790 research outputs found

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Investigating evolutionary computation with smart mutation for three types of Economic Load Dispatch optimisation problem

    Get PDF
    The Economic Load Dispatch (ELD) problem is an optimisation task concerned with how electricity generating stations can meet their customers’ demands while minimising under/over-generation, and minimising the operational costs of running the generating units. In the conventional or Static Economic Load Dispatch (SELD), an optimal solution is sought in terms of how much power to produce from each of the individual generating units at the power station, while meeting (predicted) customers’ load demands. With the inclusion of a more realistic dynamic view of demand over time and associated constraints, the Dynamic Economic Load Dispatch (DELD) problem is an extension of the SELD, and aims at determining the optimal power generation schedule on a regular basis, revising the power system configuration (subject to constraints) at intervals during the day as demand patterns change. Both the SELD and DELD have been investigated in the recent literature with modern heuristic optimisation approaches providing excellent results in comparison with classical techniques. However, these problems are defined under the assumption of a regulated electricity market, where utilities tend to share their generating resources so as to minimise the total cost of supplying the demanded load. Currently, the electricity distribution scene is progressing towards a restructured, liberalised and competitive market. In this market the utility companies are privatised, and naturally compete with each other to increase their profits, while they also engage in bidding transactions with their customers. This formulation is referred to as: Bid-Based Dynamic Economic Load Dispatch (BBDELD). This thesis proposes a Smart Evolutionary Algorithm (SEA), which combines a standard evolutionary algorithm with a “smart mutation” approach. The so-called ‘smart’ mutation operator focuses mutation on genes contributing most to costs and penalty violations, while obeying operational constraints. We develop specialised versions of SEA for each of the SELD, DELD and BBDELD problems, and show that this approach is superior to previously published approaches in each case. The thesis also applies the approach to a new case study relevant to Nigerian electricity deregulation. Results on this case study indicate that our SEA is able to deal with larger scale energy optimisation tasks

    Optimal consignment stocking policies for a supply chain under different system constraints

    Get PDF
    The research aims are to enable the decision maker of an integrated vendor-buyer system under Consignment Stock (CS) policy to make the optimal/sub-optimal production/replenishment decisions when some general and realistic critical factors are considered. In the system, the vendor produces one product at a finite rate and ships the outputs by a number of equal-sized lots within a production cycle. Under a long-term CS agreement, the vendor maintains a certain inventory level at the buyer’s warehouse, and the buyer compensates the vendor only for the consumed products. The holding cost consists of a storage component and a financial component. Moreover, both of the cases that the unit holding costs may be higher at the buyer or at the vendor are considered. Based upon such a system, four sets of inventory models are developed each of which considers one more factor than the former. The first set of models allows a controllable lead-time with an additional investment and jointly determines the shipping size, the number of shipments, and the lead time, that minimize the yearly joint total expected cost (JTEC) of the system. The second set of models considers a buyer’s capacity limitation which causes some shipments to be delayed so that the arrival of these shipments does not cause the buyer’s inventory to go beyond its limitation. As a result, the number of delayed shipments is added as the fourth decision variable. A variable demand rate is allowed in the third set of models. Uncertainty caused by the varying demand are controlled by a safety factor, which becomes the fifth decision variable. Finally, the risk of obsolescence of the product is considered in the fourth model. The first model is solved analytically, whereas the rest are not, mainly because of the complexity of the problem and the number of variables being considered. Three doubly-hybrid meta-heuristic algorithms that combine two different hybrid meta-heuristic algorithms are developed to provide a solution procedure for the rest of models. Numerical experiments illustrate the solution procedures and reveal the effects of the buyer’s capacity limitation, the effects of the variable demand rate, and the effects of the risk of obsolescence, on the system. Furthermore, sensitivity analysis shows that some of the system parameters (such as the backorder penalty, the extra space penalty, the ratio of the unit holding cost of the vendor over that of the buyer) are very influential to the joint system total cost and the optimal solutions of the decision variables

    A comprehensive survey on cultural algorithms

    Get PDF
    Peer reviewedPostprin

    Recent tendencies in the use of optimization techniques in geotechnics:a review

    Get PDF
    The use of optimization methods in geotechnics dates back to the 1950s. They were used in slope stability analysis (Bishop) and evolved to a wide range of applications in ground engineering. We present here a non-exhaustive review of recent publications that relate to the use of different optimization techniques in geotechnical engineering. Metaheuristic methods are present in almost all the problems in geotechnics that deal with optimization. In a number of cases, they are used as single techniques, in others in combination with other approaches, and in a number of situations as hybrids. Different results are discussed showing the advantages and issues of the techniques used. Computational time is one of the issues, as well as the assumptions those methods are based on. The article can be read as an update regarding the recent tendencies in the use of optimization techniques in geotechnics

    Improved magnetic charged system search optimization algorithm with application to satellite formation flying

    Get PDF
    This paper is devoted to the implementation and application of an improved version of the metaheuristic algorithm called magnetic charged system search. Some modifications and novelties are introduced and tested. Firstly, the authors’ attempt is to develop a self-adaptive and user-friendly algorithm which can automatically set all the preliminary parameters (such as the numbers of particles, the maximum iterations number) and the internal coefficients. Indeed, some mathematical laws are proposed to set the parameters and many coefficients can dynamically change during the optimization process based on the verification of internal conditions. Secondly, some strategies are suggested to enhance the performances of the proposed algorithm. A chaotic local search is introduced to improve the global best particle of each iteration by exploiting the features of ergodicity and randomness. Moreover, a novel technique is proposed to handle bad-defined boundaries; in fact, the possibility to self-enlarge the boundaries of the optimization variables is considered, allowing to achieve the global optimum even if it is located on the boundaries or outside. The algorithm is tested through some benchmark functions and engineering design problems, showing good results, followed by an application regarding the problem of time-suboptimal manoeuvres for satellite formation flying, where the inverse dynamics technique, together with the B-splines, is employed. This analysis proves the ability of the proposed algorithm to optimize control problems related to space engineering, obtaining better results with respect to more common and used algorithms in literature
    • 

    corecore