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Abstract 

 

The Economic Load Dispatch (ELD) problem is an optimisation task concerned with 

how electricity generating stations can meet their customers’ demands while minimising 

under/over-generation, and minimising the operational costs of running the generating 

units. In the conventional or Static Economic Load Dispatch (SELD), an optimal 

solution is sought in terms of how much power to produce from each of the individual 

generating units at the power station, while meeting (predicted) customers’ load 

demands. With the inclusion of a more realistic dynamic view of demand over time and 

associated constraints, the Dynamic Economic Load Dispatch (DELD) problem is an 

extension of the SELD, and aims at determining the optimal power generation schedule 

on a regular basis, revising the power system configuration (subject to constraints) at 

intervals during the day as demand patterns change. 

 

Both the SELD and DELD have been investigated in the recent literature with modern 

heuristic optimisation approaches providing excellent results in comparison with 

classical techniques. However, these problems are defined under the assumption of a 

regulated electricity market, where utilities tend to share their generating resources so as 

to minimise the total cost of supplying the demanded load. Currently, the electricity 

distribution scene is progressing towards a restructured, liberalised and competitive 

market. In this market the utility companies are privatised, and naturally compete with 

each other to increase their profits, while they also engage in bidding transactions with 

their customers. This formulation is referred to as: Bid-Based Dynamic Economic Load 

Dispatch (BBDELD). 

 

This thesis proposes a Smart Evolutionary Algorithm (SEA), which combines a 

standard evolutionary algorithm with a “smart mutation” approach. The so-called 

‘smart’ mutation operator focuses mutation on genes contributing most to costs and 

penalty violations, while obeying operational constraints.  We develop specialised 

versions of SEA for each of the SELD, DELD and BBDELD problems, and show that 

this approach is superior to previously published approaches in each case. The thesis 

also applies the approach to a new case study relevant to Nigerian electricity 

deregulation. Results on this case study indicate that our SEA is able to deal with larger 

scale energy optimisation tasks.  
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Chapter 1 

 

Introduction 

 

1.1 Research Context 

Most optimisation problems in real world applications are affected by conditions that 

change with time; this makes the ability to solve problems in such dynamic 

environments both important and challenging [1]. This is the case for problems in the 

context of electrical power systems, where there are constant changes affecting the 

power variables, problem scenarios and operational constraints, resulting in the optimal 

solutions changing over time.  In recent decades, there has been a tremendous growth 

and increased interest in generation, transmission and distribution of electricity. Since it 

is very uneconomical to store electrical power over a period of time, stakeholders in the 

industry continually aim to ensure that a balance is achieved between demand and 

supply of electricity [2]. Realisation of an effective, reliable, secure and economic 

allocation of the consumers’ power demands among the generating units creates 

dynamism in the sector.  

 

Energy is a very important and indispensable tool for socio-economic growth and 

national development of any country. Electrical energy is the most widely used form of 

energy in the world [3], and its demand is on a daily increase. Electrical power 

engineers are therefore constantly engaged with every step in the process of generation, 

transmission and distribution of electrical energy, and they encounter challenging 

problems in their quest to deliver secure, reliable, and continuous operation of the 

sector.  It is a topmost concern of every nation (both developed and developing) to 

establish and maintain an efficient electricity industry. Research that addresses 

optimisation (or other) problems that arise in this context are therefore becoming both 

necessary and timely. 

 



 

2 

The Economic Load Dispatch (ELD) problem is aimed at determining the optimal 

power generation schedule for online generators (typically the units in a power station) 

on a near-real time basis. The generated power of each unit is determined with respect 

to a predicted load demand. The Dynamic Economic Load Dispatch (DELD) problem, 

an extension of the Static Economic Load Dispatch problem (SELD) [4], is one of 

several optimisation problems that need repeatedly to be solved in the electricity sector.  

Solving the SELD minimises the total generation cost among the committed units, 

satisfying all constraints, but under the assumption of a static level of demand. But, in 

practical systems involving ramp-rate limits (which constrain the changes that can be 

made to the settings of an individual generator between periods); operational decisions 

at a given hour will affect the decision at a later hour. Due to the change in load 

conditions arising from these limits, the power generation has to be altered to meet the 

demand [4, 5]. This is a major limitation of the SELD, which is addressed in the 

formulation of the DELD. The DELD takes into consideration the dynamic costs 

involved in changing from one output level to another [6], and is therefore a more 

applicable formulation of the ELD problem as it is faced by generating stations 

worldwide; but it is also a more difficult and complex optimisation problem. Until now, 

the DELD has been treated as a series of unconnected static problems.  

 

Both the SELD and DELD have been investigated in the recent stochastic optimisation 

literature with modern meta-heuristic approaches providing excellent results in 

comparison with classical techniques. However, these optimisation problems are 

defined under the assumption of a regulated electricity market, where utilities tend to 

share their generating resources so as to minimise the total cost of supplying the 

demanded load. In many national and regional contexts, the electricity distribution 

scene is progressing towards a restructured, liberalised and competitive market, where 

the utility companies are privatised. Utility companies compete with each other to 

increase their profits, and remain concerned with optimising the allocation of load 

among their generating units (essentially the SELD and DELD), but are also engaged in 

bidding-based transactions from their customers. In simpler terms, for example, 

generating companies make bids in the form of how much they will charge the customer 

for meeting their demand in the next time period, and the customer is free to go with the 

lowest bidder. Issues of optimisation in this deregulated scenario, particularly in regard 

to economic load dispatch, are considered in [7, 8]. Deregulation shifts the goal of the 

ELD problem from the traditional cost minimisation towards maximisation of social 
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profit, in which costs are minimised while utilities compete for market share. From 

another viewpoint, formulations of this so-called profit-based dynamic economic load 

dispatch problem are concerned with ensuring high profits through customer benefits 

[9, 10, 11, 12, 13]. 

 

In recent years, there has being a growing interest in the application of evolutionary 

algorithms (EAs) to power systems optimisation. EAs have successfully been used to 

solve a range of electrical power systems optimisation problems, including electrical 

power operations, ELD problems, unit commitment problems, planning and scheduling 

of distribution systems, control of reactive power, etc [9]. In comparison with other 

search methods that have classically been used for such problems, EAs tend to find 

good solutions in relatively shorter time. However, the literature of EA applications in 

this area, particularly as regards ELD problems, reveals that many different algorithms 

have been explored (particle swarm optimisation, evolution strategies, differential 

evolution, including many variants of these, and similar algorithms [4]); but there have 

been no attempts to design variants of such approaches that are intelligently tailored to 

the specific features of ELD problems. 

 

1.2 Thesis Contributions 

The following are the main contributions of this thesis: 

 We contribute the development and demonstration of a “smart mutation” based 

approach in the context of applying EAs to certain types of real-world problems. 

Instead of using a generic/off-the-shelf EA-based optimisation package, we 

implement a smart evolutionary algorithm (SEA), which combines a standard 

EA with a “smart mutation” operator that is tailored to the problem domain.  

This operator focuses mutation on genes contributing most to cost and penalty 

violations in the fitness function. We demonstrate that this approach is 

successful on a range of problems in the electricity supply industry. We also 

contribute investigation and analysis of three distinct variants of the smart 

mutation approach. 

 We describe and evaluate an SEA-based approach to solving Static Economic 

Load Dispatch (SELD) problems.  This new approach to SELD is shown to 

outperform all previously published approaches, on the basis of the common 

published test problems used in the literature, comprising three benchmark cases 
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involving 6, 15 and 20 generating units respectively. On the larger two of these 

problems we find better solutions than have so far been reported in the literature; 

and (where sufficient information is available) in some cases statistical tests 

confirm the superiority of SEA on these problems to other recent algorithms 

including Particle Swarm Optimisation, Evolution Strategies, Differential 

Evolution, and others. 

 Taking the SEA-based approaches that provided superior results in SELD 

problems, we adapt, describe and evaluate same to solving Dynamic Economic 

Load Dispatch (DELD) problems. Here, we contribute a dynamic optimisation 

approach to the ELD.  Experiments on benchmark problems from the literature 

confirm the quality of this approach, and also show that it tends to be superior to 

alternatives that do not exploit its dynamic nature.   

 Building on the successes of the SEA-based approaches on the SELD and 

DELD problems, we describe and evaluate novel approaches to solving the Bid-

Based Dynamic Economic Load Dispatch (BBDELD) problem in a deregulated 

electricity market.  We find our SEA approach, when adapted to the BBDELD 

context, outperforms previously published BBDELD results on the basis of the 

common published test problems used in the literature – systems of 3 generators, 

2 customers in 2 dispatch periods, and 6 generators, 2 customers in 2 dispatch 

periods.  We also define and show results on a new and larger test case – a 

system of 10 generators, 6 customers in 12 hourly dispatch periods. The new test 

case is also a contribution of this thesis. 

 We contribute a further large-scale test case of the BBDELD with application to 

Nigerian electrical power industry, and propose a solution model for the 

country’s deregulated electricity market.  This involves extending the larger 

BBDELD test case to 24 hourly dispatch periods, and utilising test data that 

corresponds to aspects of the Nigerian market.  Solutions relating to this large 

test case (total load demand of 10,500MW) have previously been investigated 

for a single dispatch period in the context of an SELD.   We demonstrate that 

our approach (especially M3_SEA3) is able to deal with larger scale energy 

optimisation tasks.  Details of this contribution are available from 

http://is.gd/orike_research. 

 

http://is.gd/orike_research
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1.3 Thesis Structure 

The remainder of this thesis is organised as follows:  

Chapter 2 describes the background of the research, and is in two parts. The first part 

introduces various concepts that are central to the thesis. These are optimisation as a 

problem solving tool; electrical energy and power, power generation; optimal power 

flow, and the distinction between unit commitment and ELD problems. Chapter two 

goes on to describe the various formulations of ELD problems, reviews the historical 

developments in the solution approaches, and identifies the two categories of ELD 

problems. The second part presents an in-depth tutorial and review of EAs in relation to 

power system problems. It is followed by a discussion of the concept of multi-objective 

EAs, and other non-evolutionary search algorithms, and concludes with a review of 

approaches that are related to smart mutation. 

Chapter 3 describes and evaluates a new EA for the SELD problem. The approach 

combines a standard EA with a smart mutation operator. It considers practical instances 

of SELD problems involving: minimum/maximum generation limits, power balance, 

ramp rates and prohibited operating zones. The chapter presents a detailed description 

of the smart evolutionary algorithm (SEA) developed in the thesis, and performs tuning 

of genetic parameters to select values for experimental runs based on the SEA. Three 

versions of the smart mutation operator were tested on three benchmark cases involving 

6, 15 and 20 generating units; the ones commonly explored in recent literature, with a 

focus on the larger problem cases. The results were compared with those reported for a 

range of recent alternative algorithms. 

Chapter 4 describes and evaluates a new EA for the DELD problem, by extending the 

SELD formulation to a dynamic context. It shows the steps involved in DELD 

formulation, and reviews the recent literature of related work in DELD problems.  From 

the results that had provided superior results on the three versions of the smart mutation 

operator from SELD, it adapts algorithms for the dynamic case, and investigates three 

dynamic optimisation approaches. It compares the results of two problem cases 

(involving a total of 18 instances of the problems) with each other, and with identified 

methods from literature. 

Chapter 5 describes and evaluates a new EA for maximising social profit in the context 

of BBDELD formulation in a deregulated electricity environment. It distinguishes 

between the two profit-based dispatch transactions that operate in a deregulated 
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electricity market: price-based DELD and bid-based DELD, reviewing related work in 

BBDELD. It describes the solution optimisation procedure, involving three bidding 

strategies, compares results of the best two versions of the smart mutation operator with 

previous results available in literature. The chapter ends with defining and showing 

results on a new, larger test case for the bid-based problem. 

Chapter 6 takes a case study approach, relating the research in the previous chapters to 

the context of the Nigerian electrical power system that has recently been deregulated 

and privatised. A constrained elitist genetic algorithm was implemented and tested on 

data representing Nigeria’s power system, whose results outperformed two related 

approaches in the literature. This chapter adapts the BBDELD formulation of Chapter 5 

to Nigeria’s deregulated electricity market using two versions of the smart mutation 

operator, with results showing high social profits, thus confirming that the SEA is able 

to deal well with this larger scale energy optimisation task. 

Chapter 7 concludes the thesis. It shows a summary of each chapter as well as the main 

findings, and ends with our suggestions regarding potentially important and fruitful 

lines of follow-on research that builds on what has been contributed in this thesis.  

 

1.4 Thesis Publications 

1. S. Orike and D. W. Corne, “Evolutionary Algorithms for Bid-Based Dynamic 

Economic Load Dispatch: A Large-Scale Test Case,” in Proceedings of the 2014 

IEEE Symposium Series on Computational Intelligence (SSCI 2014), Orlando, 

Florida, USA, 9
th

 – 12
th

 December, 2014.  

2. S. Orike and D. W. Corne, “An Evolutionary Algorithm for Bid-Based Dynamic 

Economic Load Dispatch in a Deregulated Electricity Market,” in Y. Jin and S. 

A. Thomas (Eds.), 13
th

 IEEE UK Workshop on Computational Intelligence 

(UKCI 2013), University of Surrey, Guildford, 9
th

 – 11
th

 September 2013. 

3. S. Orike and D. W. Corne, “Constrained Elitist Genetic Algorithm for Economic 

Load Dispatch: Case Study on Nigerian Power System,” International Journal 

of Computer Applications, vol. 76, no. 5, pp. 27 – 33, August 2013, Foundation 

of Computer Science, New York, USA. 
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4. S. Orike and D. W. Corne, “A Memetic Algorithm for Dynamic Economic Load 

Dispatch Optimisation,” in Proceedings of the 2013 IEEE Symposium Series on 

Computational Intelligence (SSCI 2013), Singapore, 16
th

 - 19
th

 April 2013.  

