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Abstract

This paper is devoted to the implementation and application of an improved

version of the metaheuristic algorithm called magnetic charged system search.

Some modifications and novelties are introduced and tested. Firstly, the au-

thors’ attempt is to develop a self-adaptive and user-friendly algorithm which

can automatically set all the preliminary parameters (such as the numbers of

particles, the maximum iterations number) and the internal coefficients. In-

deed, some mathematical laws are proposed to set the parameters and many

coefficients can dynamically change during the optimization process based on

the verification of internal conditions. Secondly, some strategies are suggested

to enhance the performances of the proposed algorithm. A chaotic local search

is introduced to improve the global best particle of each iteration by exploit-

ing the features of ergodicity and randomness. Moreover, a novel technique

is proposed to handle bad-defined boundaries; in fact, the possibility to self-

enlarge the boundaries of the optimization variables is considered, allowing to

achieve the global optimum even if it is located on the boundaries or outside.

The algorithm is tested through some benchmark functions and engineering de-
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sign problems, showing good results, followed by an application regarding the

problem of time-suboptimal manoeuvres for satellite formation flying, where

the inverse dynamics technique, together with the B-splines, is employed. This

analysis proves the ability of the proposed algorithm to optimize control prob-

lems related to space engineering, obtaining better results with respect to more

common and used algorithms in literature.

Keywords: metaheuristic physics-inspired algorithm, constrained

optimization, trajectory planning, satellite formation flying

Nomenclature

CP = Charged Particle

CLS = Chaotic Local Search

NCP = Number of CPs

D = Number of the variables to optimize (dimension of each CP)5

W = Maximum order of magnitude of the problem

UB,LB = Upper and lower bound vector

r = Real uniformly-distributed random number within the range [0,1]

rin = Integer uniformly-distributed random number

G(·) = Maximum number of iterations10

X = Position vector

V = Velocity vector

F = Force vector

q = Charge associated to each CP

I = Electric current associated to each CP15

rij = Separation distance between CPs

ε = Small positive constant

δ = Tolerance

pij = Probability of attraction/repulsion between CPs

pmij = Probability of the ith wire (CP) magnetic influence on the jth CP20

pr = Probability that an electrical force is a repelling force

w(·), z(·) = Electric and magnetic coefficients equal to 0 or 1
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Z = Coefficient of the chaotic local search

CM = Charged Memory (contain the best CPs)

CMS = Charged Memory Size25

NCP,ar = Number of attracting/repelling CPs

kv/a = Coefficient of the velocity/acceleration term

kar = Coefficient of attraction/repulsion

J = Performance index

S = Entropy of the system30

Cmax = Maximum number of allowed boundaries violations

c(·) = Generic counter

a, b = Approximation coefficient vectors

B = B-spline approximation polynomial

I = Coordinate system associated to Earth-centered inertial reference frame35

rc = Radius of chief orbit, km

ic = Inclination of chief orbit, rad

K = B-spline knot vector

L = Coordinate system of the local-vertical/local-horizontal reference frame

Ni,j = B-spline basis functions40

NP = Number of interpolation parameters

r = Inertial position, km

u = External acceleration, km/s2

x = State vector

µ = Earth gravitational constant, km3/s245

y = Flat output

ρ, ρ̇, ρ̈ = Relative position (km), velocity (km/s), acceleration (km/s2) vectors

ω = Angular velocity, rad/s

Subscripts and superscripts

g = Index associated to the global best CP50

k = Index associated to the k-th internal iteration

kf = Index associated to the last internal iteration

K = Index associated to the K-th external iteration
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E = Subscript referring to electric force/acceleration

B = Subscript referring to magnetic force/acceleration55

N = Numerical approximation of functions or curves

(0, f) = Quantity referring to beginning/end of manoeuvre

(c, d) = Quantity referring to chief/deputy satellite

1. Introduction

Optimization is a widely spread procedure which consists in finding the60

optimal solution of a given problem among all the admissible ones. Nowadays,

this procedure is exploited in many fields, such as physics (Hartmann & Rieger,

2003), economics (Mohajan et al., 1953) and engineering (Kalyanmoy, 2004).

Complex optimization problems are solved thanks to computing algorithms,

which are divided into deterministic and stochastic categories. Deterministic65

algorithms follow a rigorous and repeatable procedure and for the same starting

point the final result does not change. On the other hand, stochastic algorithms,

which include metaheuristics, are characterized by random processes that cause

the path not to be always the same with the same initial conditions. Thus,

the final solutions could be different each time the algorithm is launched (Yang,70

2010), but it is expected that some of them are nearly optimal, even though there

is no guarantee for such optimality (Yang, 2018). In addition, the randomization

allows to move from local to global search; therefore, they are suitable for global

optimization.

In the recent years, metaheuristic algorithms have been more and more ex-75

ploited for optimization problems because of their simplicity and advantages.

The computational costs have been compensated by the fast development of

the computing technology. Many metaheuristic algorithms have been proposed;

they can be subdivided into two main groups: bio-inspired and physics-inspired

algorithms. The first ones are related to animal biology and behaviour, whereas80

the second ones are based on physics laws. Among the most employed algo-

rithms there are: Genetic Algorithm (GA) (Holland, 1975; Goldberg, 1989),
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inspired by the Darwin’s theory of evolution; Ant Colony Optimization (ACO)

(Dorigo et al., 1996), inspired by the behaviour of ants; Particle Swarm Opti-

mization (PSO) (Clerc, 2010), based on the social behaviour of human kind and85

on swarms of birds; Differential Evolution (DE) (Storn & Price, 1997), based on

the concepts of mutation, recombination and selection applied to a population;

and many others (Bandaru & Deb, 2016).

Among these, Charged System Search (CSS) (Kaveh & Talatahari, 2010b)

and its upgraded version Magnetic Charged System Search (MCSS) (Kaveh90

et al., 2013) exploit respectively the electric and the electro-magnetic forces

and the uniformly accelerated motion laws to make the particles move through

the domain. Considering the good performances of MCSS, this algorithm has

been chosen to be further developed in this work. Until now, MCSS has mainly

been used for structural design optimization (Kaveh & Zolghadr, 2014; Kaveh95

et al., 2018), although there is also another work (Kumar et al., 2016) that

applies successfully the MCSS to a more common topic in artificial intelligence,

which is the clustering optimization (a very useful technique used for example in

machine learning and pattern recognition); in particular, in (Kaveh et al., 2014,

2015) an improved version of MCSS has already been proposed by the authors,100

but the reported improvements are only related to the part of the algorithm

dealing with the harmony search, whereas the improvements proposed in the

present paper concern the whole structure of the algorithm. Indeed, this paper

deals with the development of an Improved version of the Magnetic Charged

System Search algorithm, called IMCSS, and its applications in space trajectory105

planning, reagrading in particular satellite formation flying manoeuvres.

A problem associated to metaheuristic algorithms, including MCSS, is the

proper setting of some internal parameters as the number of maximum itera-

tions, the population size and the internal coefficients. These parameters may

change according to the different problems that need to be optimized, since they110

can affect significantly the results of the optimization procedure. Thus, this

poses a limitation in the usage of this kind of algorithms, which are restricted

only to expert users in this field. Some works dealing with the self-adaptivity of
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metaheuristic algorithms, i.e., the ability to automatically tune the internal pa-

rameters, have been already developed. For example, many self-adaptive PSO115

have been proposed in literature and some of them have been analysed in (Harri-

son et al., 2017) to explore their effectiveness and convergence. A self-adaptive

version of the Gravitational Search Algorithm (GSA) (Rashedi et al., 2009),

with a modified chaotic local search, has been introduced in (Ji et al., 2017).

Civicioglu et al. (Civicioglu et al., 2018) presented a weighted DE (WDE), in120

which all the internal parameters are determined randomly, so it has no control

parameters but the pattern size. Moreover, many tuning approaches have been

investigated in order to find the optimal values of the internal parameters of

metaheuristic algorithms, such as F-Race (Birattari et al., 2002), Revac (Nan-

nen & Eiben, 2007), SPO (Bartz-Beielstein et al., 2005), CRS-Tuning (Vecek125

et al., 2016).

Considering what has been said so far, the main contributions of this paper

are as follows:

1. The new algorithm is able to automatically determine i) a suitable number

of particles the population is made up of, ii) the maximum iterations130

number, and iii) the internal parameters which regulate all the phases of

the algorithm. Hence, the user can apply this optimization algorithm as

it was a ”black box”, i.e., without knowing anything about it, just by

defining the search space (lower and upper bounds of the variables).

