60 research outputs found

    Toric Border Bases

    Get PDF
    We extend the theory and the algorithms of Border Bases to systems of Laurent polynomial equations, defining "toric" roots. Instead of introducing new variables and new relations to saturate by the variable inverses, we propose a more efficient approach which works directly with the variables and their inverse. We show that the commutation relations and the inversion relations characterize toric border bases. We explicitly describe the first syzygy module associated to a toric border basis in terms of these relations. Finally, a new border basis algorithm for Laurent polynomials is described and a proof of its termination is given for zero-dimensional toric ideals

    Efficiently and Effectively Recognizing Toricity of Steady State Varieties

    No full text
    We consider the problem of testing whether the points in a complex or real variety with non-zero coordinates form a multiplicative group or, more generally, a coset of a multiplicative group. For the coset case, we study the notion of shifted toric varieties which generalizes the notion of toric varieties. This requires a geometric view on the varieties rather than an algebraic view on the ideals. We present algorithms and computations on 129 models from the BioModels repository testing for group and coset structures over both the complex numbers and the real numbers. Our methods over the complex numbers are based on Gr\"obner basis techniques and binomiality tests. Over the real numbers we use first-order characterizations and employ real quantifier elimination. In combination with suitable prime decompositions and restrictions to subspaces it turns out that almost all models show coset structure. Beyond our practical computations, we give upper bounds on the asymptotic worst-case complexity of the corresponding problems by proposing single exponential algorithms that test complex or real varieties for toricity or shifted toricity. In the positive case, these algorithms produce generating binomials. In addition, we propose an asymptotically fast algorithm for testing membership in a binomial variety over the algebraic closure of the rational numbers

    A Gröbner-Basis Theory for Divide-and-Conquer Recurrences

    Get PDF
    International audienceWe introduce a variety of noncommutative polynomials that represent divide-and-conquer recurrence systems. Our setting involves at the same time variables that behave like words in purely noncom-mutative algebras and variables governed by commutation rules like in skew polynomial rings. We then develop a Gröbner-basis theory for left ideals of such polynomials. Strikingly, the nature of commutations generally prevents the leading monomial of a polynomial product to be the product of the leading monomials. To overcome the difficulty, we consider a specific monomial ordering, together with a restriction to monic divisors in intermediate steps. After obtaining an analogue of Buchberger's algorithm, we develop a variant of the 4 algorithm, whose speed we compare

    Une approche par l’analyse algébrique effectivedes systèmes linéaires sur des algèbres de Ore

    Get PDF
    The purpose of this paper is to present a survey on the effective algebraic analysis approach to linear systems theory with applications to control theory and mathematical physics. In particular, we show how the combination of effective methods of computer algebra - based on Gröbner basis techniques over a class of noncommutative polynomial rings of functional operators called Ore algebras - and constructive aspects of module theory and homological algebra enables the characterization of structural properties of linear functional systems. Algorithms are given and a dedicated implementation, called OreAlgebraicAnalysis, based on the Mathematica package HolonomicFunctions, is demonstrated.Le but de ce papier est de présenter un état de l’art d’une approche par l’analyse algébrique effective de la théorie des systèmes linéaires avec des applications à la théorie du contrôle et à la physique mathématique.En particulier, nous montrons comment la combinaison des méthodes effectives de calcul formel - basées sur lestechniques de bases de Gröbner sur une classe d’algèbres polynomiales noncommutatives d’opérateurs fonctionnels appelée algèbres de Ore - et d’aspects constructifs de théorie des modules et d’algèbre homologique permet lacaractérisation de propriétés structurelles des systèmes linéaires fonctionnels. Des algorithmes sont donnés et uneimplémentation dédiée, appelée OREALGEBRAICANALYSIS, basée sur le package Mathematica HOLONOMIC-FUNCTIONS, est présenté