5. S. Orike and D. W. Corne, “Improved Evolutionary Algorithms for Economic 

Load Dispatch Optimisation Problems,” in P. De Wilde, G. M. Coghill and A. V. 

Kononova (Eds.), 12
th

 IEEE UK Workshop on Computational Intelligence 

(UKCI 2012), Heriot-Watt University, Edinburgh, 5
th

 – 7
th

 September 2012.  

 

1.5 Glossary of Terms 

A high-level definition of the key terms (words and phrases) as used in the thesis.  

Algorithm: A step-by-step procedure for calculations. Computer algorithms are used 

for computations, data processing or manipulation, and logic reasoning. 

Deregulation: A process of moving electrical power industry from government 

ownership to private ownership, which results in consumers making their choices of 

electricity suppliers.  

Economic Load Dispatch: A process of allocating or distributing system load demands 

to the various generating units with the aim of minimising total generation cost. 

Electrical Power: The rate of flow of electrical energy. It is computed as energy 

expended divided by time. 

Elitism: This is a strategy that ensures that the best solutions of the previous generation 

are maintained in the next population. 

Energy Clearing Price: The price of energy at which power supplied is equal to power 

demanded. 

Evolutionary Algorithms: Computer programs that mimic the process of natural 

biological evolution. They search a population of potential solutions to a particular 

problem using the concept of survival of the fittest to realise the best solution.  

Fitness: A single figure of merit, based on an objective function which shows how close 

a given solution is, to achieving its targeted set aims. 

Fuel Cost Curve: The input-output curve of a thermal unit, measured in dollars per 

mega watt hour ($/MWh). 
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Heat-Rate Curve: The input-output curve of a thermal unit, measured in British 

thermal unit per mega watt hour (Btu/MWh). 

Incremental Cost: The derivative of the generation cost with respect to the generated 

power. 

Independent System Operator: A market operator that regulates the activities of the 

participating companies and stakeholders, receives bids from generating companies and 

customers, and performs economic load dispatch with a view of maximising social 

profits.  

Memetic Algorithm: An evolutionary algorithm that combines local search method to 

improve its fitness by hill-climbing. 

Objective Function: A function that maps values of different variables to real-life 

numbers. It is either a cost or loss function, used in mathematical optimisation, statistics 

or decision theory.  

Optimisation: A method of finding the best possible solution to a problem given a set 

of limitations or constraints. It is achieved by adjusting the inputs to, or characteristics 

of a device, mathematical process, or experiment to find the minimum or maximum 

output/result. 

Social Profit: The difference between total customer benefits and total generating costs 

in the entire dispatch period.  

Spot Prices: A set of market prices at each dispatch period. 

Unit Commitment: The process of selecting optimally out of the available generating 

sources to operate in order to meet the expected load. It determines the unit start-up and 

shut-down schedules, with the aim of minimising system expenditure. 
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Chapter 2 

 

Background on Power System Optimisation 

and Evolutionary Algorithms 
 

This chapter describes the application domain background of the research. First, we 

introduce various pertinent concepts such as optimisation, electrical energy and power, 

optimal power flow, unit commitment, and economic load dispatch (ELD) problems. 

We describe the various formulations of ELD problems, present the historical 

developments in the solution approaches, and identify the two categories of ELD 

problems. The chapter also presents an in-depth tutorial and review of EAs in relation to 

power system problems. This is followed by a discussion of the concept of multi-

objective EAs, and then other (non-evolutionary) search algorithms. We conclude with 

a review of elements of the literature that has used ideas related to our smart mutation 

operator approach. 

 

2.1 The Concept of Optimisation 

Optimisation simply means the process of making things better. An optimisation 

problem is one that finds an optimal or near-optimal solution from a set of feasible 

solutions, using some proven measures or techniques for evaluating such solutions. The 

ELD problem is an optimisation task, concerned with how electricity generating 

companies can meet their customers’ power demands while minimising under/over-

generation, and minimising their operational costs (the costs of running the generating 

units). Optimisation is a process of refining something. It involves minimising or 

maximising a given quantity; an art and science of allocating resources to the best 

possible effect. According to [14], optimisation is defined as: “A process of adjusting 

the inputs to, or characteristics of a device, mathematical process, or experiment to find 

the minimum or maximum output/result”. 
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2.1.1  Optimisation Process 

An optimisation process is a method that attempts to find the best possible solution to a 

problem given a set of limitations or constraints. Figure 2.1 diagrammatically describes 

the concept of optimisation. The input (variables) is the independent quantity, the output 

(cost) is the dependant quantity, and the evaluation function measures the quality of the 

current solution being presented by the input. The feedback loop iterates the 

optimisation process, until a stopping criterion is reached. This is a quantitative 

decision, which could be that the best possible (optimal) output is found, or a maximum 

number of allowed runs of the evaluation function is reached.  

 

 

 

 

 

 

 

 

 

 

     

 Figure 2.1: A flow diagram showing the concept of optimisation 

 

Optimisation is analogous to the root-finding process in calculus, but while the latter 

searches for zeros of a function, the former finds zeros of the function derivatives. A 

major difficulty with optimisation, unlike root-finding is determining if a given 

minimum or maximum is a global optimum (the best possible solution available) or a 

local optimum. The concept of optimisation is very important in industrial planning and 

control, resource allocation, scheduling, decision making, and almost every other area 

of industry and science.  

 

Input (Variables) 

Function (Evaluation) 
 

Output (Cost) 
 

Decision 

True  

     False  
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2.1.2  Categories of Optimisation 

There are several categories of optimisation [14]: Trial/error and function optimisation; 

single-objective and multi-objective optimisation; static and dynamic optimisation; 

discrete and continuous variables optimisation; constrained and unconstrained 

optimisation; randomised and minimum/maximum seeking optimisation.  

 

In trial and error optimisation (preferred by most experimentalists), the variables are 

adjusted without much knowledge of the process which generates the output; while 

function optimisations (preferred by theoreticians) are described by means of 

tried/proven formulae, and optimal solutions result from various mathematical 

manipulations of these formulae. Single-objective optimisation involves only a single 

variable, while multi-objective optimisation involves more than one variable. In 

dynamic optimisation, the output changes with time; while it is independent of time in 

static optimisation. In discrete optimisations, the variables contain finite number of 

values within a given range; while in continuous optimisations, the variables have 

infinite number of values. In constrained optimisations, there are variables equalities or 

inequalities incorporated inside the functions to be optimised, while in unconstrained 

optimisations, the variables can take any values. Traditional optimisation minimises or 

maximises a given function. Some predetermined sequences of steps are used in moving 

from one solution to another; while random optimisation makes use of probability 

during computations.  

 

2.1.3 The Optimisation Cycle 

The Optimisation process, as a cycle, passes through various phases [15]. Figure 2.2 

illustrates an optimisation cycle.  
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Real World Problem

Model,  Algorithm

Computer Simulation

Analysis Validation and 

sensitivity analysis 

Implementation Verification

 

      Figure 2.2: Optimisation as a process  

 

The first phase (analysis), extracts the essential and relevant elements from a complex 

and detailed real world problem to create a model. Through implementation, an 

algorithm (solution technique) is formulated and applied to the model. This phase 

constructs the actual programming codes for computer simulation, from where results 

are generated. Verification takes computer simulation back to model/algorithm, which 

aims at ensuring that the simulation results are correct. Finally, in moving from the 

model and algorithm to the real world problem, validation and sensitivity analysis 

considers the appropriateness of the results, the need for model modification or choice 

of another solution algorithm. While validation ensures that the model or solution 

technique is appropriate for the real situation, sensitivity analysis considers the effects 

of small changes in the data on the results.  

 

2.1.4  Optimisation as a Problem Solving Technique 

Optimisation is a problem solving technique; it applies to problems that exist in all 

fields of human endeavour. An optimisation problem exists when there is disparity 

between a present state and a desired state [16]. Solutions to problems are ways of 

allocating the available resources so as to reduce the disparity, with the aim of 

transforming the former into the latter. A good problem solving technique requires 

identification and consideration of the stakeholders in the problem solving approach,  

the objectives to be achieved, the variables involved in the problem, the constraints (if 

they exist), solution methods, and evaluation of the final solution.  
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Economic load dispatch is an optimisation task, aimed at determining the best/optimal 

combination of power generators’ outputs that has the lowest generation cost, while 

minimising under/over generation, and helping electricity generating stations meet their 

customers’ demands. Each of these objectives is equally important, and there is no 

additional knowledge regarding the problem. It is assumed that a potential solution to 

this problem could be described by means of decision vector )...,,,( 21 nxxx  in a 

decision space X . A function YXf : evaluates the quality of a specific solution by 

assigning it an objective vector )...,,,( 21 nyyy  in the objective space Y . Assuming that 

the objective space is a subset of the real numbers, that is, 
nY   and that it is 

required from the optimisation to maximize the single objective; in such an objective 

optimisation, a solution  Xx )1(
 is better than another Xx )2(

 if and only if 

)2()1( yy  where )( )1()1( xfy   and )( )2()2( xfy  . Although there may be several 

potential solutions in decision space, with all of them mapped to the same objective, 

there is only one optimal solution [17]. 

 

2.1.5 Multi-Objective Optimisation Problems  

A Multi-Objective Optimisation Problem (MOOP) seeks to minimise k components of a 

vector function f, with respect to a vector variable ),...,,( 21 kxxxx   in a universe, U. 

According to Osyczka (1985) [18], MOOP is: 

 

“A vector of decision variables which satisfies constraints and optimises a 

vector function whose elements represent the objective functions. These 

functions form a mathematical description of performance criteria which are 

usually in conflict with each other. It means finding a solution which would give 

the values of all the objective functions acceptable to the designer”.   

 

In mathematical notation, a MOOP can be generally defined as:  
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MOOPs do not in general lead to single solutions, but a set of solutions, with the 

solutions having a good balance among the objectives. In realising this balance, a notion 

of optimality is required. The most commonly adopted notion of optimality, called 

Edgeworth-Pareto optimality (or simply Pareto optimality) [19], was originally 

introduced by Francis Y. Edgeworth in 1881, and later generalised by Vilfred Pareto in 

1896. A solution to a MOOP is said to be Pareto optimal if and only if there is no other 

solution that would reduce some criteria without producing a corresponding increase in 

any of the other criteria. The corresponding mapped points in objective space are 

usually referred to as non-dominated solutions [19]. The use of this concept therefore 

produces sets of solutions called the Pareto optimal sets, and not single solutions. The 

variables contained in their solutions sets are said to be non-dominated, and the plot of 

objective functions containing such non-dominated variables is called a Pareto front. 

 

2.2 Electrical Energy and Power     

Energy and power are two different terms that are most often mixed up in usage. It is 

therefore necessary to distinguish between the two terms as used in this work. 

 

Energy is the capability to do work. It is an indispensable tool for socio-economic 

growth and development of any nation, and available in two forms: renewable and non-

renewable energy [3]. Renewable energy is derived from natural resources such as: sun, 

wind, water, etc, which are naturally replenished; while non-renewable energy is 

derived from fossil fuels (coal, petroleum, natural gas) and nuclear energy. Power on the 

other hand, is the rate of doing work. It is the work done or energy expended in a unit 

time.  Electrical power is the rate of flow of electrical energy.  

 

The world’s energy demand is on the increase and to meet up with this trend, 

appropriate and timely up to date studies need to be constantly carried out. The 

electrical energy industry is the largest energy industry in the world, as the operations of 

other industries and sectors depend on electricity [20]. All aspects of any nation’s 

economy depend on electricity, and both developed as well as developing countries in 

the world aim to establish and maintain an effective electricity sector. Electrical Power 

Engineers are constantly engaged with every step in the process of generation, 

transmission, distribution and utilisation of electrical energy, and they encounter 
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challenging problems in their quest to deliver increasing amounts of electrical energy in 

an economical manner [21, 22]. Analysis and computation of the flow of electrical 

power is a systematic procedure that involves not only the electricity grid (generation, 

transmission and distribution of electric power), but also the devices connected to the 

systems such as generators, motors and transformers; and evaluation of the system’s 

performance. A typical power system, identifying the problem domain is shown in 

Figure 2.3: 

 

 
 

Figure 2.3: A typical power system representation showing the problem domain 

 

No two electrical power systems are exactly the same, but they share a range of 

common characteristic features. As depicted in Figure 2.3, power generation is achieved 

by means of generators (synchronous machines driven by turbines). The generated 

power is conveyed from the power stations over long distances by means of 

transmission network through load centres to distribution network, and finally to the 

consumers. Electrical power is generated, transmitted and distributed by 3-phase 

alternating current systems, with voltage and frequency levels required to remain within 

tolerance levels to ensure high quality output. 

 

Interests in power system studies date back to the works of William Gilbert, George 

Ohm, Michael Faraday and James Clerk Maxwell. William Gilbert is regarded as the 

father of electricity and magnetism and also the first Electrical Engineer; George Ohm 

quantified the relationship between the electric current and voltage; Michael Faraday 
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discovered the principle of electromagnetic induction that explains the operation of 

generators and transformers; James C. Maxwell published a unified theory of electricity 

and magnetism [23]. The introduction of computers subsequently facilitated the 

adoption of a very wide range of approaches in the analysis and research studies for 

optimum performance in electrical systems.  

 

2.2.1 Power Generation 

This is the process of obtaining electricity from the source. Electricity is generated at 

power stations by electro-mechanical generators driven by heat engines, fuelled by 

chemical combustion, nuclear fission, and kinetic energy of flowing water, wind, solar 

photovoltaic and geothermal power. There are two forms of power generation: 

centralised and distributed generation. Centralised generation provides good economies 

of scale, but leads to power losses through the transmission of electricity over long 

distances. Distributed generation, also known as on-site, dispersed, embedded, or 

decentralised generation, generates electricity from many small energy sources [24]. It 

reduces the amount of energy lost in transmission, as well as size and number of power 

lines that must be constructed. Distributed power sources includes: Solar panels, wind 

turbines, natural gas-fired micro-turbines, photo-voltaic sources, etc. The major problem 

with distributed generation is high cost. The distributed generation system is very 

unconventional, even though it has numerous advantages over the traditional method of 

burning fossil. Generation of electricity from fossil fuels releases hydrocarbon emission 

which is a very serious pollutant to the environment.  