2. Some strategies are proposed to make the algorithm more efficient.135

(a) A chaotic local search is introduced to improve the best particle of

the current iteration, by exploring its local neighborhood, and thus

helping the convergence.

(b) The algorithm is built in order to have external loops and internal

loops, where the first ones increase the ability of exploration and the140

second ones exploit the fast convergence of the original algorithm.

(c) A method to compute a sort of ”entropy” of the system is provided by

considering the objective functions of the whole population. Thanks
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to this information, the algorithm can understand if it is converging

to an optimal solution, meaning that most of the particles approach145

the neighbourhood of the global best particle, or if the convergence is

difficult to reach. Therefore, if needed, the population size can be self-

increased (for the following external loops) to help the optimization

procedure be successful.

(d) The proposed algorithm also takes into account the possibility to have150

a bad-defined search space. Indeed, the algorithm can autonomously

enlarge the boundaries proposed by the user and catch minima ex-

cluded by the original domain required for the initialization.

3. At the best of the author’s knowledge, this algorithm has never been

used before for space applications. Thus, this paper shows that IMCSS155

performs well to optimize very challenging problems in space engineering.

In order to justify the optimality of the obtained results, a comparison

with previous papers is carried out.

The space application reported in this work consists of a reconfiguration

manoeuvre for satellite formation flying. Metaheuristic algorithms are used160

for space engineering optimization; in particular, they have been used to face

the problem of guidance, i.e., how to plan spacecraft optimal trajectories. For

example, PSO has been used to optimize finite-thrust rendezvous trajectories

(Pontani & Conway, 2013) and to exploit attitude control to minimize the re-

configuration time for satellite formations (Spiller et al., 2017); a genetic algo-165

rithm has been employed to obtain optimal rendezvous manouevres in (Kim &

Spencer, 2002) and (Zhang et al., 2008); the evolutionary computation (EC)

has been used in (Wang & Zheng, 2012) for satellite formation reconfiguration

purposes. In order to successfully face the optimal control problem, the in-

verse dynamics approach, already employed for trajectories optimization (Ross170

& Fahroo, 2002; Boyarko et al., 2011; Spiller et al., 2016a,b), is considered in

this research along with the differential flatness approach (Fliess et al., 1995;

Louembet, 2007). As a consequence, state and control variables are expressed
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as a function of a minimum number of optimization parameters named flat

outputs. For example, for satellite formation manoeuvres the flat outputs can175

be well-represented by the parameters describing the relative displacements be-

tween the satellites. The advantage of using this approach is that the dynamical

constraints are satisfied a priori and the flat output can be chosen to automati-

cally fulfil the boundary constraints. Moreover, the control policy is obtained in

an analytical closed form. In particular, B-spline curves are chosen to describe180

the fat outputs because they provide very good results using a minimal number

of support functions (Boor, 1972).

This paper is organized as follows. Sec. 2 describes the features of the

proposed algorithm IMCSS. In Sec. 3, IMCSS is used to find the global minima

of some benchmark functions and well-known engineering optimization problems185

in order to test the effectiveness and the convergence of the algorithm. The

performances of the proposed algorithm are also compared to other works in

literature. Sec. 4 reports the application of IMCSS for the space guidance

problem concerning relative motion. The used reference frames and dynamical

model are provided along with the main characteristics of the inverse dynamics190

technique and the B-spline curves. Sec. 5 deals with the numerical results of

the optimization and, finally, concluding remarks are given in Sec. 6.

2. Improved Magnetic Charged System Search algorithm

In this Section, the IMCSS is introduced. This algorithm is an improved

version of the metaheuristic magnetic charged system search (MCSS) algorithm,195

presented in (Kaveh et al., 2013), where it was demonstrated that the algorithm

has a very good searching ability and convergence speed (especially when the

number of particles and iterations is not so high). Generally, MCSS can be

defined as a physics-inspired algorithm which exploits the electro-magnetic force

and the Newton mechanics laws to make the charged particles (CPs) move200

through the search space.

It is noteworthy that all the parameters of the proposed algorithm, together

8



with their associated mathematical laws, are not intended to be certainly suit-

able for every problem, but they have performed very well in all the analysis

carried out in this paper. Since different optimization problems are proposed205

and solved (various benchmark functions with diverse features, different engin-

nering design problems and the space guidance application), there is a good

evidence that the parameters have been properly chosen.

2.1. Preliminary considerations

Before explaining in detail the algorithm, some preliminary considerations210

are introduced. One can associate to each CP a vector of variables to be opti-

mized, called the position vector (Xi), and a performance index (Ji), also re-

ferred to as objective function. Throughout this paper the subscript i (and also

j) is used to indicate the i(j)-th CP and therefore it varies in the range [1, NCP ],

where NCP is the number of CPs. The length of the vector Xi represents the215

dimension of the problem, called D, whereas W indicates the maximum order

of magnitude of the problem. This value is computed as the order of magnitude

of the maximum value among the components of the difference vector between

the upper bound (UB) and the lower bound (LB) vectors, i.e.

W = |blog10(max(UB− LB))c| , (1)

where bc indicates the nearest integer towards minus infinity and | | the absolute220

value. The idea of IMCSS is to link the number of CPs and the maximum

iterations numbers to the only paramters defined by the (non-expert) user, i.e.,

UB and LB. By knowing W , it is possible to compute the number of CPs

associated to the problem

NCP = 10 · {W + rin[2, 3dlog(D + 1)e]} (2)

In Eq. (2), de and rin represent respectively the nearest integer towards infinity225

and a random integer number between the two in brackets. Obviously, a max-

imum number of CPs must be set in order not to have huge numbers of CPs
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which would make the computation too slow. Thus, the maximum number of

CPs (NCP,max) has to be imposed. Generally, it is a free choice parameter and

it can be decided by the user. In this algorithm, it is reasonably set equal to 50.230

Metaheuristic algorithm can require many iterations to optimize very com-

plex problems. The proposed algorithm is divided into external and internal

loops. In the internal loop, IMCSS exploits the characteristic of the original

MCSS, i.e., the fast convergence even for a low number of iterations. On the

contrary, the external loops enhance the exploration ability of IMCSS, preserv-235

ing at the same time the results of the previous iterations. For what concerns

with the maximum internal iterations number (Gk), the following law is consid-

ered

Gk = 600− 3NCP (3)

Also in this case, a maximum number of internal iterations is implicitly set

for the same aforementioned reason. The choices behind Eqs. (2) and (3) are240

related to the fact that if the dimension increases, also the complexity of the

problem increases and thus a greater number of CPs could be required for the

success of the algorithm.

In addition, if the number of internal iterations was constant and the number

of CPs was too small, the search space could not be explored well enough, and245

this is the reason why a decreasing law is chosen for Gk. If NCP is low, Gk is

high to compensate the reduced number of particles with the possibility to have

more time (iterations) to explore the search space. On the contrary, if NCP is

high, the search space is better explored starting from the beginning of each

internal loop, because the particles are more widely distributed.250

The external iterations number (GK) is defined as

GK = max(d12−Gk/10blog10(Gk)ce ; 3), (4)

where the function 10blog10(Gk)c allows to extract the order of magnitude of Gk.

Moreover, if Gk increases, GK decreases, which means that if many internal
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iterations have to be performed by the algorithm, it does not require many

other external loops. In order to improve the convergence at the end of the255

algorthm, the number of iterations of the last internal cycle (Gkf ) is increased,

i.e.

Gkf = 5Gk. (5)

2.2. Core of IMCSS

Once the numbers of iterations and CPs have been determined, it is possi-

ble to start with the actual optimization procedure. At the beginning of each260

external loop, each component of the position vector associated to each CP is

initialized randomly within the range [LBm, UBm], where the subscript m refers

to the mth component of the particle, with m ∈ [1, D]. The initial velocity of

all the CPs (V0
i ) is set equal to the null vector. Afterwards, the performance

index is assigned to each CP and the objective functions are sorted increasingly265

along with the corresponding CPs. Before starting a new external loop, the

first re-initialized particle is substituted by the global best particle of the last

external loop. This substitution allows the algorithm to have a continuity in the

search of the optimized variables, although the algorithm is re-initialized GK

times. The first best CPs are stored in the Charged Memory (CM), and they270

are updated at each iteration. The number of the CPs stored in CM is defined

as CMS (throughout this paper CMS is set equal to NCP /5). Other information

that must be stored and updated accordingly during the whole algorithm are

the best and worst objective functions.

