary normalization are dominant. D) The

dataset on which training is performed. These digits are repeatedly

sent to the neural circuit. E) The digits learned by the combined

LCA, dictionary learning, and normalization algorithm.
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1.4 Results

In order to test our probabilistic approach to implementing LCA

(with dictionary learning and normalization) in neural circuits con-

trolled with synfire-gated synfire chains, we trained on five num-

bers from the MNIST database [9]. Neural circuit simulation was

performed with Matlab.

Training with this simple training set allowed us to see how the

circuit response converged to stable, sparse classifications of the

digits. More complex behavior would arise if we used the whole

MNIST dataset and increased the dictionary size, but troubleshoot-

ing our approach would be more difficult.

In Fig. 3A, we show the time course of the membrane potential,

𝑢, of one of the sets of 5 neurons in𝑈 during unsupervised learning.

At the beginning of the time course, the membrane potential rose as

the dictionary element was modified due to the input data. As the

digit that this neuron begins to encode was repeatedly presented, its

membrane potential rose due to dictionary learning and overshot

a value above which the normalization term in the cost became

dominant. This caused the response to decrease and stabilize.

Over the course of the training, the response became increasingly

finely tuned to its digit, completely stabilized, and this digit (a one)

was recognized with high probability.

Fig. 3B shows the response of all five dictionary elements that

were used for training. Note that all of these neurons stabilized at

roughly the same time, and by the end of training, the responses

were all stable.

Fig. 3C depicts the early learning and normalization phase of all

𝑈 neurons, each responding to an individual digit.

The training data is shown in Fig. 3D, and the learned dictionary

elements are shown in Fig. 3C.

2 CONCLUSIONS AND OUTLOOK

This paper presented a successful means of constructing spiking

neural circuits to implement the Locally Competitive Algorithm

with dictionary learning and dictionary normalization.

Our approach made use of synfire-gated synfire chains to control

the propagation of information within the neural system as a whole

and also to control Hebbian synaptic updates. Without this control,

which allowed us to implement synaptic normalization, synaptic

weights could easily encounter runaway conditions and saturate,

destabilizing dictionary learning.

An important mechanism we introduced was using random

thresholds to translate information encoded in synapses into fir-

ing rates [7] that could be used for Hebbian updates to synapses

encoding the LCA dictionary.

Previous neuromorphic implementations of LCA have demon-

strated significant power reductions with the LCA algorithm on a

range of hardware substrates [4], including memristive [26], fully

analog [6], CMOS [8, 11]. However, few of these [24] attack the

dictionary learning problem on-chip.

Further work remains to understand how learning will perform

in the spiking LCA algorithm that we present here when it is ex-

posed to more complex datasets. Also, further studies will need to

be performed to investigate how the algorithm will scale. Addition-

ally, this spiking algorithm will need to be tested on neuromorphic

hardware such as Intel’s Loihi chip and memristive systems. This

research is currently underway.
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