 

2.2.2  Power Transmission 

Power transmission is the transfer of electrical power from generating stations to sub-

stations located in the neighbourhood of the demand or consumers. When 

interconnected, the transmission lines become high voltage transmission networks 

(power grids) [24].  Electrical power is transmitted at high voltages to reduce the energy 

lost in long distance transmission. Transmission is done through overhead power lines, 

as well as underground power cables. A transmission substation decreases the voltage of 

incoming electricity, allowing it to connect from long distance high voltage 

transmission, to local lower voltage distribution. Transmission efficiency is improved 

by increasing the voltage using a step-up transformer, which reduces the current in the 

conductors, while balancing the power transmitted with the power generated.  
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2.2.3  Power Distribution and Consumption 

Electricity distribution is the final stage in the delivery of electricity to end users, 

through a distribution network. There are two types of distribution networks: Radial and 

interconnected networks [24]. A radial network leaves the station and passes through 

the network area with no normal connection to any other supply, typical of long rural 

lines with isolated load areas; while an interconnected network has multiple connections 

to other points of supply, found in urban areas. The benefit of the latter is that in the 

event of a fault or maintenance, a small area of network can be isolated and the 

remainder kept on supply. Electricity has become more of a commodity, with China 

being both the largest producer as well as consumer, followed by USA. Tables 2.1 and 

2.2 respectively show the world’s top ten producers and consumers of electricity in 

2012 [25].   

S/N Country Production  

(in TWh) 

1 China 4,926 

2 USA 4,295 

3 India 1,087 

4 Russia 1,064 

5 Japan 1,057 

6 Canada 646 

7 Germany 623 

8 Brazil 561 

9 France 559 

10 South Korea 526 

 
Table 2.1: World’s top 10 electricity producers in 2012 

 

 

S/N Country Consumption 

(in TWh) 

1 China 4,281 

2 USA 3,798 

3 Japan 971 

4 Russia 878 

5 India 804 

6 Germany 535 

7 Canada 504 

8 Brazil 498 

9 South Korea 492 

10 France 448 

 
Table 2.2: World’s top 10 electricity consumers in 2012 
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2.3 Optimal Power (Load) Flow 

In order to improve the performance of an electrical power system, three basic things 

are required [20, 21, 22]:  

 

1. The model of the system; 

2. The objective function; 

3. The optimisation approach to be adopted. 

 

An optimisation problem is typically formulated as a mathematical model, aimed at 

minimising undesirable quantities or maximising desirable ones, subject to some 

constraints. In power system operation and planning, such undesirable quantities are: 

Cost of running the generating units, transmission loss, distribution errors, etc [26]. The 

desirable quantities include: Output, profit and efficiency. The model is represented by a 

set of linear or non-linear equations, describing the optimal or steady-state operation of 

the system. This could be formulated as minimising or maximising a scalar objective, x 

through the optimal control of a vector, u, of control parameters, stated mathematically 

as: 

 

Minimise/Maximise:   ),( uxF      (2.2) 

Subject to:      

0),( uxg        (2.3) 

0),( uxh        (2.4) 

 

Where: 

  g (x, u) = Set of non-linear equality constraints (power balance); 

h (x, u) = Set of inequality constraints (limits in generators outputs); 

x    = Vector of dependent variables (generating cost); 

u  = A vector of control variables (power output). 

 

Common objectives in a power system optimisation are: minimising costs, minimising 

under/over generated power output, minimising gaseous emissions from thermal plants 

(oxides nitrogen, sulphur and carbon dioxide), etc [27, 28, 29, 30, 31]. Equality 

constraints include: generated power balance, while inequality constraints include:  

generators’ output limits, ramp-rate limits, prohibited operating zones, security and 
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emission constraints [32, 33, 34, 35]. Algorithms used to achieve the above objectives 

are called objective functions.  

 

Power system optimisation is primarily aimed at achieving optimality in power output. 

Hence, power system problems are also called optimal power flow (OPF) problems [36, 

37]. There are two major phases involved in OPF problems. The first is unit 

commitment (UC), while the second is economic load dispatch (ELD).  

 

2.3.1 Unit Commitment (UC) 

Unit commitment (pre-dispatch) determines the unit start-up and shut-down schedules, 

with the aim of minimising system expenditure [21]. It selects optimally out of the 

available generating sources to operate to meet the expected load. As a generation 

resources management operation scheduling task, unit commitment lies between 

economic dispatch and production/maintenance activities in an hourly decision time 

interval during a one-day or one-week schedule period.  

 

Unit commitment schedules the ON and OFF times of generating units, and calculates 

the minimum cost of hourly generation schedules, considering the start up/down rates 

and minimum up/down times. The schedule takes the following factors into 

consideration: unit operating constraints and costs, generation and reserve constraints, 

as well as plant start-up and network constraints [21]. The overall objective function of 

unit commitment problems in the sum of the fuel costs of all the generating units over 

time. This is mathematically represented by (2.5), subject to the conditions in (2.6) to 

(2.8). The units are expected to maintain a given amount of power reserve, PRi.  
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Where: 

FT = Total operating cost; 

ui,t = Commitment state of the i
th

 unit at hour t;  

Fi = Fuel cost of the i
th

 unit at hour t; 

Pi = Power output of the i
th

 unit at hour t; 

SUi,t = Start-up cost of the i
th

 unit at hour t; 

SDi,t = Shut-down cost of the i
th

 unit at hour t; 

PD,t = Power demand at hour t; 

PR,t = Spinning reserve at hour t; 

PL,t = Power loss at hour t; 

N = Total number of generating units. 

 

Solution approaches that have been proposed to solving unit commitment problems 

include: priority list [21], Lagrangian relaxation [21], dynamic programming [21], 

evolutionary algorithm [38, 39], particle swarm optimisation [40]. Priory list is a fast 

method, but gives schedules with higher operating cost [41]. Lagrangian relaxation 

method is thought to be the best optimiser for large scale unit commitment problems, 

but there is no guarantee for optimal solution [12]. The rest of the approaches are 

considered in ELD, as they have common applications to both tasks.  UC technique is 

also utilised in DELD. 

 

2.3.2 Economic Load Dispatch (ELD) 

Economic load dispatch (also called online economic dispatch) allocates, 

distributes or “dispatches” system load demands to the various generating units 

with the aim of minimising power generation cost [21]. Consider the operating 

cost of a thermal power plant; Figure 2.4 is a unit’s input-output curve of the plant, 

known as heat-rate curve [42]. 
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Figure 2.4: Heat-rate curve 

 

Input to the plant is measured in British thermal unit per hour (Btu/h), while output is 

measured in Megawatt (MW). Converting the input of the heat-rate curve from Btu/h to 

$/h produces the fuel-cost curve, shown in Figure 2.5, with the cost mathematically 

defined in (2.9), and (2.10) shows the derivative of the fuel-cost against output power. 

 

 

Figure 2.5: Fuel cost curve 
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A plot of (2.10) gives the incremental fuel-cost curve, shown in Figure 2.6: 
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Figure 2.6: Incremental fuel cost curve 

 

The incremental fuel-cost curve measures the cost of producing the next power 

increment. To illustrate the effect of incremental fuel-cost curve in sharing power 

generation between generators to minimise total fuel cost, consider a generating plant 

with two units as shown in Figure 2.7: 

 

 
 

Figure 2.7: Illustration of Economic Load Dispatch with 2 generating units 

 

Increasing power generation by 1MW in Unit A costs $2 per hour, whereas there is a 

cost saving of $6 per hour in reducing generation by 1MW in Unit B. To run the plant 

economically, generators with lower costs should be run more often. In the above case, 

it will be more economical to shift the production of Units A and B from X1 and Y1 to X2 

and Y2, as shown in Figure 2.8, with net savings of $4 per hour. In a system with many 

units, the shift is repeated until incremental costs are all equal. Power production is 

shifted from the more expensive units (B in this case) to the less expensive units (A in 

this case). This is the basis for economic load dispatch.  



 

23 

 

 
 

Figure 2.8: Shifting generation in units to minimise total fuel costs 

 

2.4 Formulation of ELD Problems 

In the research literature that has investigated ELD problems, various formulations have 

been studied that invariably make several simplifying assumptions. This has typically 

involved the following scenarios, which are elaborated in the remainder of this 

subsection: 

1. Smooth fuel cost functions. 

 Neglecting both generators’ limits and power loses; 

 Neglecting power loses but considering generators’ limits; 

 Considering both generators’ limits and power loses; 

2. Non-smooth fuel cost functions. 

3. Multiple fuels. 

4. Ramp-rate limits. 

5. Prohibited operating zones. 

 

2.4.1 Smooth Fuel Cost functions 

Traditionally, ELD problems are assumed to have quadratic, convex but smooth cost 

functions. Consider a system of three generators G1, G2 and G3; delivering powers Pg1, 

Pg2 and Pg3 respectively, connected to a common bus, as shown in Figure 2.9. PD is the 

total powers demend. 
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Figure 2.9: Generating units connected to a common bus 

 

Each unit has its own cost function, Ci. The task here is to find the combination of the 

real power generation for all the units such that the total generation cost, CT is 

minimised. 
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This condition holds true for the first scenario where both generators’ limits and power 

loses are neglected. This is the case of generating units within a power plant, or when 

different plants are physically located close to each other. Considering generators’ limits 

(second scenario), the real power generated by each generator must be between 

minimum and maximum defined capacities, represented by the following inequality 

constraints. 

 

NiPgPgPg iii ,...,2,1max,min,      (2.14) 
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If the generating plants are not physically located very close to each other, then network 

transmission loses need to be considered. Figure 2.10 is the schematic illustration of 

such system.  

 

 
 

Figure 2.10: Generating units connected through transmission network 

 

The total power generated must be balanced, and equal to the sum of total power 

demand and power loss. 
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The power loss is a function of generating units, whose calculation is by means of B-

coefficient/matrix method. The loss formula, which expresses the total transmission 

losses in terms of source powers, was first derived by E. E. George in 1943 as [42]: 
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Where: 

 Pgm, Pgn = Source loadings; 

 Bmn  = Transmission loss formula coefficients. 
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The determination of the Bmn coefficients was a very tedious and rigorous procedure, 

even for a system of few generators. In 1950, J. B. Ward, J. R. Eaton and H. W. Hale 

described an application of network analyser developed for the loss formula 

determination [42]. But as the number of generators gradually increased, the 

mathematical calculations involved were drastically very large, which posed a great 

challenge. In 1951, G. Kron, working with G. W. Stagg and L. K. Kirchmayer improved 

and simplified the formulation in terms of the quadratic, linear and constant terms. The 

resulting formula, named after Kron was expressed as [42]: 
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For a system of N generators with a square matrix (dimension the same as N), the 

Kron’s formula, also known as the B-matrix loss formula [43], is simplified as [54]: 
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Where CT it the total generation cost; Ci  is the generation cost of unit, i; Pgi is the power 

generation of unit, i; N is the number of generating units; ai, bi, ci are the cost 

coefficients of unit, i; PD is the power (load) demand; PL is the power loss;  Bij is the ij
th

 

element of the loss coefficient square matrix of the same dimension as Pgi, B0i is the i
th

 

element of the loss coefficient vector of the same length as Pgi, B00 is the loss 

coefficient constant, Pgi and Pgj are the active power generation of units i and j 

respectively.  

 

2.4.2 Non-Smooth Fuel Cost functions 

In real world scenarios, larger generators, especially those with multi-valve steam 

turbine do not have smooth fuel cost functions. The ripples that result from the valve-

points make their non-convex cost functions exhibit greater variations. Figure 2.11 

shows a cost curve with five valve-points. 
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Figure 2.11: Generator cost curve with valve-points 

 

The overall cost function is therefore modified with the incorporation of sinusoidal 

function to the initial quadratic function [44, 45, 46]: 

 

 ))(( min,
2

iiiiiiiiii PgPgfSinecPgbPgaC     (2.19)

  

Where ei and fi are the fuel cost coefficients of i
th

 unit with valve-point effects. The 

complexity of realising an optimum solution in this formulation is increased by the 

presence of the sinusoidal component of the cost function which models the valve-point 

effects, creating ripples in the cost curve, thereby populating the search space with a 

number of local minima.  

 

2.4.3 Multiple Fuels 

This is a more practical representation of generating units in a real life power system. 

Various types of generating plants with multiple fuel sources (e.g. coal, natural gas, oil, 

etc) are available, each with different numbers of generating units. The overall cost 

function is expressed as several piecewise quadratic functions, reflecting the effects of 

the fuel type, with the generators identifying the most economic fuel to burn while in 

operation [44, 45]. This is referred to as a hybrid cost function [44]. For a generator 

with multiple fuels, the incremental cost functions are represented as shown in Figure 
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2.12, while the ELD problems with both multiple fuels and valve-point effects are 

modelled as shown in (2.20). 

 

 
 

Figure 2.12: Incremental cost function of a generator with multi-fuel options 
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Where aik, bik and cik are cost coefficients of i
th

 unit for fuel type k, where k = 1, 2… k, 

and ei and fi are cost coefficients of i
th

 unit with valve-point effects.     

 

2.4.4 Ramp-Rates Limit 

The generating units’ ramp-rates limit restricts their operating range in a given 

generation period.  A ramp-rate is the rate of change in output from a power plant. 

Usually based on a manufacturer’s specification, it is the amount of load added to the 

generating plant to control the amount of load per unit time that can be added to the 

generator to keep it from being “overloaded”. Based on these rates, the subsequent 

outputs of the units should be within their ranges, with (2.14) modified as (2.21) [34]: 
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Where 0
iP  is the previous output, Pi is the present output, DRi and URi are the down and 

up ramp rate limits (in MW/h). 