The charge qki of each CP at the step k is computed by taking into account275

the current performance index of the CP (Ji), the best (Jg) and worst (Jworst)

fitnesses among all the CPs so far, i.e.

qki =
Jki − Jworst
Jg − Jworst

. (6)

The charges must be stored because they are subsequently used to obtain the

electric current. In this paper, the indices k and g are used to indicate re-
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spectively the current iteration and the best CP, i.e., the CP with the best280

performance index. As it can be seen from Eq. (6), the values of the charges

are normalized within the range [0, 1], where 0 is associated to the worst CP

and 1 to the best CP.

Supposing that CPs move in virtual straight wire of radius Rw, they create

magnetic fields in the space, which generate magnetic forces on the other CPs.285

According to (Kaveh et al., 2013), the average electric current (Iavg) can be

computed in two different ways,

(Iavg)
k
i =

qki − q
k−1
i

qki + ε
, (7)

or

(Iavg)
k
i = sign(Jki − Jk−1i ) · dfki − dfkmin

dfkmax − dfkmin
, (8)

dfki =
∣∣Jki − Jk−1i

∣∣ . (9)

In Eq. (7), ε defines a small positive value which is adopted to avoid singu-

larity. In Eq. (8), the function df represents the absolute value of the objective290

function variation of the i-th CP in the k-th movement (iteration), the function

sign(·) is the sign function, and dfkmax and dfkmin are respectively the maxi-

mum and the minimum values of df . Hereafter, based on the findings of Ref.

(Kaveh et al., 2013), Eq. (8) is adopted. In order to obtain the electric and

magnetic forces acting on all CPs for each iteration, the separation distance295

between all the CPs and the distance between the i-th wire and the j-th CP

must be computed. In this work, these two distances are supposed to be equal

and are indicated with rij . The explicit expression of rij is given by (Kaveh &

Talatahari, 2010b; Kaveh et al., 2013)

rij =
||Xi −Xj ||

||(Xi + Xj)/2−Xg||+ ε
(10)

As already stated, Xi/j represents the position of the generic CP (i.e., the vector300

of optimized variables) and ε is a small positive constant to prevent singularity.
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Let us consider insulating solid spheres of radius Ra with a uniform volume

charge density, each of which carrying a total charge qi. The electric force

acting on the j-th CP and produced by multiple CPs is

FE,j = keqj
∑
i,i6=j

(
qi
R3
a

rijw1 +
qi
r2ij
w2

)
ri − rj
||ri − rj ||

(11)

where305

 w1 = 1, w2 = 0 ⇐⇒ rij < Ra

w1 = 0, w2 = 1 ⇐⇒ rij ≥ Ra

As well-known from physics laws, there are two contributions within the brakets

of the right-handed side of Eq. (11): the first one represents a linear relation

with the distance rij , valid inside the sphere, and the second one is inversely

proportional to the square of the distance, valid outside the sphere. In anal-

ogy with the real electric force, the equation is adapted for the case of this310

metaherustic algorithm in the folowing way

FE,j = qj
∑
i,i 6=j

(
qi
R3
a

rijw1 +
qi
r2ij
w2

)
· pij · (Xi −Xj) (12)

where

 w1 = 1, w2 = 0 ⇐⇒ rij < Ra

w1 = 0, w2 = 1 ⇐⇒ rij ≥ Ra

and

pij =

1 if
Ji−Jg
Jj−Ji > r or Jj > Ji

0 otherwise

Here, pij indicates the probability of attraction of the i-th CP by the j-th

CP and r represents a real uniformly-distributed random number within the315

range [0,1]. The radius of the insulating sphere Ra is set equal to 1 in this
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work, although other possibilities can be considered, such as the one proposed

in (Kaveh & Talatahari, 2010b)

Ra = 0.10 ·max( Xi,max −Xi,min | i = 1, 2, ..., NCP ), (13)

based on the size of the search space. For what concerns with the magnetic

force acting on the jth CP, it is a linear function of rij inside the wire and it is320

inversely proportional to the square of rij outside, as it is known from physics.

Thus, the magnetic force is

FB,j = qj
∑
i,i6=j

(
Ii
R3
w

rijz1 +
Ii
rij
z2

)
· pmij · (Xi −Xj) (14)

where

 z1 = 1, z2 = 0 ⇐⇒ rij < Rw

z1 = 0, z2 = 1 ⇐⇒ rij ≥ Rw

and

pmij =

1 if Jj > Ji

0 otherwise

In Eq. (14), Rw is set equal to 1 and pmij is the probability of the magnetic325

influence (attracting or repelling) of the i-th wire on the j-th CP. This factor is

very important because only a good CP can influence a bad CP. Instead, this

does not happen for the electric force, where good and bad CPs can influence

each other. In addition, in order to emphasize the best CPs and give them

much more importance in the algorithm, the number of “active” CPs (the CPs330

which actually attract/repel) is not assumed to be equal to NCP , but only to a

fraction of the whole population. This fraction can be a free parameter decided

by the user and it can affect significantly the optimization procedure; thus, it

must be set carefully. A reasonable choice for the active CPs, found during this

work, is NCP /10, which is the value used throughout this paper. The total force335

acting on the j-th CP is then
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Fj = prFE,j + FB,j (15)

pr =

1 if r > kar · (1− k/Gk)

−1 otherwise

(16)

where pr is the probability that an electrical force is a repelling force. The

expression kar · (1−k/Gk) decreases with the iterations: this means that the re-

pelling forces ensure the exploration at the beginning of the algorithm, whereas,

at the end, the electric forces become more and more attractive, so that the ex-340

ploitation is increased. The value of kar is defined as follows

kar = min(Gk/1000 + 10/NCP ; 0.5) (17)

The reason behind the form of Eq. (17) is due to the fact that when Gk is high,

there is more ”time” (iterations) to explore the search space, thus it is possible

to have a great repulsion (high value of kar). On the contrary, when Gk is not

so high, the exploration phase is reduced in favor of a faster exploitation, in345

order to ensure the convergence. For what concerns with the parameter NCP ,

if its value is high, the exploration is already ensured at the beginning by the

wide diffusion of the CPs in the search space; thus, the exploitation is more

encouraged (this is the reason why an inverse proportionality is chosen). The

maximum admitted value for kar is equal to the probability of 50% between350

attraction and repulsion.

Once the forces are computed, the motion of the CPs has to be considered.

Even in this case, the equations of motion are inspired by the physics laws, in

particular by the uniformly accelerated motion laws.

Xk+1
j = rj1 · ka ·

Fj
mj
·∆t2 + rj2 · kv ·Vk

j ·∆t+ Xk
j (18)

Vk+1
j =

Xk+1
j −Xk

j

∆t
(19)
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In Eqs. (18) and (19), rj1 and rj2 are two random numbers that are uniformly355

distributed in the range [0,1] and they replace the real physics coefficients deter-

mined by the double integration of the acceleration (in particular, rj1 replaces

1/2 and rj2 replaces 1). In addition, the time interval ∆t is set equal to the unity

and the mass of each CP (mj) is indeed substituted by its charge (qj). This last

choice makes the simplification of a fraction (Fj/qj) occur and allows to take360

into account also the electric and magnetic accelerations (Eqs. (12),(14)) acting

on the worst CP (for which qj = 0); otherwise, a null force would be applied on

it. The remaining coefficients are respectively the coefficient of the acceleration

(ka) and the coefficient of the velocity (kv). Their expressions are given by

ka = ka,0 + (ka,f − ka,0) · k/Gk (20)

kv = kv,f + (kv,0 − kv,f ) · k/Gk (21)

As it can be seen from Eqs. (20) and (21), considering ka/v,f > ka/v,0, ka365

is a linearly increasing function, while kv is linearly decreasing. The initial and

final values of ka and kf are chosen to be



kv,f = 1 + r ·
(

1

NCP
+

Gk
10dlog10(Gk)e

)
kv,0 = 0.8

ka,0 = dkv,fe − kv,f
ka,f = 2 · ka,0

(22)

Eq. (18) shows that the new position of each CPs is determined by three main

contributions: the old position and the terms related to both the velocity and

the acceleration. The term related to the velocity can be seen as the inertia370

term which appears in the velocity equation of the PSO (Clerc, 2010); thus kv

plays here the role that w plays in the PSO. It’s important that the inertia

(velocity) term is more relevant at the beginning of the algorithm to ensure the

exploration, but then it should be decreased in favor of the exploitation. On

the other hand, the acceleration term should be more relevant at the end of the375

iterations to improve the exploitation in the neighborhood of the best CP: this
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idea can also be seen clearly from Eqs. (15) and (16), where the probability

of attraction increases with the iteration number. These are the reasons why

the terms ka and kv are chosen to be respectively increasing and decreasing

with time. The inverse and direct proportionalities, with respect to NCP and380

Gk, appearing in the first equation of 22, have basically the same explanation

already provided for Eq. (17).

