421 research outputs found

    Design Time Methodology for the Formal Modeling and Verification of Smart Environments

    Get PDF
    Smart Environments (SmE) are intelligent and complex due to smart connectivity and interaction of heterogeneous devices achieved by complicated and sophisticated computing algorithms. Based on their domotic and industrial applications, SmE system may be critical in terms of correctness, reliability, safety, security and other such vital factors. To achieve error-free and requirement-compliant implementation of these systems, it is advisable to enforce a design process that may guarantee these factors by adopting formal models and formal verification techniques at design time. The e-Lite research group at Politecnico di Torino is developing solutions for SmE based on integration of commercially available home automation technologies with an intelligent ecosystem based on a central OSGi-based gateway, and distributed collaboration of intelligent applications, with the help of semantic web technologies and applications. The main goal of my research is to study new methodologies which are used for the modeling and verification of SmE. This goal includes the development of a formal methodology which ensures the reliable implementation of the requirements on SmE, by modeling and verifying each component (users, devices, control algorithms and environment/context) and the interaction among them, especially at various stages in design time, so that all the complexities and ambiguities can be reduced

    The Info-Computational Turn in Bioethics

    Get PDF
    Our technological lifeworld has become an info-computational media populated by data and algorithms, an artificial environment for life and shared experiences. In this chapter, I tried to sketch three new assumptions for bioethics – it is hardly possible to substantiate ethical guidelines or an idea of normativity in an aprioristic manner; moral status is a function of data entities, not something solely human; agency is plural and thus is shared or sometimes delegated – in order to chart a proposal for a posthuman bioethics. Posthuman is perhaps not the best expression available, but it covers the idea of a shift from a world centered on self-contained and exclusively human agency to a more comprehensive and relational way of thinking. The “posthuman” label should be understood as a rebuttal of biocentrism and anthropocentrism by moving closer to conceptions we encounter in population ethics or in discourse about biosocial and technical systems. Posthuman bioethics is “environmentalist” without losing the humanistic stance. The question regarding how suitable an infocentric bioethics is in practice remains to be settled. The moral principles in bioethics could be reconceived as relying on these new assumptions, in a postindividualistic manner that accepts formal primacy of causal digital artifacts in affording actions in a world of ambient algorithmic intelligence

    Handling Emergent Conflicts in Adaptable Rule-based Sensor Networks

    Get PDF
    This thesis presents a study into conflicts that emerge amongst sensor device rules when such devices are formed into networks. It describes conflicting patterns of communication and computation that can disturb the monitoring of subjects, and lower the quality of service. Such conflicts can negatively affect the lifetimes of the devices and cause incorrect information to be reported. A novel approach to detecting and resolving conflicts is presented. The approach is considered within the context of home-based psychiatric Ambulatory Assessment (AA). Rules are considered that can be used to control the behaviours of devices in a sensor network for AA. The research provides examples of rule conflict that can be found for AA sensor networks. Sensor networks and AA are active areas of research and many questions remain open regarding collaboration amongst collections of heterogeneous devices to collect data, process information in-network, and report personalised findings. This thesis presents an investigation into reliable rule-based service provisioning for a variety of stakeholders, including care providers, patients and technicians. It contributes a collection of rules for controlling AA sensor networks. This research makes a number of contributions to the field of rule-based sensor networks, including areas of knowledge representation, heterogeneous device support, system personalisation, and in particular, system reliability. This thesis provides evidence to support the conclusion that conflicts can be detected and resolved in adaptable rule-based sensor networks

    Handling Real-World Context Awareness, Uncertainty and Vagueness in Real-Time Human Activity Tracking and Recognition with a Fuzzy Ontology-Based Hybrid Method