 

2.4.5  Prohibited Operating Zones 

Besides each generator having operating capacity which cannot be exceeded at any 

time, a typical thermal unit may have a steam valve whose vibration in the shaft bearing 

during operation may result in interference and a discontinued fuel cost characteristic 

[47]. Also, mechanical faults might introduce restrictions in some plants’ components, 

and the operating range of the whole unit may not be available for load allocation. 

These disjoined sections of the cost-output curve between the minimum and maximum 

power outputs are called prohibited zones, as shown in Figure 2.13 [79]. Practical 

operations of the power plant involve adjusting the power output of the units such that 

they must be outside the prohibited zones.  

 
 

Figure 2.13: Prohibited operating zones and generation limits for a generator [79] 

 

The feasible operating zones are described by the following inequality constraints: 
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Where l
kiPg ,
and u

kiPg ,
are the lower and upper bounds of the k

th
 prohibited zone of unit 

i, respectively, k is the index of prohibited zones, zoi.  
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2.5 Types of ELD Problems 

Generally, two types or categories of ELD problems exist in the literature. They are 

static economic load dispatch (SELD) and dynamic economic load dispatch (DELD) 

problems [40, 51].  SELD problems handle only a single load level. The variables 

(generator outputs) do not vary with time. Details of SELD implementation are 

described in Chapter 3. DELD, also known as optimal dynamic dispatch (ODD) [40], 

deals with variations of load demands due to the dynamic nature of power systems. The 

initial formulation of ODD problems was as an optimal control problem, which 

modelled the power system generation using state equations, where the state variables 

were the generators outputs, and the control inputs were the generators’ characteristics. 

This produced the generator trajectory as optimal output for a given initial generation. 

Problem cases involving DELD are described in Chapter 4. 

 

2.6 Review of Solution Approaches to Power System 

Optimisation 
Current problems facing development of solution algorithms to power system 

optimisation problems include, but are not limited to: increasing the size of the power 

system, on-line applications of automatic control, and the need to achieve optimal 

output. Several contributions have been made to tackle these problems. It is worthy of 

note however, that no single method of the existing solutions meets all the desirable 

requirements of an ideal solution. In any particular situation, choice of any method is a 

good compromise between the various capabilities of the existing methods [49]. Power 

system optimisation problems have the following characteristics [20, 21, 22]:  

 

1. They are formulated on systems operating at steady state conditions, with 

equations consisting of a set of non-linear equations to be solved 

simultaneously;  

2. Solutions to these equations are not unique;  

3. The numbers of unknown variables in the equations are usually more than the 

number of equations.  
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A good solution algorithm must have properties from a combination of some of the 

following features: high speed, low storage requirements, reliability, versatility in 

handling various adjustments, simplicity in programming and high-degree of accuracy. 

The approaches fall under three categories:  

 

1. Mathematical programming methods;  

2. Artificial intelligent methods; 

3. Hybrid methods.  

 

2.6.1 Mathematical Programming Methods 

Matrix algebra was the earliest analogue mathematical optimisation method used in 

power system studies. One of these was the bus admittance matrix method [50]. The 

method enjoyed simplicity, ease of formulation and modification, but very tedious and 

time consuming, and the results obtained were prone to unavoidable human errors, as 

well as fatigue on the part of the researcher. Most researches concentrated only on 

power problems involving very small equations whose matrices can be conveniently 

handled manually [20]. With the advent of digital computers, the solutions to power 

problems were reduced to sets of algorithms solved by computers. The first of these 

methods was the Gauss-Seidel iterative algorithm using the nodal-admittance matrix 

method, with the first successful computer program developed by Ward and Hale in 

1956 [20]. Like the bus admittance matrix method, the Gauss-Seidel iterative algorithm 

was simple in structure, with lower memory requirement and less computational time 

per iteration. But the major problem was the slow rate of convergence, therefore large 

number of iterations are needed, especially in large systems where the algorithm was 

discovered to be obsolete, as the number of iterations required for a solution was found 

to be relatively high.  The need to study power problems for large systems became 

necessary with the increase in high voltage interconnections between systems. A more 

successful algorithm and the most universally acceptable replacement for the Gauss-

Seidel method was the Newton-Raphson method [20]. It was found to be very suitable 

for large-scale power systems, with more degree of accuracy, convergence after a few 

iterations, which are independent on the system size. However, it was a difficult 

solution technique, as calculations were complex, hence more computer time per 

iteration was involved, and large computer memory required.  
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Other traditional mathematical optimisation methods include: Linear and non-linear 

programming, gradient-based method, dynamic programming, interior point method, 

Lambda iteration [20, 40, 51], fast-decoupled algorithms [49], and integer programming 

[52]. In most of these algorithms, optimality of solutions was mathematically 

formulated, and could be applied to large-scale problems. They have no problem-

specific parameters, and most of them have high computational efficiency, with ease of 

implementation. However, solutions obtained using them have their inherent 

implementation limitations. The solutions for large-scale systems are not very simple. 

Many of the techniques fail to get optimal solutions, with a possibility of being stuck in 

local optima [51]. Linear programming encounters poor computation efficiency; while 

dynamic programming suffers from the curse of dimensionality, a process whereby the 

dimensions of the ELD problem becomes too large that it requires massive 

computational effort [26, 51]. These problems affect their application to practical 

generator problems with ramp rates, valve-point effects and prohibited operating zones 

constraints. Hence, solutions to ELD problems through mathematical formulation have 

minimal applications. 

 

2.6.2 Artificial/Computational Intelligent Methods 

Despite the successes of mathematical programming methods, the identified problems 

have pushed developments in ELD optimisation in the recent decades from the 

traditional iterative methods to stochastic search methods. Most power problems require 

the use of facilities to store human knowledge, operators’ judgment/experience, and 

variations in load and network uncertainties [26]. Artificial intelligence is defined as the 

intelligence of machines or software systems. A leading and successful approach to 

artificial intelligence is the computational intelligence. As a scientific as well as 

engineering discipline, the purpose (science) of computational intelligence is the 

understanding of underlying principles behind intelligent agents; while the methodology 

(engineering) involves the design, implementation and experimentation with systems 

which perform tasks that are considered intelligent [82]. Intelligent agent senses its 

environment, taking action that increases its success chances. The activities of these 

agents that are considered intelligent include: knowledge, reasoning, learning, planning, 

communication, perception, manipulation, etc. Computational intelligent algorithms are 

of two broad categories: machine learning algorithms and nature-inspired algorithms.  
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2.6.2.1 Machine Learning Algorithms 

Machine learning deals with the study and design of systems that have the capability of 

learning from data. The systems work by prediction, based on previously known 

properties learned from the data. The most common and widely used machine learning 

algorithms in solving ELD problems are: (1) Artificial Neural Networks, (2) Fuzzy 

Logic, (3) Expert Systems, (4) Bayesian Networks, and (5) Support Vector Machines. 

  

(1) Artificial Neural Networks 

Artificial Neural Networks (ANN), inspired by the work of Warren McCulloch and 

Walter Pitts (a logical calculus of the ideas imminent in Nervous Activity) [176], 

models the construction and behaviour of the human brain using man made technology. 

An ANN is a layered network of artificial neurons, working in analogy to biological 

neurons. The advantages of ANNs that facilitate its usage are speed, robustness, ability 

to learn, ability to adapt to training data, and appropriateness for non-linear modelling. 

However, for complex problems ANNs need to have many inputs and/or several layers 

of inputs; with consequently many parameters, much time is required for training, and 

good results are far from guaranteed. ANN has been applied to load forecasting, voltage 

security, monitoring and control, unit commitment, economic load dispatch, fault 

diagnosis, security assessment and power system stability in [65]. The Hopfield neural 

network approach was developed for the ELD in [56], involving 20 generating units, 

generator limits, power balance, and transmission loss. 

 

(2) Fuzzy Logic 

Fuzzy Logic (FL), developed by Lotfi A. Zadeh in 1964 [69], is a superset of Boolean 

logic, and handles the concept of partial truth. It provides rules and functions that 

permitted natural language queries, a means of calculating intermediate values between 

absolute TRUE and absolute FALSE, with resulting values between 0 and 1. FL aims to 

address uncertainty and imprecision which widely exist in the engineering problems and 

was first used in 1979 for solving power system problems, with application to voltage 

and reactive power control, load forecasting, fault diagnosis, power system 

protection/relaying, stability, and power system control [26]. Its application to active 

power generation is very limited, unless as a hybrid tool with other approaches. 
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(3) Expert Systems 

Expert Systems, first proposed by Feigenbaum et al in 1971 [193], are knowledge-based 

methods, which uses the knowledge gained from application domain experts, available 

via a suitable rule-based interface, to solve problems that are difficult enough to require 

human expertise for their solution [26, 73]. The systems are permanent and consistent in 

their results. They can be easily be transferred, reproduced and documented. In the 

recent decades, expert system has been applied in the areas of power system planning, 

alarm processing, fault diagnosis, power system protection, reactive power/voltage 

control, as well as load, bid and price forecasting [26, 74]. However, expert system 

suffers knowledge bottleneck problem [73], as it does not learn or adapt to new 

situations. 

 

(4) Bayesian Networks 

A Bayesian network is a probabilistic graphical model whose nodes represent a set of 

random variables, connected by edges which represent conditional dependencies or 

relationships through a directed acyclic graph [194, 195]. Each node has a conditional 

probability table, which are learnt from a given network structure with independence 

assumptions. The number of parameters in the network is proportional to the directed 

edges in the network due to the independent assumptions. The Bayesian learning is a 

complex process that requires a thorough knowledge of the problem domain; it is 

intuitive in nature. Bayesian networks are widely used in power system components 

fault diagnosis and detection.  

 

(5) Support Vector Machines 

Originated from supervised learning system and statistical learning theory of Vapnik in 

1998 [196], Support Vector Machine (SVM) is a relatively new machine learning 

technique based on the structural risk minimisation (SRM) where data are mapped from 

a given dimensional space into a higher one, and from this higher dimensional space, an 

optimal separating hyper-plane is constructed to solving quadratic programming 

problems [73]. Under the SRM principle, the SVM approach reduces the number of 

learning operations and minimises the generalisation error on the test data set. SVM is a 

regression prediction/text classification tool that uses machine learning theory to 

maximise prediction accuracy while at the same time avoiding data that does fall in the 

particular classifying zone. SVMs are generally used in electrical power systems load 

forecasting and prediction. In [197], SVM was used to optimise voltage level between 
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buses, where it converged generator voltages and angles at optimum minima, and also 

proved effective in adjusting control variables for power system restoration after a 

blackout.  

  

2.6.2.2 Nature-Inspired Algorithms 

These are algorithms developed to solving optimisation problems by drawing 

inspiration from nature [198]. These algorithms are classified as: Biological-inspired 

(Bio-inspired), Physics and Chemistry-based algorithms [199, 200]. Bio-inspired 

algorithms are population-based algorithms which imitate biological processes 

(evolution and natural hereditary).  Two classes of these algorithms are: Evolutionary 

Algorithm (EA) and Swarm Intelligence (SI).  Physics and Chemistry-based algorithms 

are developed by drawing inspiration from some physical or chemical laws. Common 

examples are Simulated Annealing (SA) and Harmony Search (HS). Recently, Memetic 

Algorithms (MA) [201], have been developed for solving ELD problems, most of which 

combine the evolutionary nature of EAs with the swarm behaviour of SIs. Examples 

include: Artificial Immune Systems, Shuffled Frog Leaping Algorithm, Group Search 

Optimiser and Biogeography-Based Optimisation.  

 

(1) Evolutionary Algorithm 

This is a non-deterministic, nature-inspired, population-based optimisation approach 

which mimics the process of biological evolution, and bear direct analogy to Charles 

Darwin’s principle of natural selection/theory of survival of the fittest. It is used in 

solving NP-hard (Non-deterministic Polynomial-time hard) problems. There are several 

varieties of Evolutionary Algorithm (EA) based on alternative solution structures, 

search operators and implementation aspects. Common examples are: Genetic 

Algorithm, Evolutionary Programming, Genetic Programming, Evolution Strategies, 

Differential Evolution, and Estimation of Distribution Algorithms.  

 

(a) Genetic Algorithm  

Developed by John Holland in the 1960s in USA [48], Genetic Algorithm (GA) is 

motivated by nature’s wisdom and evolutionist theory, based on the concept of natural 

selection and origin of species [63]. Naturally, stronger species reproduce more, and 

pass on their genetic structure to their future generations, while the weaker ones face the 

problem of extinction.  GA can be considered as the basis for all other evolutionary 
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algorithms, hence a detailed description is made under the subject of evolutionary 

algorithm in a later section of this chapter. Common applications of GA to power 

system optimisation are: transmission expansion planning, power control, unit 

commitment, economic dispatch, and hydrothermal scheduling [26]. GA remains a 

major and growing area of active research in EA and the entire field of computational 

intelligence [68].  

 

(b) Evolutionary Programming  

First conceived by Lawrence J. Fogel in the early 1960s [202], Evolutionary 

Programming (EP) is a mutation-based EA (genetic linkage between parents and their 

offspring), initially applied to discrete search spaces. The structure of the chromosome 

is fixed as in GA, while the parameters are allowed to gradually evolve. The approach 

was extended to real-parameter optimisation problems by David Fogel [2]. EP relies 

mostly on mutation and selection (without crossover). The major disadvantage of EP is 

its slow convergence. In [167], several variants of EP were developed to solve the 

SELD problem with non-smooth cost function, including: Classical EP (with Gaussian 

mutation), Cauchy-mutation-based EP, mean of Guassian and Cauchy mutations, 

Cauchy-mutation with empirical learning rate, mean of Guassian and Cauchy mutations 

with empirical learning rate. The effectiveness of these approaches was verified with a 

large-scale test system of 40 generators. 