2.3. Chaotic local search

To enhance the performance of the IMCSS, a chaotic local search (CLS)

is introduced. Chaotic search strategy is inspired by the chaos phenomenon385

in nature, which is a classic nonlinear dynamical system with the properties

of ergodicity, randomness, and sensitivity to its initial conditions (Jia et al.,

2011).Thanks to these features, a chaotic system can randomly generate a long-

time sequence which is able to traverse through every state of the system without

repetitions in certain ranges (Guo et al., 2015). In order to achieve a better bal-390

ance between exploration and exploitation abilities of the IMCSS and improve

the convergence of the whole algorithm, more heuristic information is integrated,

such as the search direction provided by the best particles in the current popula-

tion. Based on these considerations, a merge between the superior information

of the current population and the chaotic search process is performed.395

The chaotic local search employed for the proposed algorithm is inspired

by the work of Ji et al. (Ji et al., 2017). Thus, the main features of their

chaotic local search are employed, but with some differences. The chaotic local

search is exploited in order to improve the best CP within the current iteration

by searching in its neighborhood. This strategy could help to reach faster the400

global best. Therefore, the following criterion is applied

Xk
g1 = Xk

g + (Z − 0.5) · (Xk
CMri1

−Xk
CMri2

) ⇐⇒ r21 < r2 (23)

In Eq. (23), Xk
g1 is a new possible global best, Xk

CMri1/2
are two random CPs

chosen among the Charged Memory, and r1/2 are two real random numbers.

The condition r21 < r2 makes the local search occur with enough probability,
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since r1/2 varies within the range [0, 1] and therefore r21 is generally smaller405

than r2. The chaotic local search is not performed every iteration in order

to achieve a good compromise between the effectiveness of the search and the

required computational effort; in fact, since the success of the local search is

not guaranteed, it is more reasonable to make it happen randomly to save

compuational time. Z is also a real number which is initialized randomly in the410

range [0, 1] and it is updated with the following rule describing a chaotic logistic

map (Jia et al., 2011)

Zt+1 = 4Zt · (1− Zt). (24)

The value of Z is updated only if the chaotic local search succeds in finding a

new global best, i.e., Jkg1 < Jkg (for a minimzation problem). In this case, the

index t is increased by 1 and the new best CP (Xk
g1) replaces the old one (Xk

g).415

2.4. Boundaries constraints handling

Boundaries violations can be managed in very different ways. For example,

the variables exceeding the boundaries could be directly re-initialized or sub-

stituted by the lower or upper bound values. More complex strategies could

be adopted, such as the harmony search-based algorithm (Kaveh & Talatahari,420

2010b; Kaveh et al., 2013; Lee & Geem, 2004; Kaveh & Talatahari, 2009). In

this case, when a variable exceeds the lower/upper bound defined by the user, it

is either re-initialized or substituted by the corresponding value belonging to a

CP chosen among the CM (or among its neighborhood). This strategy is ruled

by two parameters: the CMCR, which is the Charged Memory Considering425

Rate, and the PAR, that is the Pitching Adjusting Rate. However, two further

values should be decided. In order to make the algorithm automatically choose

the best way to handle these violations, the following strategy is exploited,

Xi,m = XCMri
,m if r21 < r2,

Xi,m = LBm + r · (UBm − LBm) otherwise.

(25)
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The index m is used to indicate the dimension associated to the outbound

variable, while r, r1 and r2 are three real random numbers. Everytime a variable430

violates its corresponding boundary, a counter is updated (cLB,m in the case of

a lower bound violation and cUB,m for an upper bound violation). At the end of

an internal loop (i.e. before starting the successive external loop), these counters

are used to make the algorithm understand if the boundaries could have been

bad-defined by the user. If these counters exceed a maximum value Cmax, the435

corresponding boundary is enlarged, as shown in Eq. (26).



UBm = UBm · 10 + ε ⇐⇒ cUB,m > Cmax ∧ UBm ≥ 0

LBm = LBm/10− ε ⇐⇒ cLB,m > Cmax ∧ LBm ≥ 0

UBm = UBm/10 ⇐⇒ cUB,m > Cmax ∧ UBm ≤ 0

LBm = LBm · 10 ⇐⇒ cLB,m > Cmax ∧ LBm ≤ 0

(26)

Note that the value of Cmax is adaptive with respect to NCP with the law

Cmax = 0.1 · kf ·NCP , (27)

where kf represents the index of the last internal iteration. This value could

be different from Gk (kf ≤ Gk) because two exit strategies are considered, i.e.,

when the maximum iterations number (Gk) is reached or when a pre-defined440

tolerance is satisfied (refer to Sec 2.6). In Eq. (26), ε represents a small positive

constant. This tool is very useful and could help the algorithm to find a global

minimum when it is located on the boundaries or when it is not inside the search

space (in these cases the CPs tend to move much more towards the boundaries

and this could be an indication of a bad-defined boundary). Certainly, if the445

objective function has local minima inside the search space, it could be more

difficult for the IMCSS to realize that the boundaries have been badly defined.

2.5. Entropy of the system

In order to have an idea of how the optimization is being performed by the

IMCSS, a parameter, called here “entropy” (S), can be computed. The entropy450
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is defined as

S = median(Jk) (28)

Eq. (28) associates the entropy of the population to the median element of the

objective functions vector. Obviously, if S decreases, it means that the CPs

are closer to the best CP; thus, the algorithm is going to converge. Entropy

of CPs can convey the idea of the distribution of the CPs with respect to the455

best one. It is important to note that, in order to state that the algorithm is

performing well, the entropy needs to be decreasing. This is in contrast with

the concept of entropy in Physics, which is always a non-decreasing function for

natural transformations.

At each iteration, if S is non-decreasing (i.e., the disorder of CPs in not de-460

creasing) a counter (cS) is updated. At the end of an internal loop, the NCP is

increased if cS overcomes a defined maximum value,

NK+1
CP =min[NK

CP + rin[W ; 3dlog(D + 1)e]; d1.1NCP,maxe] if cS/kf > 0.5.

(29)

In Eq. (29), ri represents a random integer number between the two in brackets.

The proposed entropy-based strategy represents an opportunity to improve the

results when the behaviour of the algorithm is not completely satisfactory ac-465

cording to the criterion of Eq. (29). Indeed, even though it does not guarantee

to find the optimal solution of a generic problem, a greater number of CPs can

improve the convergence of the next loops of the algorithm with respect to the

previous ones.

2.6. End of the algorithm470

As already mentioned, the internal loop ends when the maximum iterations

number is reached or when a pre-defined tolerance (δuser) is achieved. The

same occurs with the external loop. The tolerances can be defined in many

different way by taking into account the objective functions of the CPs, such

20



Algorithm 1 IMCSS algorithm

1: Preliminary parameters initialization: NCP , Gk, Gk,f , GK , kv,0, kv,f , ka,0, ka,f , kar, Z

(Eqs. (2)-(5), (17), (22) );

2: while (K ≤ GK ∧ δK ≥ δuser ) do

3: CPs position and velocities initialization. Objective functions computation;

4: If K > 1: Substitute the first CP with the best CP of the previous internal loop;

5: Initialize the Charged Memory (CM) and compute the entropy by means of Eq (28);

6: while (k ≤ Gk ∧ δk ≥ δuser ) do

7: Update acceleration and velocity coefficients (Eqs. (20) and (21));

8: Compute the total force, the new positions and velocities (Eqs. (15),(18) and (19));

9: Handle boundaries violations (Eq. (25)) and update the counters (cUB and cLB);

10: Objective functions computation and CLS (Eq (23)). Update CM;

11: Calculate the internal loop tolerance (δk) and update the entropy S and cS ;

12: k=k+1;

13: end while

14: Store the global best CP of the current internal loop;

15: Check the boundaries enlargement and non-decreasing entropy (Eq (29)) conditions;

16: Calculate the external loop tolerance (δK) using JK
g ;

17: K=K+1;

18: end while

19: Retrieve the global best CP.

as by computing the absolute error, the relative error, the standard deviation475

among a set of CPs (Nδ), etc.. Throughout this paper, the tolerance (δ) must

be lower than 10−10 and it is defined as the standard deviation of the last Nδ

objective functions, i.e.,

δ =

√∑Nδ
k=1(Jkg − Jmeang )2

Nδ
, (30)

where Jmeang is the mean value of the considered Nδ objective functions. Fur-

thermore, if NCP < NCP,max, the last external loop is performed with an in-480

creased number of CPs, which is updated with the same law as the one in Eq.