    Get PDF
    Human activity recognition is a key task in ambient intelligence applications to achieve proper ambient assisted living. There has been remarkable progress in this domain, but some challenges still remain to obtain robust methods. Our goal in this work is to provide a system that allows the modeling and recognition of a set of complex activities in real life scenarios involving interaction with the environment. The proposed framework is a hybrid model that comprises two main modules: a low level sub-activity recognizer, based on data-driven methods, and a high-level activity recognizer, implemented with a fuzzy ontology to include the semantic interpretation of actions performed by users. The fuzzy ontology is fed by the sub-activities recognized by the low level data-driven component and provides fuzzy ontological reasoning to recognize both the activities and their influence in the environment with semantics. An additional benefit of the approach is the ability to handle vagueness and uncertainty in the knowledge-based module, which substantially outperforms the treatment of incomplete and/or imprecise data with respect to classic crisp ontologies. We validate these advantages with the public CAD-120 dataset (Cornell Activity Dataset), achieving an accuracy of 90.1% and 91.07% for low-level and high-level activities, respectively. This entails an improvement over fully data-driven or ontology-based approaches.This work was funded by TUCS (Turku Centre for Computer Science), Finnish Cultural Foundation, Nokia Foundation, Google Anita Borg Scholarship, CEI BioTIC Project CEI2013-P-3, Contrato-Programa of Faculty of Education, Economy and Technology of Ceuta and Project TIN2012-30939 from National I+D Research Program (Spain). We also thank Fernando Bobillo for his support with FuzzyOWL and FuzzyDL tools

    On Leveraging Statistical and Relational Information for the Representation and Recognition of Complex Human Activities

    Full text link
    Machine activity recognition aims to automatically predict human activities from a series of sensor signals. It is a key aspect to several emerging applications, especially in the pervasive computing field. However, this problem faces several challenges due to the complex, relational and ambiguous nature of human activities. These challenges still defy the majority of traditional pattern recognition approaches, whether they are knowledge-based or data-driven. Concretely, the current approaches to activity recognition in sensor environments fall short to represent, reason or learn under uncertainty, complex relational structure, rich temporal context and abundant common-sense knowledge. Motivated by these shortcomings, our work focuses on the combination of both data-driven and knowledge-based paradigms in order to address this problem. In particular, we propose two logic-based statistical relational activity recognition frameworks which we describe in two different parts. The first part presents a Markov logic-based framework addressing the recognition of complex human activities under realistic settings. Markov logic is a highly flexible statistical relational formalism combining the power of first-order logic with Markov networks by attaching real-valued weights to formulas in first-order logic. Thus, it unites both symbolic and probabilistic reasoning and allows to model the complex relational structure as well as the inherent uncertainty underlying human activities and sensor data. We focus on addressing the challenge of recognizing interleaved and concurrent activities while preserving the intuitiveness and flexibility of the modelling task. Using three different models we evaluate and prove the viability of using Markov logic networks for that problem statement. We also demonstrate the crucial impact of domain knowledge on the recognition outcome. Implementing an exhaustive model including heterogeneous information sources comes, however, at considerable knowledge engineering efforts. Hence, employing a standard, widely used formalism can alleviate that by enhancing the portability, the re-usability and the extension of the model. In the second part of this document, we apply a hybrid approach that goes one step further than Markov logic network towards a formal, yet intuitive conceptualization of the domain of discourse. Concretely, we propose an activity recognition framework based on log-linear description logic, a probabilistic variant of description logics. Log-linear description logic leverages the principles of Markov logic while allowing for a formal conceptualization of the domain of discourse, backed up with powerful reasoning and consistency check tools. Based on principles from the activity theory, we focus on addressing the challenge of representing and recognizing human activities at three levels of granularity: operations, actions and activities. Complying with real-life scenarios, we assess and discuss the viability of the proposed framework. In particular, we show the positive impact of augmenting the proposed multi-level activity ontology with weights compared to using its conventional weight-free variant

    Interaction Design: Foundations, Experiments

    Get PDF
    Interaction Design: Foundations, Experiments is the result of a series of projects, experiments and curricula aimed at investigating the foundations of interaction design in particular and design research in general. The first part of the book - Foundations - deals with foundational theoretical issues in interaction design. An analysis of two categorical mistakes -the empirical and interactive fallacies- forms a background to a discussion of interaction design as act design and of computational technology as material in design. The second part of the book - Experiments - describes a range of design methods, programs and examples that have been used to probe foundational issues through systematic questioning of what is given. Based on experimental design work such as Slow Technology, Abstract Information Displays, Design for Sound Hiders, Zero Expression Fashion, and IT+Textiles, this section also explores how design experiments can play a central role when developing new design theory
    • 

    corecore