 

  (c) Genetic Programming  

Genetic Programming (GP), named by John Koza in 1990 [77], is a specialisation of 

GA, but where each individual is a computer program that performs a user-defined task. 

While GA works on fixed-length chromosomes, GP manipulates variable length 

structures. Originally, GA was mainly used in solving relatively simple problems due to 

its computational intensive nature; and in EA to evolve computer programs, represented 

in the memory as a function tree. But with improvements in the technology, its usage 

was extended to quantum computing, sorting, searching, games theory and electronic 

design, but with minimal applications to electrical power system problems.  Sean Luke 

et al [203], developed and ECJ (Evolutionary Computation in Java), an EA/GP project 

toolkit which consists of several packages - classes, methods and objects that are 

designed to carry out several activities, specified in parameters files. 
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(d) Evolution Strategy 

Initially proposed in the early 1960s and further developed in the 1970s by P. Bienert, I. 

Rechenberg and H. P. Schwefel [2], Evolution Strategy (ES) also employs real-coded 

variables, relying on mutation and selection as its search operators, with a population 

size of “one” [73]. Although ES shares a lot of similarities with GA, however, ES 

operates only on floating point vectors, uses mutation as a primary operator, and 

emphasises more on behavioural (than genetic) link between parents and offspring. 

Efficient ES was used to solve a non-convex SELD problem in [65], and tested with 

systems of 6, 10, 15 and 40 generators. Their results were superior to those of GA and 

PSO with common data and the same number of fitness evaluations.   

 

(e) Differential Evolution  

Differential Evolution (DE) was first proposed by Storn and Price in 1995 [67], as an 

improved version of GA [35]. It uses few control parameters (which require minimum 

tuning, and remain fixed all through the process of optimisation. As in GA, DE makes 

use of three basic genetic operators: Mutation, Crossover and Selection; but like ES, it 

relies mainly on mutation to achieve its solutions. Mutation generates replica (mutant) 

vectors of the current population by introducing new parameters. Crossover combines 

the parameters of the mutant vector with those of a parent vector selected from the 

population to generate a trial vector. During selection, the trial vector competes with the 

parent vector, the better one progresses to the next generation. The advantages of DE 

include: ease of use, simple structure and implementation, fastness, and local searching 

property. But there is a disadvantageous tendency of being trapped in a local optimum 

or attaining premature convergence [109]. DE has a wide range of application to solving 

power system optimisation problems, including: SELD [35, 45, 54, 78], DELD [108, 

109], and BBDELD [137]. 

 

(f) Estimation of Distribution Algorithm  

Estimation of Distribution Algorithm (EDA), also known as Probabilistic Model 

Building Genetic Algorithm (PMBGA) [66], is motivated by the idea of discovering and 

exploiting interactions between variables in the solution. It estimates a probability 

distribution from population of solutions, and samples it to generate the next population. 

Through this, it builds probabilistic models to prevent disruption of solutions, as they 

move on from one generation to another. EDA does not only solve difficult problems, 

but also provides information on how the problem was previously solved [204]. This is 
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a feature that makes the algorithm stand out from other optimisation techniques. At 

moment, power system application of EDA is very limited, especially in the area of 

controller design. In [205], adaptive population-based incremental learning (APBIL) 

was used to optimally tune power system stabilizer parameters.    

 

(2) Swarm Intelligence 

Swarm Intelligence (SI) is an computational intelligent algorithm that is inspired by 

natural swarm behaviour (of insects, birds and fishes) in developing solutions to 

problems [82]. SI originated from the study of colonies, or swarms of social organisms 

and consists of three main algorithms: Ant Colony Optimisation, Particle Swarm 

Optimisation, and Bee Colony Optimisation.  

 

(a) Ant Colony Optimisation  

Initially proposed by Marco Dorigo in 1992 [70], Ant Colony Optimisation (ACO) 

deals with artificial systems, taking inspiration from the behaviour of real ants (seeking  

optimal path between their colony and a source of food) used in solving discrete 

optimisation problems. The idea is that when one ant finds a good path (that is, the 

shortest path) from the colony to a food source, other ants are more likely to follow that 

path. This automatically leads to all the ants following a single path. ACO has a 

characteristic positive feedback for recovery of good solutions and distributed 

computation which helps in avoiding premature convergence, but its main drawback is 

poor computational complexity [73]. ACO has a wide range of learning applications, 

including: ordering, scheduling, vehicle routing, classification, and assignment 

problems. The main application of ACO to power system is in the area of determining 

the shortest route for transmission networks [26, 73]. 

 

(b) Particle Swarm Optimisation  

Introduced by Kennedy and Eberhart in 1995 [71] [206], Particle Swarm Optimisation 

(PSO) is a population-based, global optimisation approach, modelled on the social 

behaviour of organisms, such as flocking of birds and schooling of fishes [35]. Potential 

solutions (called particles) move around the search (problem) space, following the 

current particles’ best fitness. Each particle keeps track of its position coordinate in the 

search space, and moves towards the best known position. Thus, the movement of the 

particles is determined by both their best locally know positions, pbest; as well as 

overall best positions, gbest, which are periodically updated as the particles discover 
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new better positions [73]. Each particle has a memory feature which enables it to 

remember the best position on the search space it visited. The population of the particles 

is called a swarm. Since its introduction, there exist several modifications and variants 

of PSO, including: binary PSO, real-valued PSO, integer PSO, vector PSO, Gaussian 

PSO, adaptive PSO, discrete PSO [207]. PSO is the most widely used of the three SI 

approaches in solving ELD problems in recent decades, and although it has the ability 

of quick convergence through exploration, but it is very slow in exploitation. It 

encounters a problem while escaping from local optima when stuck. Applications of 

PSO to power systems are in the areas of unit commitment, ELD, power and voltage 

control, power system reliability and security, load forecasting and generator 

scheduling.  In [33], an improved PSO was proposed for solving ELD problems taking 

into consideration the non-linearity  features of power generators such as ramp-rates 

limits, prohibited operating zones as well as non-smooth cost functions with valve-point 

effects, transmission lines losses, and spinning reserve constraints. The algorithm was 

validated for two test systems consisting of 15 and 20 thermal generating units. 

 

(c) Bee Colony Optimisation  

Proposed by Karaboga in 2005 [72], Bee Colony Optimisation (BCO) is an optimisation 

algorithm inspired by intelligent food foraging behaviour of swarm of honey bees. 

Three groups of bees make up a colony: employed bees, onlookers and scouts. For each 

food source, there is an assumption of only one employed bee; therefore the number of 

employed bees equals the number of food sources around the hive. Several mechanisms 

(such as waggle dance) are employed to find optimal location of food sources and 

search new ones [60]. An onlooker watches the dances of employed bees and chooses 

food sources depending on dances, while a scout is an employed bee whose food source 

has been abandoned, and hence starts to find a new food source. The position of a food 

source represents a candidate solution to the problem; the amount/quality of a food 

source is the fitness, while the number of the employed bees is equal to the number of 

solutions in the population. An employed bee also has a memory feature to track the 

position of new food source. Application of BCO to real-world problems are in the 

areas of structural optimisation, estimation and classification problems, and power 

electronic design. In [60], a honey BCO was used to solve the ELD problem with 

generator constraints such as ramp-rate and prohibited operating zones; and tested with 

6 and 15 units systems, where better results (in terms of efficiency and computational 

time) were obtained, in comparison with other conventional approaches.  
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(3) Artificial Immune Systems 

The Artificial Immune Systems (AIS), inspired by the works of Farmer, Packard and 

Perelson (1986) [75], are a class of computationally intelligent systems based on the 

principles and processes of the immune system. An AIS-based algorithm combines the 

characteristics of learning and memory of the system to solve a problem, which 

investigates the application of the immune systems to solving computational problems 

from mathematics, science and engineering. AISs adopt learning, memory and 

associative retrieval system to solve recognition, classification and optimisation tasks. 

Four common optimisation techniques and algorithms used in AIS are: clonal selection 

algorithm, negative selection algorithm, immune network algorithm and dendritic cell 

algorithm. Common application areas of AIS include: functions approximation, pattern 

recognition, anomaly detection, network security, noise tolerance [61].  In [62], an 

adaptive clonal selection algorithm was implemented involving several cloning, 

mutation and selection approaches for solving power problems, to determine the 

optimal active power generated in power systems. It was tested with a system of 18 

generating units, and shown to be a promising technique for solving complicated 

optimisation problems in power system operations. 

 

(4) Shuffled Frog Leaping Algorithm 

Proposed by Eusuff and Lansey in 2003 [177], the Shuffled Frog Leaping Algorithm 

(SFLA) is a recent nature-inspired MA, which involves a set of frogs that co-operate 

with each other to achieve a unified behaviour for the whole system [59]. With its 

simplicity, robustness and fastness, it proves to be very efficient in calculating the 

global optima of many problems with large search space, and has been used to find high 

quality solutions to complex power problems. In [59], a new modified shuffle frog 

leaping algorithm (MSFLA) was proposed for a practical non-smooth ELD problem in 

an attempt to reduce processing time and improve quality of solutions. It was tested on 

two systems consisting of 6 and 40 thermal units to confirm efficiency of approach.  

 

(5) Group Search Optimiser 

The Group Search Optimiser (GSO) is a population-based search algorithm which 

draws inspiration from group-living, typically found in the animal community [174, 

208]. It employs the concept of resources searching mechanism (a movement behaviour 

whereby animals search for food, mate or nesting sites), using producer-scrounger (PS) 
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model to design optimal searching strategies. Although individual animals can try to 

search sparse resources which are randomly located alone, but group search aids them in 

information sharing which helps in increasing search rates and reduce success variance. 

A group consists of producers, scroungers and rangers. The behaviour of the first two is 

based on the PS model, while the third perform random walk motions. The larger the 

group, the smaller the proportion of individuals need to guide the group with more 

accuracy [209]. The producer-scrounger model is simplified for accuracy and ease of 

computation by assuming only one producer with several scroungers and rangers at 

each search point [208]. In [174], a new modified group search optimiser (MGSO) is 

presented for improving the scrounger and ranger operators of GSO for solving the non-

convex economic dispatch problem. Performance evaluation was tested with systems of 

3, 13 and 40 systems. 

 

(6) Biogeography-Based Optimisation 

Developed by Dan Simon in 2008 [210], motivated by natural process and geography, 

Biogeography-Based Optimisation (BBO) is a global optimisation algorithm that studies 

the distribution of species of organisms and ecosystems in geographic space and 

through geological time. Bio-geographical models describe the evolution of species 

(speciation), migration of species (immigration and emigration) between islands, and 

the extinction of species. This inspiration allows for information sharing between 

candidate solutions [200, 210]. A candidate solution is an island, and their habitat 

characteristic features are called suitability index variables (SIV). The fitness of each 

solution is called habitat suitability index (HSI). Islands with high HSI are said to be 

friendly to life, and they tend to share their features with those with low HSI by 

emigrating solution features to other habitats. Those with low HSI accept a lot of new 

features from the high HSI solutions by immigration from other habitats. This process 

improves the solutions and evolves a solution to the optimisation problem. Migration 

and mutation are the two main operators of BBO. Mutation increases the diversity of the 

population to evolve better solutions. A remarkable feature of BBO is that the original 

population is not discarded after each generation, but modified by migration. The 

immigration and emigration rates are determined by the fitness of each solution. BBO 

has successfully been applied to solving both SELD and DELD problems in [171, 211, 

212], tested with 3, 6, 15 and 40 problem cases. 
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(7) Simulated Annealing 

Simulated Annealing (SA) is based on thermodynamics and metallurgy, inspired by the 

formation of crystals in solids during cooling, in order to increase the sizes of the 

crystals and reduce unwanted defects. Developed differently by Kirkpatrick et al, in 

1983 [213], and V. Cerny in 1985 [214], the method was introduced to solve complex 

optimisation problems. Optimal solution results from a careful choice of cost function, 

appropriate mutation mechanism, solution space and cooling process. 

General/implementation simplicity, ability to deal with arbitrary cost functions and to 

refine optimal solutions necessitates its applicability. However, its major draw back is 

repeated annealing [26, 73], leading to high computing time requirement. This can be 

overcome through parallel processing in a multi-processor system. Applications to 

power system are in the area of unit commitment, maintenance scheduling and planning 

of transmission expansion. The potential and effectiveness of SA (over other 

contemporary approaches in literature) in solving the SELD with non-smooth cost 

function was investigated in [175], and tested with 3, 13 and 40 generating systems; and 

adapted to the DELD problems in [64].  

 

(8) Harmony Search 

The Harmony Search (HS) algorithm, proposed by Geem et al, in 2001 [215], is a new 

meta-heuristic nature-inspired algorithm which mimics the improvisation process of 

music players to find the perfect state of harmony. HS has successfully been applied to 

solving Mechanical and Civil Engineering optimisation problems [216]. Each musician 

is a decision variable, note is a value, while best harmony is a global optimum. The 

SELD problem was solved using HS in [101, 216]. Steps to HS algorithm 

implementation are as follows: 

(i) Defining the problem and specifying the parameters. The parameters are: the 

harmony memory size/number of solution vectors in the memory, harmony 

memory considering rate, pitch adjusting rate, and the number of improvisations 

(stopping criterion); 

(ii) Initialising the harmony memory, generated uniformly within a given range 

(lower and upper bounds of each decision variable); 

(iii)Generating a new harmony, called ‘improvisation’, using memory consideration, 

pitch adjustment, and random selection; 
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(iv) Updating the harmony memory – the generated harmony vector replaces the 

worst harmony in the harmony memory if its fitness is better than the worst 

harmony; 

(v) If the stopping criterion is met (number of iterations is reached), the computation 

is terminated, otherwise, steps (iii) and (iv) are repeated.  

 

A modified HS was used to solve the SELD problem in for both smooth and non-

smooth cost functions [173], and tested with systems of 6, 15, 18 and 40 generators; 

whose results compared better than those of GA and PSO.  