(29), in order to ensure a better convergence. The pseudocode and the flow chart

of IMCSS are provided respectively in Algorithm 1 and Fig.1 to summarize the

whole architecture of the proposed approach.

21



Figure 1: IMCSS flow chart with novelties and modifications wrt to the original MCSS.

3. IMCSS performance analysis485

In order to test the effectiveness of the proposed IMCSS algorithm, a first

test is performed on some benchmark functions, which are optimization func-

tions whose global minima are well-known. This analysis allows to test the

efficiency of IMCSS in finding the global minima. Table 1 shows the considered

benchmark functions (some of them are the same as in the original paper about490

MCSS (Kaveh et al., 2013) and other ones have been added). Many different

functions are considered, such as unconstrained and constrained, continous and

non-separable, convex and non-convex, multimodal and unimodal, differentiable

and non-differentiable, in order to take into account many heterogeneous condi-

tions (a list of the benchmark functions and their features can be found freely495

online 1).

In particular, their analytical expressions, the dimension of the problems, the

lower and upper bounds of the variables and the global minima are indicated in

1http://benchmarkfcns.xyz/fcns, accessed on April 26, 2019
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Table 2: Statistical results obtained by IMCSS through 1000 independent runs on the bench-

mark functions.

Fun. Best Worst Mean Std
∣∣F ∗

min −Best
∣∣ MCSS

BF1 -0.352386 -0.352386 -0.352386 5.160994E-10 0 -0.34974

BF2 0 1.268790E-07 9.910206E-09 1.749269E-08 0 1.435E-06

BF3 0 1.569533E-07 9.253131E-09 1.656263E-08 0 5.358E-06

BF4 0 7.068693E-10 1.085573E-12 2.306068E-11 0 2.542E-08

BF5 0.397887 0.397887 0.397887 1.656622E-09 0 0.401754

BF6 -1.031628 -1.031628 -1.031628 4.095771E-09 0 -1.031598

BF7 0 8.843861E-09 1.721074E-10 6.158793E-10 0 2.427E-08

BF8 -0.4 -0.4 -0.4 5.664971E-15 0 -0.398751

BF9 0 1.837917E-07 1.341720E-08 2.219142E-08 0 4.731E-06

BF10 -1 -1 -1 0 0 -0.999971

BF11 3 3 3 8.731835E-13 0 3.155378

BF12 1.946010E-10 0.145619 1.460866E-04 0.004605 1.946010E-10 6.815E-08

BF13 -3.862782 -3.862780 -3.862782 1.383581E-07 0 -3.861415

BF14 -3.321995 -1.267677 -3.275728 0.123722 3.728284E-04 -3.320421

BF15 0 2.553494E-08 1.094324E-09 2.628318E-09 0 0.074523

BF16 0 0.401014 0.002139 0.016957 0 -

BF17 -106.764537 -106.764535 -106.764537 1.248452E-07 0 -

BF18 4.309666E-15 7.867842E-09 3.084089E-10 6.750814E-10 4.309666E-15 -

BF19 -2.023988 -1.659511 -2.002659 0.062348 0 -

BF20 9.523413E-10 1.155187 0.005338 0.063119 9.523413E-10 -

BF21 -2.062612 -2.062612 -2.062612 1.494329E-10 0 -

BF22 -959.640662 -894.578900 -957.825537 8.712252 3.727915E-05 -

BF23 -19.208503 -19.208503 -19.208502 6.413715E-09 0 -

BF24 0 5.496055E-08 1.643349E-09 4.384696E-09 0 -
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Table 1. Table 2 reports some statistical results (the best, the worst, the mean

values, the standard deviation and the absolute error with respect to the real500

minimum F ∗min) obtained through 1000 independent runs on the benchmark

functions, without excluding the outliers. In Table 2, the error between the

computed and the real minimum is 0 considering the limits on the decimal digits

that have been found online. The IMCSS ends when the maximum iterations

number is reached or when the condition shown in Eq. (30) is fulfilled. For505

this analysis, Nδ is set equal to 3 for both the internal and external loops.

The last column of Table 2 also shows the results of the optimization on some

Benchmark functions (BF1-15) with the original algorithm MCSS. Considering

that the results of the optimization in (Kaveh et al., 2013) are computed with

10 particles,a maximum number of iterations equal to 100 and without taking510

into account a statistics on multiple runs, the results between MCSS and the

proposed IMCSS can only be compared by looking at the mean values of the

statistics. As can be noticed comparing the MCSS results with the mean values

obtained with IMCSS, the proposed algorithm generally outperforms the MCSS,

except in BF14 (Hartman6) and BF12 (Grienwank). However, for BF12, the515

comparison cannot precisely be done, since in the original paper of MCSS the

dimension associated to this problem is only 2 compared to dimension 10 of

the present paper. For the common Benchmark functions between MCSS and

IMCSS, two different Wilcoxon tests are carried out by considering the mean

values and then the best values of IMCSS. For the first case, assuming an α value520

equal to 0.05 and that the null hypothesis corresponds to a not significantly

different behaviour of the two algorithms, the obtained p value is 0.02557 which

is smaller than 0.05. Therefore, the null hypothesis is rejected and it can be

concluded that the two algorithms behave differently. In particular, IMCSS

outperforms MCSS since its mean value is lower. The same considerations can525

be done considering the best values of IMCSS for the comparison: even in this

case, the p value (6.1035 · 10−5) is lower than the α value (0.05). For what

concerns the other Benchmark functions (BF16-24), they have been added to

the analysis with the only purpose to test the algorithm with other functions
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with different features, so they can be considered for future comparisons.530

A particular test for the Beale function (BF18, Fmin = 0, x1,min = 3, x2,min =

0.5) is conducted to show the effectiveness of the boundaries handling strategy

introduced in Sec. 2.4. Let the lower and upper bounds of the variables be bad

defined: LB = [0,−0.03] and UB = [2, 0.03]. As one can note, the correct vari-

ables, which correspond to the global minimum of the function, are not within535

the defined boundaries. If no strategy is performed and the boundaries remain

fixed, the computed global minimum is 0.64769574. Instead, if the strategy

about the boundaries handling explained in Sec. 2.4 is applied, the IMCSS is

able to autonomously understand that the global minimum cannot be obtained

with the defined boundaries. In particular, what happens is that most of the540

variables tend to move and accumulate towards the lower and upper bounds

values, suggesting that they want to move outside the boundaries to search for

the correct global minimum. Table 3 shows the time history of the optimiza-

tion problem for the Beale function with bad-defined boundaries: cUB and cLB

indicate the counters for the violation of the lower and upper bounds of the545

variables, whereas the last two columns show the changes of the bounds. As

can be seen in the first row of the table, both the components of the violated

upper bound counter cUB are greater than the maximum admitted value Cmax

Table 3: Results of the boundary constraints handling technique for the Beale function with

NCP = 20.