    Tropical Geometry in Singular

    Get PDF
    Das Ziel dieser Dissertation ist die Entwicklung und Implementation eines Algorithmus zur Berechnung von tropischen Varietäten über allgemeine bewertete Körper. Die Berechnung von tropischen Varietäten über Körper mit trivialer Bewertung ist ein hinreichend gelöstes Problem. Hierfür kombinieren die Autoren Bogart, Jensen, Speyer, Sturmfels und Thomas eindrucksvoll klassische Techniken der Computeralgebra mit konstruktiven Methoden der konvexer Geometrie. Haben wir allerdings einen Grundkörper mit nicht-trivialer Bewertung, wie zum Beispiel den Körper der pp-adischen Zahlen Qp\mathbb{Q}_p, dann stößt die konventionelle Gröbnerbasentheorie scheinbar an ihre Grenzen. Die zugrundeliegenden Monomordnungen sind nicht geeignet um Problemstellungen zu untersuchen, die von einer nicht-trivialen Bewertung auf den Koeffizienten abhängig sind. Dies führte zu einer Reihe von Arbeiten, welche die gängige Gröbnerbasentheorie modifizieren um die Bewertung des Grundkörpers einzubeziehen.newline\phantom{newline} In dieser Arbeit präsentieren wir einen alternativen Ansatz und zeigen, wie sich die Bewertung mittels einer speziell eingeführten Variable emulieren lässt, so dass eine Modifikation der klassischen Werkzeuge nicht notwendig ist. Im Rahmen dessen wird Theorie der Standardbasen auf Potenzreihen über einen Koeffizientenring verallgemeinert. Hierbei wird besonders Wert darauf gelegt, dass alle Algorithmen bei polynomialen Eingabedaten mit ihren klassischen Pendants übereinstimmen, sodass für praktische Zwecke auf bereits etablierte Softwaresysteme zurückgegriffen werden kann. Darüber hinaus wird die Konstruktion des Gröbnerfächers sowie die Technik des Gröbnerwalks für leicht inhomogene Ideale eingeführt. Dies ist notwendig, da bei der Einführung der neuen Variable die Homogenität des Ausgangsideal gebrochen wird.newline\phantom{newline} Alle Algorithmen wurden in Singular implementiert und sind als Teil der offiziellen Distribution erhältlich. Es ist die erste Implementation, welches in der Lage ist tropische Varietäten mit pp-adischer Bewertung auszurechnen. Im Rahmen der Arbeit entstand ebenfalls ein Singular Paket für konvexe Geometrie, sowie eine Schnittstelle zu Polymake

    Homotopy algorithms for solving structured determinantal systems

    Get PDF
    Multivariate polynomial systems arising in numerous applications have special structures. In particular, determinantal structures and invariant systems appear in a wide range of applications such as in polynomial optimization and related questions in real algebraic geometry. The goal of this thesis is to provide efficient algorithms to solve such structured systems. In order to solve the first kind of systems, we design efficient algorithms by using the symbolic homotopy continuation techniques. While the homotopy methods, in both numeric and symbolic, are well-understood and widely used in polynomial system solving for square systems, the use of these methods to solve over-detemined systems is not so clear. Meanwhile, determinantal systems are over-determined with more equations than unknowns. We provide probabilistic homotopy algorithms which take advantage of the determinantal structure to compute isolated points in the zero-sets of determinantal systems. The runtimes of our algorithms are polynomial in the sum of the multiplicities of isolated points and the degree of the homotopy curve. We also give the bounds on the number of isolated points that we have to compute in three contexts: all entries of the input are in classical polynomial rings, all these polynomials are sparse, and they are weighted polynomials. In the second half of the thesis, we deal with the problem of finding critical points of a symmetric polynomial map on an invariant algebraic set. We exploit the invariance properties of the input to split the solution space according to the orbits of the symmetric group. This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in the number of points that we have to compute. Our results are illustrated by applications in studying real algebraic sets defined by invariant polynomial systems by the means of the critical point method

    Toric Varieties and Numerical Algorithms for Solving Polynomial Systems

    Get PDF
    This work utilizes toric varieties for solving systems of equations. In particular, it includes two numerical homotopy continuation algorithms for numerically solving systems of equations. The first algorithm, the Cox homotopy, solves a system of equations on a compact toric variety. The Cox homotopy tracks points in the total coordinate space of the toric variety and can be viewed as a homogeneous version of the polyhedral homotopy of Huber and Sturmfels. The second algorithm, the Khovanskii homotopy, solves a system of equations on a variety in the presence of a finite Khovanskii basis. This homotopy takes advantage of Anderson’s flat degeneration to a toric variety. The Khovanskii homotopy utilizes the Newton-Okounkov body of the system, whose normalized volume gives a bound on the number of solutions to the system. Both homotopy algorithms provide the computational advantage of tracking paths in a compact space while also minimizing the total number of paths tracked. The Khovanskii homotopy is optimal with respect to the number of paths tracked, and the Cox homotopy is optimal when the system is Bernstein-general
    • …
    corecore