 

These computational approaches have the ability of finding global optimal or near-

optimal solutions to power systems optimisation problems, though, most of them suffer 

from long computation time requirements and a large number of problem-specific 

parameters. A greater percentage of power systems optimisation research is based on 

EAs. We therefore present a survey and review of EA related work in a subsequent 

section in this chapter.  

 

2.6.3  Hybrid Methods 

Practical modern and real life power systems problems are characterised by non-convex 

cost functions and non-linearity of generators outputs, such as ramp rate limits, 

prohibited zones and complicated constraints. These characteristics render the power 

systems problems very challenging for any optimisation algorithm, as it may not be able 

to find a sufficiently good solution in good computational time for larger systems [51]. 

As in many other fields, this challenge has led to the exploration of hybrid methods in 

this application domain. A hybrid method integrates two or more optimisation 

techniques in attempt to combine their strengths and overcome any inherent weaknesses 

in either of them. For example, in [58], a multiple tabu search (MTS) algorithm was 

proposed for a constrained practical power problem. To improve the performance of 

conventional TS, the MTS introduced additional mechanisms such as adaptive searches, 

multiple searches and a restarting process. The algorithm was tested for 6 and 15 

generating units, and compared with conventional GA and SA, where it exhibited 

superior performance. Though TS is good in solving complex power problems, the only 

problem is that it is a problem-dependent algorithm and it exhibits great difficulty in 

defining good strategies for memory structure that work across different problems.  In 

[79], particle swarm optimisation (PSO) was combined with simulated annealing (SA) 
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to create an innovative approach capable of generating high quality solutions with 

greater stability in convergence characteristics and reduced calculation time. This is as a 

result of PSO’s major problem of premature convergence, where the particles readily fly 

into local optima, and SA has a high probabilistic jumping feature for helping to 

overcome the PSO’s major weakness. The work proposed a new coding scheme, which 

involved normalising the current generator’s output based on the previous output, and 

then rearranging the ramp boundaries to consider the limits. In [172], an 

improved/hybrid HS (with PSO) was used to solve the DELD problem, and tested with 

systems of 5, 10 and 30 generators. The power system problems application areas of the 

most common hybrid AI-based approaches are [26]: 

 GA/FL: Economic load dispatch, power system control, and power stability; 

 GA/GP: Power system identification, controller design; 

 ANN/FL: Power generation and distribution, load forecasting, fault diagnosis, 

and scheduling of generator maintenance; 

 FL/Expert systems: Power system planning; fault diagnosis; 

 GA/PSO: Load flow, power distribution; 

 GA/SA: Generator maintenance scheduling; 

 GA/ANN/FL/Expert systems: Load forecasting, planning generation expansion, 

and stabilization of power systems; 

 GA/FL/SA/Expert systems: Scheduling of generator maintenance and reactive 

power planning. 

 

2.7 Evolutionary Algorithm (EA)  

In solving optimisation problems, EAs rely on the concepts of selection pressure and 

diversity, proceeding in broad and simple terms by the application of selective pressure 

to a diversified population [63]. This leads to the strongest among the members of the 

population dominating, a phenomenon called “survival of the fittest”. The central idea 

in EAs is the maintenance of a population of individuals called chromosomes, 

representing possible solutions to a problem. With the passage of time, the members of 

the population interact with each other and move through subsequent iterations called 

generations. Fitter solutions (the ones closer to the optimal solutions) have the higher 

probability of passing through to the next generation. Through the three classic 

operators of selection, crossover and mutation, EA performs a search mechanism on the 

population, and directs the search to promising regions efficiently. Thus the problem of 
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getting stuck in local optima is avoided. EA is a rapidly growing research area in 

Artificial Intelligence, and has a wide range of applications in business, science and 

engineering, including power systems optimisation [14, 63, 83]. A general workflow of 

a simple EA is given below: 

1. Encode the problem to be solved as a string of chromosomes; 

2. Generate an initial population of chromosomes; 

3. Evaluate the fitness of each of the chromosomes in the population; 

4. Select parent chromosomes from the population to form breeding pair; 

5. Breed the parent chromosomes: 

(i) Perform crossover on the parent to produce children; 

(ii) Perform mutation on the children; 

6. Evolve (replace the parent population with the child population to form new 

population). If stopping criterion is reached, output the best chromosome as the 

required solution, otherwise go back to step 3 above. 

 

2.7.1  Encoding a Problem 

An EA works on a population of chromosomes.  A chromosome is a string which 

represents a solution to a particular problem. It is an abstraction of the DNA 

chromosome in biology, which is conceived as a string of letters in English language 

alphabets [68].  The exact position in a chromosome is called a gene, while the value 

which is present at that location is called an allele. The ways in which the alleles are 

represented in a chromosome is referred to as encoding. The most popular or classical 

encoding is the binary encoding (bit-string representation with values 0 or 1) [36].  

Others include: permutation encoding, value encoding and tree encoding [63, 83]. 

Tables 2.3, 2.4 and 2.5 are representations of binary, permutation and value encoding. 

 

Chromosome 1 1011 0100 0101 

 allele 1 allele 2 allele 3 

Chromosome 2 0110 1110 1000 

 allele 1 allele 2 allele 3 

 

Table 2.3: Binary encoding 
 

Chromosome 1 4 2 9 5 

 allele 1 allele 2 allele 3 allele 4 

Chromosome 2 1 3 7 2 

 allele 1 allele 2 allele 3 allele 4 

 

Table 2.4: Permutation encoding 
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Chromosome 1 52.78 101.33 97.02 77.39 

 allele 1 allele 2 allele 3 allele 4 

Chromosome 2 201.01 337.96 419.36 105.44 

 allele 1 allele 2 allele 3 allele 4 

 
Table 2.5: Value Encoding 

 
 

Permutation encoding is used in ordering problems such as the travelling salesman 

problem (TSP), task ordering problem, etc. Here, the chromosome is a string of a 

sequence of numbers. This encoding is useful when individual fitness depends on 

positions of genes in chromosome. Each number represents a city to be visited, and in 

the order of visit. In some problems of high complication (including most power system 

problems), direct value encoding is used. Here, the chromosome is a string of numbers 

representing the characteristics of the problem domain. In this thesis we invariably use a 

value encoding, where allele values represent generator real power outputs. 

 

2.7.2  Generation of the Initial Population 

The initial population for an EA is a set of candidate solutions to the problem. There are 

many methods of generating the initial population of chromosomes. The common 

method is random generation. Here, the allele values are random numbers based on the 

defined boundaries, such as the lower and upper limits of each generator. While this 

approach is efficient and provides a population covering the feasible solution space, the 

entire initial population may also be infeasible. That is, subsequent generations may not 

be as the previous ones, resulting in good solutions to evolve slowly. The initial 

population could also be the output of another search algorithm in a situation where a 

hybrid approach is used. 

 

2.7.3  Fitness Evaluation 

To use an EA to solve a specific problem, one of the first steps is to specify a fitness 

function which calculates the quality of any candidate solution to that specific problem. 

The fitness evaluation process simply uses this fitness function to compute the quality 

of each chromosome.  In analogy to biology, the chromosome is the genotype, while the 

solution it represents is the phenotype [68]. The computation takes several factors and 

objectives into account, including the cost minimisation/maximisation, penalty 

handling, resources utilisation, run time, etc.  
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2.7.4  Selection Methods 

This is the main driving force of an EA. Selection is the process of choosing individuals 

(parents) from the initial population to go into the mating pool, in order to generate 

offspring. This is the basis of new population. An ideal selection method should be 

simple, computational efficient and suited for parallel implementation [83][184]. An EA 

uses fitness to discriminate the qualities of solutions represented by chromosomes in 

any population [68].  The general motive behind all selection methods is to provide a 

selective pressure (guided by fitness values) in favour of better solutions. Therefore, 

selection process models the idea of survival of the fittest, and helps to narrow search 

space to optimal bands. Selection balances exploration against exploitation [16]. 

Exploration explores new parts of the search space to get into a region of high fitness, 

while exploitation focuses on finding the best solution in the highly fit region of the 

search space. These concepts need to be carefully balanced in other to prevent highly-fit 

individuals from taking over the entire population, thereby wiping out all useful 

information which may be present in the less-fit individuals. On the other hand, too 

weak solutions will result in too slow evolution. The balance drawn between these two 

goals is primarily controlled by selection pressure. Exploration is paramount in the early 

stage of the evolutionary process, whereas exploitation becomes more important as 

regions with good solutions are found.  

 

Different selection methods can be used depending on the design of the algorithm. 

These methods can be categorised into two groups [34]:  

1) Ordinal Selection; 

2) Proportional Selection. 

 

In ordinal selection, the decision is based on the ranked order of the solutions’ fitness 

values. Truncation selection, tournament selection and rank selection fall into this 

category. In truncation selection, N fit solutions from the parent population are selected 

at once. Tournament selection works by selecting the fittest out of two (or more) 

randomly chosen chromosome from the parent population. The selective pressure of 

tournament selection can be adjusted by means of the tournament size parameter, which 

is small relative to the population size [63]. The ratio of tournament size to population 

size can be used as a measure of selective pressure. A tournament size of 1 is equivalent 
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to selecting an individual at random, while a size equal to the population size is 

equivalent to selecting the best individual at any given point.  

 

Rank selection aims at preventing an early convergence [84]. The individuals in a 

population are assigned numerical ranks according to their fitness values, and the 

expected value depends on its rank, rather than its absolute fitness [85]. This approach 

prevents the highly-fit individuals from dominating the population at the early stage of 

the evolution at the expense of less-fit ones. The problem of reducing the diversity of 

the population is also eliminated. The algorithm for the rank selection method is as 

follows: 

1. Rank each individual in the population in increasing order of fitness from 1 

to N ; 

2. Choose the expected value Max , of each individual with rank N , where 

0Max ; 

3. The expected value of each individual in the population at time is given by: 
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Where:  

N = Highest rank (population size); 

Max  = Value of the highest rank; 

Min  = Value of the lowest rank; 

 i = Individual in the population; 

 t = time. 

 

The highest rank is N , with expected value Max , while the lowest rank is 1, with 

expected value Min . All other individuals get expected values equally spaced between 

these two [83]. Solutions always allocate on the basis of rank, and so neither over 

explore/exploit. Evolution is also more controlled. However, in most cases, the 

algorithm will be slower in finding highly-fit individuals.  

 

In proportional selection, the selection probability for each individual in the current 

population is determined, and then sampled to make the breeding pool. Roulette-wheel 

selection (also known as fitness proportionate selection), Boltzmann selection and 

Sigma scaling selection fall into this category [63, 83].  In roulette-wheel selection, all 
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individuals have a chance of being selected at any given point. Furthermore, the 

probability that a given individual will be selected is proportional to its fitness, and 

equal to its normalised fitness. The sum of all the normalised fitnesses in the population 

is 1. Because highly-fit individuals have higher normalised fitnesses, they have a higher 

chance of being selected. Also, because all individuals have some chances of being 

selected, there is less loss of genetic diversity than if the single best individual of every 

generation is selected.  The problems of the roulette-wheel selection approach are: (1) It 

handles only maximization problems; (2) Scaling of the fitness becomes very important 

near the point of convergence; (3) Individuals with very poor fitness values die out 

quickly, resulting in premature convergence. The “expected value” of an individual, that 

is, the number of times that individual will be selected to reproduce, is computed as the 

fitness of the individual divided by the average fitness of the total population: 
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Where: 

)(xf  = Fitness of solution, x  

)(yf  = Average fitness of the total population 

P       = Population size 

 

The algorithm for the roulette-wheel selection is as follows [83]: 

1. Sum the total expected value of individuals in the population, ;T  

2. Repeat N times, where N is the number of individuals in the population; 

3. Choose a random integer, r , between 0 and T ; 

4. Loop through the individuals in the population, summing the expected values, 

until the sum is greater or equal to r . 

5. The individual whose expected value puts the sum over this limit is the one 

selected. 

 

In Boltzmann Selection, temperature is used to control the rate of selection of the 

individuals. All individuals are initially given a good chance to contribute to the final 

solution, depending on the temperature chosen. The expected value of an individual is 

computed as: 
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Where: 

)(if   = Fitness of individual; 

T  = Temperature used to set selection pressure; 

Tjfe /)(
= Sum over all solutions in the entire population. 

 

The temperature starts out high, lowering the selective pressure as the temperature 

increases. Thus, every individual have some good chance of being selected.  The 

temperature is gradually decreased, leading to an increased selection pressure. As 

evolution progresses, the value of T  decreases, until either the maximum number of 

generations is reached or the optimal solution is found. 

 

Sigma scaling (or sigma truncation) selection aims to maintain constant selection 

pressure over the course of the evolution. Here, an individual’s expected value depends 

on its fitness, mean as well as standard deviation of the population [63]. The expected 

value ),( tiE of and individual is given as: 
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Where: 

)(if = Fitness of individual i ; 

)(tf


= Mean fitness of the population at time t ; 

σ     = Standard deviation. 

 

At the earlier stage of the evolution, when the standard deviation of the fitness is high, 

highly-fit individuals will not be much. But as the algorithm converges and standard 

deviation becomes lower, the highly-fit individuals increase in number. Sigma scaling 

normalises the spread of fitness using standard deviation, thereby reducing the risk of 

premature convergence. 
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2.7.5  Tournament Selection 

Tournament selection is the selection method used in this work. It simply chooses t 

individuals from the population (uniformly at random, with replacement), and the fittest 

of those individuals (breaking ties randomly) is the one returned as ‘selected’. In the 

context of selecting a set of N parents, this process is simply repeated N times. The 

parameter t is called the tournament size. A standard and commonly used tournament 

size is two (and this is called binary tournament selection). It has the following work 

flow, and diagrammatically illustrated in Figure 2.14: 

 

(i) Choose two individuals at random from initial population; 

(ii) Pick a random number, r (between 0 and 1); 

(iii) If r < k (where k is a user-defined parameter, over 0.5 but less than 1), the fitter of the 

two individuals is selected as parent to go into the mating pool; 

(iv) Else, the less-fit individual is selected; 

(v) Return the two individuals to the original population. 