GK Gk,f Jg δ Cmax cUB cLB UB LB

1 128 0.64769574 8.78738E-11 256 [324,267] [25,33] [2,0.03] [0,-0.03]

2 209 0.10013305 4.23267E-11 418 [9,523] [11,42] [20,0.3] [0,-0.03]

3 216 0.00000000 4.45473E-11 432 [12,12] [5,10] [20,3] [0,-0.03]

4 226 0.00000000 7.10376E-11 452 [20,10] [12,9] [20,3] [0,-0.03]

5 228 0.00000000 5.78289E-11 456 [13,8] [14,8] [20,3] [0,-0.03]

6 259 0.00000000 9.29849E-11 518 [8,8] [4,10] [20,3] [0,-0.03]

7 185 0.00000000 3.31962E-11 407 [12,10] [4,8] [20,3] [0,-0.03]
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after the first external loop. This causes the enlargement of the two components

of the upper bound, which becomes [20, 0.3]. This new upper bound includes550

x1,min, but not x2,min. In the second external loop, the value of Cmax is up-

dated according to Eq. (27). Since cUB,2 = 523 > Cmax = 418, the second

component of UB is again modified and cUB becomes [20, 3]. Finally, this is

a correct boundary that includes both the x1,min and x2,min. As illustrated in

the table, the third external loop already succeeds in finding the correct global555

minimum. This example has shown the ability of IMCSS to find the correct

global with bad defined initial boundaries. Hence, IMCSS can overcome prob-

lems coming from bad-defined boundaries due to a not perfect knowledge of the

optimization problem.

For what concerns the efficiency of the CLS technique, another analysis is560

performed on the 24 Benchmark functions considering 1000 independent runs for

each function. Two Montecarlo analysis are performed: the first one is carried

out without using the CLS, whereas the second employs the CLS. The same

random numbers for the two Montecarlo are generated in order to actually test

the reliability of the test. The results show that, for 17 functions out of 24, the565

CLS helps for the majority of the runs (effective runs ≥ 500) to improve the

convergence to the global optimum, which is considered to be obtained when the

algorithm reaches the global best with an error of 10−4 with respect to the real

global minimum. The functions for which the CLS does not provide a significant

real improvement (effective runs < 500) are: BF12, 14, 15, 16, 19, 20 and 22.570

Three examples about the comparison of the performances of IMCSS with and

without CLS, regarding the functions BF7, BF13, BF17, are shown in Fig. 2.

As can be noted, for all the cases the chaotic local search allows to reach the

convergence much faster; in particular, for BF17 the advantage of exploiting the

CLS inside the algorithm is evident because the global optimum is approached575

since the beginning of the optimization procedure. This analysis shows that

the CLS can actually speed up the convergence for most of the cases; thus,

it is convenient to employ it at the expense of a greater number of functions

evaluations per iteration.
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Figure 2: Convergence of the algorithm with and without the Chaotic Local Search for BF7

(a), BF13 (b) and BF17 (c).
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Figure 3: Entropy of the system as a function of the iteration number (k) for BF20.
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Another important point is related to the increase of the NCP because of580

the non-decreasing entropy of the system. For example, considering the Ackley

function (BF20) after the second external loop , with NCP = 30, it can happen

that the entropy is non-decreasing for more than 50% of the total iterations,

as reported in Fig. 3 (256 iterations over a total of 510 had a non-decreasing

entropy). Non-decreasing entropy could mean that the algorithm has already585

found a possible candidate for the global minimum, thus the entropy does not

decrease anymore, but it could also mean that it has stalled in a wrong minimum.

Therefore, in order to increase the probability to converge to the real global

minimum, according to what has been said in the previous Section, the number

of CPs is increased, decreasing the failure possibilities of the algorithm. It is590

important to highlight that this procedure can help the IMCSS to speed up the

convergence, but it could also be not determinant (it is only assumed that a

better and faster convergence can be achieved with a greater number of CPs).

These above-mentioned examples shows the effectiveness and abilities of the

proposed algorithm to try to overcome some difficulties in finding the optimum.595

While the previous tests on the Benchmark functions aim at showing the

potentialities of the proposed algorithm and its comparison with the original

MCSS, a second analysis is carried out on well-known engineering optimization

problems, such as the tension/compression spring design, the welded beam de-

sign and the pressure vessel design problems. This analysis allows to compare600

IMCSS to other works in literature which employ very different methods of

optimization, from mathematical-based to metaheuristic and evolutionary algo-

rithms. For the sake of conciseness, the descriptions of these three problems

are not reported here; for further details on the mathematical transcriptions

of these problems and the related boundaries of the optimization variables the605

reader can refer to (Kaveh et al., 2013). From Table 4, which represents the

statistics for the tension/compression spring design problem, it is possible to

see that IMCSS outperforms all the algorithms apart from the last three. How-

ever, for these three cases, their mean values are always greater than the mean

and also the worst values found by IMCSS, thus proving a more reliability of610
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the proposed algorithm although the best value of IMCSS is less than the other

three. The statistics for the welded beam design problem is represented in Table

5, which shows that the best value of IMCSS is better than those of the other

works, but the mean value is higher than the last three approaches. By looking

at the mean value, since it is closer to the best value than the worst one, it is615

possible to understand that there are only few runs for which the minima ob-

jective functions reach high values. Finally, the statistics on the pressure vessel

design problem, illustrated in Table 6, shows that IMCSS outperforms all the

other algorithms with a significant lower value of the best function. As can be

deduced from this analysis, IMCSS can outperform (or at least be comparable620

to) many algorithms, thus proving its reliability and competitiveness with other

optimization approaches while adding at the same time the important feature

of a more user-friendly usage.

Table 4: Comparison between IMCSS and other algorithms on the tension/compression

spring design problem.

Methods Best Mean Worst Std

(Belegundu, 1983) 0.0128334 N/A N/A N/A

(Arora, 1989) 0.0127303 N/A N/A N/A

(Coello, 2000) 0.0127048 0.012769 0.012822 3.9390E-05

(Coello & Montes, 2002) 0.0126810 0.0127420 0.012973 5.9000E-05

(He & Wang, 2007) 0.0126747 0.012730 0.012924 5.1985E-05

(Mezura-Montes & Coello, 2008) 0.012698 0.013461 0.16485 9.6600E-04

(Kaveh & Talatahari, 2010a) 0.0126432 0.012720 0.012884 3.4888E-05

(Kaveh & Talatahari, 2010b) 0.0126384 0.012852 0.013626 8.3564E-05

(Kaveh et al., 2013) 0.0126069 0.012712 0.012982 4.7831E-05

Present work 0.0126652 0.012665 0.012666 5.5318E-08

4. Optimal Control Problem Statement

The description of the optimal control problem related to satellite formation625

reconfiguration is provided in this section. Minimum time manoeuvres will be

addressed for a formation of two satellites, the chief c and the deputy d. The
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Table 5: Comparison between IMCSS and other algorithms on the welded beam design

problem.

Methods Best Mean Worst Std

(Ragsdell & Phillips, 1976) 2.3815 N/A N/A N/A

(Deb, 1991) 2.433116 N/A N/A N/A

(Coello, 2000) 1.748309 1.771973 1.785835 0.011220

(Coello & Montes, 2002) 1.728226 1.792654 1.993408 0.074713

(He & Wang, 2007) 1.728024 1.748831 1.782143 0.012926

(Mezura-Montes & Coello, 2008) 1.737300 1.813290 1.994651 0.070500

(Kaveh & Talatahari, 2010a) 1.724918 1.729752 1.775961 0.009200

(Kaveh & Talatahari, 2010b) 1.724866 1.739654 1.759479 0.008064

(Kaveh et al., 2013) 1.724855 1.735374 1.750127 0.007571

Present work 1.724852 1.762985 2.640950 0.156215

Table 6: Comparison between IMCSS and other algorithms on the pressure vessel design

problem.

Methods Best Mean Worst Std

(Sandgren, 1988) 8129.1036 N/A N/A N/A

(Kannan & Kramer, 1994) 7198.0428 N/A N/A N/A

(Deb, 1997) 6410.3811 N/A N/A N/A

(Coello, 2000) 6288.7445 6293.8432 6308.1497 7.4133

(Coello & Montes, 2002) 6059.9463 6177.2533 6469.3220 130.9297

(He & Wang, 2007) 6061.0777 6147.1332 6363.8041 86.4545

(Mezura-Montes & Coello, 2008) 6059.7456 6850.0049 7332.8798 426.0000

(Kaveh & Talatahari, 2010a) 6059.7258 6081.7812 6150.1289 67.2418

(Kaveh & Talatahari, 2010b) 6059.0888 6067.9062 6085.4765 10.2564

(Kaveh et al., 2013) 6058.9710 6063.1798 6074.7391 9.73494

Present work 5885.3327 5885.4119 5886.7128 0.09339

equations of motion of the system, referred to an Earth-centered inertial (ECI)

coordinate system I = {XI , YI , ZI } shown in Fig. 4, are

r̈ = − µ
r3

r + u + f (31)

where µ = 3.986 · 105 km3/s2 is the Earth gravitational parameter, r is the630
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Figure 4: ECI coordinate system I and LVLH coordinate system L .