 

 

Figure 2.14: Diagrammatical illustration of tournament selection 

 

Tournament selection is known to overcome the weaknesses of other selection methods, 

including the roulette wheel selection, by preventing the domination of highly-fit 
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solutions, thereby wiping out all useful information which may be present in the less-fit 

ones. It also eliminates too weak solutions which will result in too slow convergence.  

 

2.7.6  Breeding  

This is also known as recombination [68], a process which follows selection where the 

selected chromosomes (parents) from the current population are recombined to form a 

successor population (children). This is to stimulate the mixing of genetic composition 

of the parents when they reproduce. It is expected that more highly-fit chromosomes 

will result from this process since selection is biased to favour chromosomes with 

higher fitness.  Breeding is achieved by applying genetic operators, which generate new 

candidate solutions by using parts of existing candidate solutions (the selected parents). 

The canonical operators are crossover and mutation. Crossover typically combines parts 

of two parent solutions to form two child solutions; however in general, such a 

recombination operator can generate a child from more than two parents, and generate 

one or more children. In contrast, a mutation operator always involves a single parent, 

and the child is a ‘mutation’ of that parent – that is, it will typically be the same as the 

parent except for changes in a small number of its alleles. Genetic operators are 

invariably non-deterministic.  

 

2.7.6.1 Standard Crossover Methods 

Standard crossover exchanges the genes (genetic composition) between two parents. 

Crossover typically takes two parents and produces two children, with the children 

inheriting a mix of genes from the parents. In most EAs it occurs with a high 

probability, called the crossover rate. Following selection of parents, in a standard 

implementation, a random number between 0 and 1 is generated which is compared to 

the crossover rate. If the crossover rate is lower than the number, no crossover occurs 

and the parents progress to the next phase unchanged. But if the crossover rate is greater 

or equal to the number, crossover is done. One-point crossover is the simplest crossover 

operator. Other alternatives which are generalisation of the one-point crossover are: 

two-point and multi-point crossover operations.  Another form, called uniform 

crossover [68], selects uniformly between the allele values of parents at each point to 

form children. Figure 2.15 shows a one-point crossover acting on a binary encoding. 
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Figure 2.15: One-point crossover for binary encoding 

 

2.7.6.2  Mutation Operators 

This is a major source of genetic variation. In a typical EA design, the mutation operator 

is applied to the resulting children solutions after the crossover, and allows new genetic 

patterns to be introduced, whether desirable or undesirable. Mutation could be viewed 

as a transition from a current solution to its neighbourhood solution in local search 

algorithms, as it randomly changes the value of a part of the solution to another. In other 

EA designs, mutation is a standalone operator that is applied with its own ‘mutation 

rate’. Either way, EAs needs mutation to avoid genetic stagnation, because standard 

crossover methods cannot introduce new alleles to the population. Mutation is a 

background operator which ensures that alleles have the possibility of entering and 

providing genetic variation in a given population. It usually occurs with a low 

probability, typically between 0 and 1. The GA process could be very detrimental if the 

mutation rate is set too high, as it will force the population to adapt to a new 

environment, and will not necessarily produce optimal individuals due to the instability 

of the population [63].  

 

In its simplest form of operation, the genes undergoing mutation are ‘randomly’ 

selected, but in other cases, they could be ‘targeted’. Different types/forms of mutation 

operators exist for the different encoding methods: Single-gene mutation, N-random 

gene mutation, uniform mutation, boundary mutation and Gaussian mutation, bit-flip 

mutation, swap mutation, insertion mutation, inversion mutation, scramble mutation, 

displacement mutation, real-valued mutation, etc [180][185]. Single gene mutation 

chooses an allele at random, and changes it to a random new value, with a probability, 

called the “mutation rate”. N-random gene mutation repeats the single-gene mutation N 
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times. Uniform mutation replaces the value of the selected gene with a uniform random 

value chosen between user-defined upper and lower limits. Non-uniform mutation 

increases the probability that the amount of mutation will be close to zero with 

increased number of generation. Boundary mutation randomly selects an allele, and 

replaces it with either the lower or upper limits. Gaussian mutation adds a unit Gaussian 

distributed random value to the selected gene.  

 

For binary encoding, a bit-flip is implemented by randomly switching of bits (0 to 1 and 

1 to 0). Figure 2.16 shows a one-point bit flipping mutation for a binary encoding. 

 

 

Figure 2.16: One-point, bit flipping mutation for binary encoding 

 

 

For permutation encoding, swap, insertion, inversion, scramble and displacement 

mutations are commonly used. Swap mutation generates a new chromosome by 

swapping two alleles randomly from the current chromosome, as shown in Figure 2.17, 

where the alleles in the third and fifth gene positions are swapped with each other: 

 

 

Figure 2.17: Swap mutation for permutation encoding 

 

Insertion mutation selects an allele at a random gene position and inserts, also 

randomly, into another gene position within the chromosome. Figure 2.18 shows an 

insertion mutation for permutation encoding. 
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Figure 2.18: Insertion mutation for permutation encoding 

 

Inversion mutation randomly selects two gene positions, and inverts (reverses) the 

alleles in those positions, as shown in Figure 2.19, where the alleles between the second 

and fifth positions (inclusive) are inverted.  

 

 

Figure 2.19: Inversion mutation for permutation encoding 

 

Scramble mutation randomly selects two gene positions, and scrambles (randomly re-

arranges) the alleles in those positions. This is illustrated in Figure 2.20. 

 

 

Figure 2.20: Scramble mutation for permutation encoding 

 

Displacement mutation randomly selects two gene positions, and moves the alleles 

between them as a block to another random position.  Figure 2.21 illustrates a 

displacement mutation for permutation encoding. 
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Figure 2.21: Displacement mutation for permutation encoding 

 

For value encoding, a real-valued mutation operator randomly selects an allele (a 

number) from the parent solution, changes its magnitude defined by the programmer, 

and returns the result in the child solution as shown in Figure 2.22 below, where the 

magnitude of the allele in the third gene position is changed from 12.99 to 13.57. 

 

 

 

Fig 2.22: Single gene real-valued mutation for value encoding 

 

2.7.7  Evolution  

The resulting child population after mutation replaces the old population, forming the 

successor population. The selection and breeding processes are iterated, leading to a 

succession of ‘generations’ of solutions. At each next generation, the successor 

population becomes the source (parent) population. The EA goes through a number of 

generations until one or more of the stopping criteria (reaching a fixed number of 

iterations or finding a sufficiently good solution) are met, where the best chromosome 

in the resulting population is returned as the solution to the problem. To prevent losing 

the best individuals of the population from one generation to the next, elitism is used. 

This technique copies the top N% of the present population on to the next generation, 

where N = elitism rate.  
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2.7.8 Tuning of Evolutionary Parameters  

When building an EA, there are various design decisions that need to be made. The 

encoding type, population size, crossover and mutation rates, etc need to be carefully 

chosen as their values have a combined effect on the performance of the EA. This is 

called “tuning” of genetic parameters [86]. There is a “parameter space” that consists of 

all the possible sets of EA parameters (for standard EAs, these are:  population size, 

crossover rate and mutation rate). An element of this space is a triple defined as 

(pop_size, cross_rate, mut_rate); e.g. (100, 0.8, 0.5) [63]. This varies widely between 

different problems and encoding. It is very difficult to arrive at specific values that work 

for all EAs.  De Jong in 1975, determined systematically the effects of the different 

parameters on the performance of most EAs [63], and concluded that the optimal 

parameters were:  population size of 50 to 150 individuals, one-point crossover of rate 

0.6 (and above) and a mutation rate in the region of 0.001 [186]. Grefenstette in 1986, 

evolved an optimal set of parameters for De Jong’s EA, and recommended: (30, 0.95, 

0.01) [87, 186]. Based on the work of Grefenstette, it was therefore agreed to begin an 

EA search by considering a population size of 30 individuals, crossover rate of 0.6 and a 

mutation rate of 0.01 [86]. The tuning of evolutionary parameters for the current work is 

based on this recommendation.  

 

For static mutation probability (or rates), and in addition to the above, recommendations 

were also made through experience as well as trial and error. Schaffer (1989) [186], 

recommended a region of [0.001, 0.005], Bäck (1992) [186], derived the following 

expression: 1.75/N * L
½
, where N is the population size and L is the chromosome 

length; while Muhlenbein (1992) [186], suggested that the optimal value of the mutation 

rate should be: 1 / L. While these values were widely used and provided a good basis for 

much earlier work, however, as the range of problems expanded, it became clear that no 

single set of parameters is optimal over a wide range of problems. Recent researches are 

progressing towards the area of adaptive mutation techniques [186], tailored to the 

problem requirements and domain. There are two levels of adaptations in mutation – top 

level and bottom level [187]. The top-level adapts the mutation and crossover ratio in a 

given EA run [188, 189].  In the COBRA (COst Based operator Rate Adaptation), 

developed in [189], the EA swaps a given k fixed probabilities periodically between k 

operators, giving highest probability to the operator that has high fitness value. The 

bottom-level performs a deterministic self-adaptive mutation probability uniformly or 

non-uniformly over each gene position [187, 190]. The self-adaptive mutation, 
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developed in [190], was achieved by adding a probability vector for each individual. 

The operator first mutates the mutation probability with itself, and the resulting 

probability was used to mutate a targeted gene.  

 

2.7.9  EA Applications 

Though EAs have been used in solving a variety of optimisation problems, it cannot be 

recommended in solving every problem. For some scientific/analytical functions 

involving few variables, traditional calculus-based methods are much better and faster. 

EAs are however very effective at solving problems that are believed to be NP-hard – 

i.e. problems where the only known algorithms that can guarantee a solution have 

exponential time complexity. A good example is the travelling salesman problem, 

where the salesman is required to visit all locations exactly once and minimising the 

total distance travelled, that is, determining the shortest route for the tour. For n  

locations there are in the region of !n  possible routes for the salesman. As the number 

of locations grows, the number of possible routes grows exponentially, and so does the 

time required to find the guaranteed best route. Using an algorithm that guarantees to 

find the best route, for example, it could take about 160 years to find the solution to a 

20-location travelling salesman problem. The economic load dispatch problem is very 

similar to this, in the sense that the guaranteed optimal solution can only be found from 

evaluating all possible combinations of the generator outputs, and the complexity 

increases exponentially with the number of generating units. As an ‘approximate’ 

algorithm, EAs, like other approximate algorithms, aim to find a good solution in 

reasonable time; as such, EAs are arguably the most successful class of optimisation 

algorithms, with an ever-growing base of empirical evidence showing the success in 

finding sufficiently good solutions in reasonable time to an extremely wide range of 

different problems.  In particular, EAs have the following advantages that aid its use in 

solving optimisation problems [14]: 

 

1. Ability to encode variables so that the optimisation is done with the encoded 

variables (in our case, the real power output of generators); 

2. Ability to deal with huge numbers of variables simultaneously, searching the 

entire parameter space efficiently;   

3. Ability to optimise variables with arbitrarily complex fitness functions; 

4. Suitability for parallel implementations ; 
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EAs have proved successful in a very wide range of learning and optimisation areas, 

including [93]:  

 

1. Path Finding – Ordering, routing, trend spotting, clustering, etc. 

2. Engineering – Mechanical design (weight, cost), structural design (beam sizes), 

electrical design (robotics, electronics, power systems), process control, 

computer network design, parameter modelling, helicopter pilot modelling, etc. 

3. Research and Development – Function optimisation, pharmaceutical drugs 

design, chemotherapy treatment, curve and surface fitting, etc. 

4. Management – Timetabling, job-shop scheduling/distribution, project 

management, task assignment, courier routing, etc. 

5. Financial Markets – Portfolio balancing, budget forecasting, investment/stock 

market analysis, payment scheduling, etc. 

6. Game playing – Board games, prisoner’s dilemma, etc. 

7. Evolution of natural processes – Fuzzy logic systems, pattern and speech 

recognition using artificial neural networks, etc. 

 

 

2.7.10 Multi-Objective Evolutionary Algorithm (MOEA) 

The first attempt to solve a MOOP was made by Rosenberg in [19], but due to 

unsuccessful implementation, the formulation was later restated as a single-objective 

problem and solved with a GA.  David Schaffer proposed the first MOEA in 1984 [88], 

an approach called the vector evaluated genetic algorithm (VEGA). It consists of a 

genetic algorithm with modified selection mechanism. A number of sub-populations 

were generated at each generation by means of proportional selection depending on the 

fitness functions. The sub-populations were later shuffled to generate new populations, 

on which GA would be applied.  Following the success of VEGA, several MOEAs were 

developed, as listed in [88, 89, 90]. The algorithms differ in their fitness assignment 

procedure and diversification approaches.  

 

2.7.11 Approaches to MOEA Design 

There are four main approaches involved in MOEAs. They include: weighted formula, 

lexicographic ordering, goal programming, and Pareto approaches [18, 63, 91].  
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The weighted formula approach involves the aggregation of all the objectives using 

different weighting coefficients, transforming the multi-objective optimisation problem 

into a scalar optimisation problem [18]. It is represented in the form: 
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_
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        (2.27) 

 

Where: iw is a non-negative weighting coefficient for each objective. The sum of all the 

weighting coefficients is usually equal to “1”. Conceptually, the approach is very simple 

in usage and implementation, which probably explains its popularity. It has a high 

computational efficiency and can be applied in generating good non-dominated 

solutions. The major set-back is that the weight coefficients are arbitrary numbers which 

most often are not justified. 