position vector of the satellite (r is its magnitude), u is the external acceleration

(provided by the engines), and f is the perturbation acceleration (depending on

the environmental forces). Let ρ = rd−rc = [ρx, ρy, ρz]
T be the relative distance

between the chief and the deputy. The relative motion is usually described in

the local-vertical/local-horizontal (LVLH) reference frame L = {XL , YL , ZL },635

shown in Fig 4, with XL pointing from the center of the Earth to the origin of

L , ZL perpendicular to the orbital plane and YL completing the right-hand

Cartesian coordinate system. This reference system is centered on the chief

satellite. Consider the chief satellite on a circular orbit (which implies ω =√
µ/r3) with inclination ic and let the J2 gravitational effect in f be considered640

in the following mathematical model (see (David & McClain, 2007) for further

astrodynamical details). Imposing uc = 0, the relative motion is described by

the SS model developed by Schweighart and Sedwick (Schweighart & Sedwick,

2001, 2002),


ρ̈x − 2m̄ρ̇y − (4m̄2 − n̄2)ρx = ux

ρ̈y + 2m̄ρ̇x = uy

ρ̈z + (2m̄2 − n̄2)ρz = uz

(32)
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where m̄ = ω
√

1 + kJ2 , n̄ = ω
√

1− kJ2 , kJ2 = (3J2R
2
e/8r

2
c )[1 + 3 cos(2ic)] and645

Re is the Earth radius. Note that the in-plane motion along XL and YL is

decoupled from the out-of-plane motion along ZL . It easy to see that Eq. (32)

can be also written in the state-space form in the following form

ẋ = Ax + Bu (33)

where matrices A and B are computed from Eq. (32), x = [ρTx, ρ̇x
T]T and

u = [ux, uy, uz]
T. Let t0 and tf be the initial and the desired final relative state;650

the time-optimal problem considered in this paper is defined as follows



Find (x,u, tf )∗

minimizing J = tf − t0
subject to, ∀t ∈ [t0, tf ],

dynamical constraints : ẋ = Ax + Bu

boundary conditions : x(t0) = x0, x(tf ) = xf ,

control constraint : ||u(t)||∞ − umax ≤ 0

(34)

where the infinity norm is defined as ‖u(t)‖∞ = max{|ux(t)|, |uy(t)|, |uz(t)|}.

The reconfiguration manoeuvre must be accomplished in the shortest final time

t∗f .

4.1. Inverse dynamics technique655

The direct dynamics is usually employed for most of the applications; it

consists on obtaining the trajectory via an integration process under an applied

control. Instead, the inverse dynamics technique is exploited in this paper since

the external control u(t) can be written as a function of the state. In this

case, the state vector x is approximated by some functions or curves. The op-660

timization algorithm searches for the optimal values of the state approximation

coefficients describing the curve, or the function, of each state component. The

control is obtained from the state and its time derivatives (the required order of

derivatives depends on the problem). The inverse dynamics approach overcomes

some direct-dynamics issues such as low computational speeds and integration665
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of numerical errors and has a reduced number of optimization parameters with

respect to traditional methods (collocation and pseudospectral). All these fea-

tures allow to have a very good compromise between the computational time

and the optimality of the results. It is important to note that, because of the

approximation of the position vector (and its first and second derivatives) the670

inverse dynamics technique usually provides a sub-optimal solution representing

a good compromise between reliability and complexity. Within the frame of the

inverse dynamics technique, a particular subclass is the differential flatness (DF)

formulation (Fliess et al., 1995), which is based on the so-called flat output y(t)

(with the same dimension of the control u(t)). If such a flat output exists, then675

the state and the control can be written as functions of y,

x = a(y, ẏ, ...,y(β)), u = b(y, ẏ, ...,y(β+1)) (35)

For our optimization problem, let y = ρ. According to this choice, β = 1 and

the full state x is obtained via time differentiation of ρ, whereas u = b(ρ, ρ̇, ρ̈).

Therefore, the optimization problem, illustrated in Eq. (34), can be rewritten

as a function of the flat output as680



Find (ρ, tf )∗

minimizing J = tf − t0
subject to, ∀t ∈ [t0, tf ],

boundary conditions : ρ(t0) = ρ0, ρ(tf ) = ρf ,

ρ̇(t0) = ρ̇0, ρ̇(tf ) = ρ̇f ,

control constraint : ||b(ρ, ρ̇, ρ̈)||∞ − umax ≤ 0

(36)

As it can be seen, the dynamics constraint does no longer appear in the new for-

mulation of the optimization problem, because it is satisfied a priori. Note that

Eq. (36) holds for the real (but unknown) flat output ρ(t) and for its numerical

approximation ρN (t). In order to make the problem as simple as possible, the

approximation curves can be chosen to directly fulfill also the boundary con-685

ditions, which are linked to a clever choice of the approximating polynomials
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coefficients. Thus, calling with DB the set of approximating function satisfying

the boundary constraints, the problem is reformulated as follows



Find (ρN , tf )∗ such that ρN ∈ DB

minimizing J = tf − t0
subject to, ∀t ∈ [t0, tf ],

control constraint : ||b(ρN , ρ̇N , ρ̈N )||∞ − umax ≤ 0

(37)

By employing the DF formulation, three main advantages can be highlighted:

1. The minimum number of optimization parameters is employed.690

2. The control policy is obtained in an analytical closed form avoiding the

integration of dynamics equations (thus saving also computational time).

3. Initial and final conditions are automatically respected since they are im-

posed a priori in the polynomial approximation of ρ.

4.2. B-spline curves approximation695

Many interpolating functions can be chosen to approximate the trajectory of

the deputy satellite: this choice can strongly affect the results of the optimization

problem. Among the most used approximation, there are the Chebyshev poly-

nomials and the B-spline curves. In this paper, B-spline curves are employed,

instead of Chebyshev polynomials, because it has already been demonstrated700

that B-spline curves perform better and allow to obtain more accurate results in

this kind of optimization problem (Parente et al., 2018). The B-spline B(λ;a,K)

is characterised by a strictly increasing independent variable 0 ≤ λ ≤ 1, the co-

efficient vector a = [a0, a1, ..., aNP−1] and the Knot vector K, made up of m+ 1

components,705

K = {kn, n = 0, ...,m|k0 = 0, km = 1, kn ≤ kn+1} (38)

Here, NP is the number of interpolating parameters and m = NP +D, where D

is the degree of the polynomials. Hence, the l-th component of the approximated
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relative displacement ρN ;l can be expressed as

ρN ;l(λ) = B(λ;a,K) =

NP−1∑
n=0

anNn,D(λ;K) (39)

In Eq. (39), Nn,D(λ;K) represent the basis functions and are defined through

the Cox-de Boor recursion formula (Boor, 1972). With regard to the time, it can710

be defined from λ as t = tfλ. However, as already shown in (Spiller et al., 2017,

2016b), full advantage of the B-spline is taken approximating the trajectory as a

curve, not as a function. In this case, the linear relationship between t and λ is no

more valid and the time is evaluated as a B-spline. Once introduced the strictly-

increasing time coefficient vector b = [bn,1 = 0, bn,2 > bn,1, ..., bn,NP−1
= 1], the715

time is given as

t = tfB(λ; b,K) = tf

NP−1∑
n=0

bnNn,D(λ;K) . (40)

Let B′a = ∂B(λ;a,K)/∂λ and B′′a = ∂2B(λ; b,K)/∂λ2 be defined as

B′a =

NP−2∑
n=0

a′nNn+1,D−1(λ;K), (41)

B′′a =

NP−3∑
n=0

a′′nNn+2,D−2(λ;K), (42)

where (·)′ is the derivative with respect to λ, and a′n and a′′n are given by the

following finite differences:

a′n = D an+1 − an
kn+D − kn

, a′′n = (D − 1)
a′n+1 − a′n
kn+D−1 − kn

. (43)

Eq. (41) and Eq. (42) can be obviouslly defined also for the first and sec-720

ond derivates of B(λ; b,K). The time derivatives of the function ρNn are then

evaluated as

ρ̇N ;l=
dB(λ;a,K)

dt
=
∂B(λ;a,K)

∂λ

∂λ

∂t
=
∂B(λ;a,K)

∂λ

∂λ

∂B(λ; b,K)
=
B′a
B′b

ρ̈N ;l=
d2B(λ;a,K)

dt2
=
B′′aB′b − B′′bB′a

B′3b
.

(44)
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Table 7: Orbital parameters of the chief satellite.

Parameter a (km) e i (deg) Ω (deg) ω (deg)

Value 7000 0 45 0 0

To build a B-spline, a polyline defined over the control points Aj = [bj , aj ], j =

0, ..., NP − 1, is introduced. In the sequel, clamped B-spline will be employed:

in this case, the curve passes through A0 and ANP−1 and it is obtained using725

non-uniform knot points given by

kn = 0 if 0 ≤ n ≤ D ,

kn =
n−D
NP −D

if D < n ≤ NP − 1 , (45)

kn = 1 if NP − 1 < n ≤ m.

Initial and final conditions on the lth component of the state xl(t) are imposed

by setting

a0 = xl(t0) , a1 = a0 + (b1 − b0)ẋl(t0) ,

aNP−1 = xl(tf ) , aNP−2 = aNP−1 − (bNP−1 − bNP−2)ẋl(tf ) .
(46)

5. Numerical results

The optimal control problem explained in Sec. 4 is applied to the case of a730

controlled deputy and a non-cooperative chief spacecraft. Table 7 reports the

orbital elements of the chief satellite, orbiting around the Earth on a circular

inclined orbit with an orbital period of about Torb = 5828.52 s. For this analysis,

only the planar motion is taken into account, i.e., the motion along ZL is not

controlled.735

Non-dimensional units are used; consequently, distances are divided by Kx,

that is the initial relative distance between the two satellites, and the control is

divided byKu = umax. The manoeuvre time is normalized byKt =
√
Kx/umax,
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Table 8: Boundaries of the variables.

Variables Boundaries

Coefficients for the displacements [−10, 10]

Coefficients for the time vectors [0, 1]

manoeuvre time [0.25, 1.25] · Torb/Kt

and velocities are divided by Kv = Kx/Kt. The maximum value of the thrust

has been set to umax = 5 · 10−4 m/s2. For what concerns with the B-spline, NP740

is set equal to 8; whereas the trajectory is discretized over Nt = 100 points. The

tolerance is computed by means of Eq. (30) with Nδ = 3 for both the internal

and external loops. The objective function is defined as

J = t̄f +

2∑
l=1

Nt∑
k=0

ηl,k(al, tk) + 100 ·Nviol

ηl,k(al, tk) =


0 if

|ul,k(al, tk)|
umax

≤ 1 ,

|ul,k(al, tk)|
umax

otherwise .

(47)

Note that t̄f is the normalized manoeuvre time and Nviol represent the number

of violated constraints, which makes the algorithm prefer those CPs that violate745

a small number of constraints than the others. In particular, Nviol is set equal

to 1 if ux or uy exceeds the maximum admitted value umax, otherwise it is set

equal to 0. Using improved B-splines, the vector Xi, associated to each CP of

IMCSS, is made up of 21 variables. Indeed, 2(NP −4) and 2(NP −2) are the pa-

rameters needed for the B-spline approximation respectively for the trajectory750

and the time (along both dimensions), and the last variable represents the time

of the manoeuvre. The boundaries chosen for the variables are shown in Table 8

Initial and final state vectors are respectively: [x(0), y(0), ẋ(0), ẏ(0)] = [−1 km,

1 km, 0 km/s,−2ωx(0) km/s], where ω is the mean motion of the chief satellite,

and [x(f), y(f), ẋ(f), ẏ(f)] = [0 km, 0 km, 0 km/s, 0 km/s]. According to the ini-755

tial conditions, Kx = 1.4142 km, Kt = 1681.793 s and Kv = 8.40896 ·10−4 km/s.
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The results of the optimization are shown in Fig 5. As it can be seen from the

control policy, the control approximates very well the bang-bang control, which

is proven to be the ideal optimal control by the Pontryagin Maximum Principle

(PMP) applied to the Hamiltonian written for the SS model (see (Kirk, 2012)760

for further details). The computed manoeuvre time is 3921.74 s, which is lower

than previous results in literature (in (Parente et al., 2018) the manoeuvre time

for this problem was shown to be 3940 s, by using the PSO, and 3930 s, by means

of DE). This comparison demonstrates the effectiveness of the proposed IMCSS

algorithm and its competitiveness with respect to more common algorithms in765

the field.

Another simulation was performed to demonstrate the effect of the bound-

aries constraints handling technique also for this optimal control problem. Let

the upper bound of the manoeuvre time be wrongly defined as [0.25, 0.5] ·

Torb/Kt. The optimal time previously computed is not within this range. Table770

9 illustrates one case of the history of the optimization procedure. cUB and cLB

indicate the counters for the violation of the lower and upper bounds of the

manoeuvre time. The last two columns show the history of the lower and upper

bound of the manoeuvre time in dimensionless unit. For the first three external
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Figure 5: Normalized control policy (a) and trajectory (b).
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loops, IMCSS is able to decrease the objective function, but the constraint on775

the maximum control is violated. Up to the third external loop, the sixth col-

umn indicates that the boundary is not violated, although the counter shows an

increasing trend due to the fact that IMCSS is decreasing the objective function

acting only on the manoeuvre time (but not on the control constraint). Be-

tween the third and the fourth loop, the performance index decreases only by 4780

unities; this means that IMCSS cannot decrease anymore the objective function

trying to fulfill at the same time the control constraint. This is an evidence of

the fact that something is going wrong; in fact, if one looks at the counter of

the boundary violation at the end of the loop, it is greater than the maximum

permitted. This violation causes IMCSS to understand that the boundaries of785

the manoeuvre time have been bad-defined by the user and thus it enlarges the

upper boundary. As can be seen, from the fifth loop to the end of the opti-

mization process, IMCSS is able to change the search direction toward the real

optimal solution. The final normalized manoeuvre time is t̄f = 2.34884, which

corresponds to 3950.27 s (very close to the actual optimum). Hence, this ex-790

ample has shown again the ability of IMCSS to converge to a very good result,

correcting at the same time the error made by the user.

Table 9: Results of the boundary constraints handling technique for the reconfiguration

manoeuvre with NCP = 50.

GK Gk,f Jg δ Cmax cUB cLB UB LB

1 450 745.35684 0.08254 2250 1517 70 1.73283 0.866415

2 450 662.02823 0.42898 2250 1925 61 1.73283 0.866415

3 450 626.86848 0.48313 2250 2108 60 1.73283 0.866415

4 450 622.39754 0.15988 2250 2278 98 1.73283 0.866415

5 450 3.06361 0.03517 2250 258 117 17.3283 0.866415

6 450 2.86168 0.00040 2250 167 93 17.3283 0.866415

7 450 2.42161 0.00314 2250 230 108 17.3283 0.866415

8 2250 2.34884 0.00550 11250 106 76 17.3283 0.866415
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6. Conclusions

An Improved Magnetic Charged System Search (IMCSS) algorithm is de-

veloped to improve the performances of the original MCSS. To this aim, some795

useful tools are introduced, such as the chaotic local search and the boundary

constraints handling technique. Moreover, significant steps towards the self-

adaptivity of the algorithm are carried out. In fact, the algorithm is able to

dynamically change its internal coefficients and automatically provide suitable

initial parameters as functions of the lower and upper bounds. All these con-800

cepts can also be adopted to improve and speed up the convergence of other

metaheuristic algorithms and the potentialities of these strategies are shown.

Indeed, the analysis with benchmark functions, which have different features

and order of magnitudes, and classical engineering problems shows good results

compared to the ones reported in literature. The paper demonstrates that the805

boundary constraint handling technique is effective when the lower and upper

bounds of the variables are bad-defined. In addition, it has been demonstrated

that the chaotic local search is a useful tool for reaching the global optimum in

a faster way, and it has proved to be successful in most of the cases. Moreover,

the entropy of the system is successfully used to ensure a better convergence by810

increasing the initialized number of particles during the optimization process.

Furthermore, the space application dealing with time optimal manoeuvre for

the docking of two satellites is studied imposing an inverse dynamics approach.

The computed optimal time of the manoeuvre indicates an improvement with

respect to the literature. Since the optimization problems faced in this work815

are very different from each other, this paper represents a good proof of having

chosen suitable mathematical laws for the parameters of the IMCSS algorithm.

To conclude, the proposed algorithm is demonstrated to be efficient and reliable

to solve optimization problems, including those related to space engineering.
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