 

In the lexicographic ordering approach, the objectives are ranked in order of their 

importance. Solutions are obtained by minimising the objective functions, starting with 

the most important and proceeding according to the assigned priority [18].  In a 

mathematical formulation with k objectives, let f1(x) and fk(x) represent the most and 

least important objective functions, respectively. The first problem is formulated as: 

 

Minimise )(1 xf         (2.28) 

 

Its solution is
*x , and )( *

11 xff 
  is obtained. The i

th
 problem is given by: 

 

 Minimise )(xfi
, 1...,,2,1  ii       (2.29) 

 

Similarly, )( *xff ii 
  is obtained. The solution produced at the end, *

kx  is the desired 

solution 
*x  of the problem. This approach avoids the problem of mixing criteria that 

are non-commensurable in the same formula, as each criterion is handled by the 

approach separately. However, because of the randomness of the process, the approach 

tends to favour certain objectives over others. This causes the population to converge to 

some parts of the Pareto front [19]. 
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In the goal programming approach, targets or goals are assigned for each objective to be 

achieved. The values of these goals are incorporated into the problems in the forms 

constraints or penalties. The aim of the objective functions is to minimise the deviations 

from the targets. The simplest form of this approach is formulated in [18] as: 
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      (2.30) 

 

Where iT  denotes the target or goal set by the decision maker for the ith  objective 

function )(

xf i , and F  represents the feasible region.  

 

In the Pareto approach, instead of transforming the MOOP into a single-objective 

optimisation problem and then solving it using a single-objective search method, a 

multi-objective search algorithm is used. The aim is to find sets of solutions in the 

populations that are non-dominated with respect to the entire population. In typical 

versions of a Pareto approach, the non-dominated solutions are assigned the highest 

ranking numbers, and the ranking of any dominated solution depends on how many 

other solutions in the population dominate it . By definition, a solution 
1x  is said to 

dominate a solution 
2x  if 

1x  is better than 
2x  with respect to at least one of the 

objectives being optimised, and 
1x  is not worse than 

2x  with respect to all the 

objectives.  

 

The concept of Pareto optimality in a two objectives problem is shown in Figure 2.23, 

where A and B represent non-dominated solutions on the Pareto front [92]. None of 

them is preferred to the other. Solution A has a worse value of f2 than solution B, but a 

better value of f1, while solution B has a worse value of f1 and a better value of f2. 

Therefore, neither solution A nor solution B is dominated by each other. 
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Figure 2.23: Pareto-optimal surface for a two objective problem 

 
 

2.7.12   Simple Local Search Algorithms 

Although EAs are arguably the most widely used algorithms to solve complex 

optimisation problems (including the ELD), several simpler alternatives are available 

which tend to be in the class ‘local search’, and which may be suited to a range of 

problems. In particular, local search algorithms are often hybridized with EAs, in 

attempt to better balance the exploratory powers of an EA with the exploitatory skill of 

local search. Such algorithms include: random search (rarely useful as a standalone 

algorithm, but can be useful in combination with an EA), greedy search, and hill-

climbing [93]. 

 

2.7.12.1 Random Search 

In a random search algorithm, a fixed number of chromosomes are randomly generated 

and evaluated and a track of the best solutions kept. The exploration of solutions within 

the search space is done in an unconventional manner. The following pseudo-code 

describes a random search algorithm. 

 

Generate an initial chromosome, best, at random. 

While stopping criteria are not met 

Generate a new chromosome, next, at random 

If next is fitter than best  

best = next 

 End if 

End while  

Output best as the solution 
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2.7.12.2 Greedy Search 

A greedy search algorithm solves a problem by constructing a complete solution to the 

problem iteratively, using a series of steps. The most favourable option available to the 

designer is used at each step to extend the current solution to the next phase. The 

driving force for the popularity of this algorithm is simplicity. Although a best possible 

move is made at each step/iteration, but however, it does not guarantee that the 

complete solution is optimal. 

 

 

2.7.12.3 Hill Climber  

Like all local search methods, the hill climber applies an iterative improvement 

technique to a chromosome (the current) in the search space. Depending on 

implementation, there are two forms of hill climber: random mutation hill climber and 

steepest ascent hill climber.   

 

In random mutation hill climber (RMHC), new chromosome (next) is generated by 

mutating current at a randomly selected gene within the solution string. If next is better 

in fitness than current, it becomes the current, and the algorithm “climbs the hill 

towards higher fitness” by a step; otherwise, the current solution is retained. The 

iteration terminates if there is no further improvement in fitness or time/patient has 

expired [16]. The steepest ascent hill climber (SAHC) is a modification of RMHC. The 

algorithm initially considers all possible mutations within the solution string as next 

solution (all possible neighbours to the current solution). The next solution that returns 

the highest fitness value is selected for comparison with current solution. If the returned 

next is better than current, it becomes the current; otherwise no local improvement is 

possible. That is, the algorithm has reached an optimum [16]. The pseudo-code of 

RMHC is described as follows: 

 

Initialise best chromosome 

Select a current chromosome at random 

While stopping criteria are not met 

Generate next, by mutating current at a random gene 

If next is fitter than current  

current = next 
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if current is fitter than best 

best = current 

  End if 

 End if 

  End while 

 Output best as the solution 

 

For a better understanding of a hill-climbing algorithm, consider that the space of all 

possible solutions to a given problem is represented as a three-dimensional contour 

landscape; a given set of coordinates represents one particular solution. The better 

solutions are higher in altitude, forming hills and peaks, the worse solutions are lower, 

forming valleys. The hill climber then starts from a given point on the landscape and 

climbs the hill. Hill-climbing is a greedy algorithm, as it always makes the best choice 

available at each step hoping that the overall best result can be achieved this way [93].  

Hill-climbing algorithm is very simple and easy implement, once problem 

representation and the evaluation functions are known. However, it has a number of 

weaknesses [16]: 

1. It terminates at a locally optimum solution; 

2. There is no information regarding the deviation of the local optimum solution 

from the global optimum; 

3. The obtained optimum solution depends on the configuration of the initial 

solution. 

 

 

2.8 Review of Related Work on EA and Power System 

Optimisation 
EAs have been an actively used optimisation tool in solving real-world engineering 

problems including power generation, and several variants of it have been developed to 

suit the particular problem at hand. In this section, we review the extent of work that has 

been done in using EAs to solve ELD problems. Starting with ‘single approach’ 

applications, the review progresses to hybrid methods involving EAs.  

 

The authors in [36] presented a GA with simple binary encoding, single-point 

crossover, bit-flip mutation and roulette-wheel selection with fitness ranking.  The work 

describes the use of a generic/off-the-shelf EA in solving an optimisation problem, with 

the algorithm extracting the generator outputs from randomly generated bit-strings and 
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fed into a cost function to compute the fuel cost of three generators. However, the 

published results were far from acceptable values, the technique provided a good 

platform.   

 

In [54], DE was used to solve the ELD problem, tested with IEEE 30-bus 6 generators 

system, neglecting and considering losses. The approach introduced the concept of 

penalty handling to improve computational resources. The algorithm realised good 

results in comparison with other reported techniques such as gradient projection, 

successive linear programming, and GA, but not as comparable as the Newton’s 

method.  

 

In [53], a comparative investigation was made of conventional GA (CGA) and micro-

GA (μGA), and tested with the IEEE 6-bus and 31-bus Nigerian grid system. While 

satisfactory results were realised in both approaches over reported classical methods and 

a Hopefield neural network approach, CGA showed he major drawback of long 

computation time, while the μGA (characterized by a very small population size) was 

found to converge quickly.   

 

In [44], an improved GA (IGA) was integrated with multiplier updating (MU) and was 

applied to an ELD with valve-point effects and multiple fuels.  Performance efficiency 

of the IGA_MU was investigated by separate applications involving a 10 units test 

system considering multiple fuels only, a 13 units system considering valve-point 

effects only, and a 10 units system considering both multiple fuels and valve-point 

effects. Essential features of the algorithm are: ease of implementation, effectiveness 

and robustness, automatic adjustment of randomly assigned penalty factors to their real 

values and application to large-scale system. Results showed IGA_MU’s applicability 

to real-world power problems.  

 

In [46], application of GA to solve both smooth and non-smooth ELD problems were 

extended to larger test system, considering valve-point effects and transmission losses, 

but relaxing other equality and inequality constraints. Simulation results were presented 

for 6 and 40 generating units, which indicate improvements in total fuel cost savings in 

comparison with other artificial intelligence methods. 
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In [30], an approach was proposed for solving the combined economic and emission 

dispatch (CEED) problem using a binary coded GA and PSO. The CEED was converted 

into a single objective function using modified price penalty factor approach, and tested 

with 3 generating units.  

 

In [31], a GA was hybridised with fuzzy cardinal priority ranking, where a Pareto 

optimal solution for the multi-objective generation and emission dispatch problem 

involving different combinations of fuel cost, oxides of nitrogen, sulphur and carbon, 

was solved using a non-dominated sorting genetic algorithm (NSGA-II). The approach 

uses a crowding distance technique to add diversity to the converging solutions, elitist 

strategy to preserve the best solution in a current population, and NSGA II to provide 

solutions very close to Pareto-optimal. The result is a single best compromise solution 

of all the required objectives (reduction of fuel cost and gaseous emissions).  It was 

tested with a system of 6 generators. 

 

In [47], a hybrid method of GA and Lambda iteration was used to economically 

determine the output of power generators with prohibited operating zones. The approach 

involved two steps. The first step uses lambda iteration method without considering 

prohibited operating zones, while the second step uses GA process any units that are 

caught within prohibited operating zones, by setting their limits to either the lower or 

upper limits of the prohibited zones. 

  

In [78], a GA was combined with DE and SQP local search to overcome premature 

convergence and speed up the search process for ELD with valve-point loading effects. 

The algorithm consisted of two parts: the first part uses a GA to find a near-optimal 

global search region, while the second part uses DE to explore the search region and 

SQP to exploit (find tune) the solutions in order to locate local optimum solutions. This 

was tested with systems of 13 and 40 units.   

 

In [80], a GA was hybridised with Pattern Search and SQP to overcome the drawback 

of Pattern Search and SQP methods that need to be supplied with initial/suitable starting 

point by the user. Relying on these good guesses at the initial points makes the methods 

more likely to get trapped in local optima. Here, the GA generates the initial good 

solution automatically. Pattern search was used with SQP to refine or fine tune the 
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search. The algorithm reduced total execution time, and was tested with 3, 13 and 40 

units.  

 

The EA-based (and by extension, the AI-based) techniques for solving power system 

optimisation as reviewed so far have covered problems involving smooth and non-

smooth functions, encoding type, genetic operators, line losses consideration, 

constraints (including generators limits, power balance, ramp-rates and prohibited 

operating zones), computational resources, valve-point loading effects, multiple fuels, 

number of generating units, environmental consideration, etc. We described and 

evaluated a new EA approach for solving the optimal flow problem for ELD in the 

electricity generation industry in [34].  The method combined a standard EA with smart 

mutation and hill-climbing techniques, and considered benchmark instances of the ELD 

problem involving minimum/maximum generation limits, power balance, ramp-rates 

and prohibited operating zones. Violation of either of these constraints introduces the 

concept of penalties, and these in turn provide the basis for the smart mutation operator. 

Our smart EA was compared with a basic EA and reported results for other recent 

algorithms, on three benchmark cases involving 6, 15 and 20 generating units. On the 

larger two of these problems we find better solutions than have so far been reported in 

the literature. In later chapters, the review will extend to dynamic problems and bidding 

context in a deregulated power market.  However in the next section we focus on 

literature in the EA area that pertains to the ‘smart mutation’ approach explored in this 

thesis. 

 

2.9 Review of Smart Mutation 

There are two broad approaches to realising solutions of optimisation problems using 

EAs. The first option is ‘off-the-shelf’ methods (e.g. use standard approaches, such as a 

binary GA, with standard settings) [36]. Here, methods are designed to encode the 

problem into binary strings, or to whichever default encoding is used in the off-the-shelf 

algorithm, which are later decoded into final solutions. A variety of implementations 

could then be made depending on the nature of the problem being solved, but the 

emphasis here is on fitting the application specifics into the framework provided by the 

off-the-shelf optimisation algorithm.  The second option involves adapting a standard 

EA by developing appropriate operators (crossover and mutation) that are designed and 

adapted with the specific application in mind, which may work in different ways to 

standard approaches. For example, crossover may make use of application-specific 
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knowledge concerning aspects of solutions that are particularly good or bad in 

combination. This option also includes the possibility of changing various aspects of the 

standard algorithm, driven by what seems sensible or insightful in the context of the 

application domain. Relatively limited work has been done in this context which can be 

seen as generally applicable across a class of problem domains, however it is of interest 

in this light to consider a number of works below [178, 179, 180, 181, 182, 183], in 

which the common theme is the exploitation of problem-specific information generated 

when calculating a chromosome’s fitness..  

 

The focus of [178] is on SAT (satisfiability problems), which are essentially constraint 

satisfaction problems. The fitness function calculates a weighted sum of penalties 

associated with the violation of constraints. The idea of the SAW (stepwise adaptation 

of weights) approach was to continually change the weight values for the constraints, 

giving higher values to constraints that were difficult to satisfy. This is related to the 

idea of smart mutation, in the sense that it is an alternative way to use 'violation' 

information to guide the search. In [179], timetabling problems were solved using a 

chromosome structure in which each gene position was a specific event (e.g. an 

examination), and the value of the gene indicated the timeslot for that event. In this 

scenario, given the information that can be accumulated when calculating fitness, it was 

possible for mutations to be targeted towards genes (events) that were involved in 

penalty violations (clashes with other events); it was also possible to gather information 

relating to good possible new timeslots for those events. Various smart mutation 

operators were tested to exploit these ideas. A swap mutation operator for permutation-

based representation by generating a new chromosome was developed in [180]. This 

was achieved by randomly swapping two genes from a current one (aiming at reducing 

overall fitness), applied to a job-shop scheduling problem.  In [181], a position mutation 

was used to change the amplitude of a parametric movement to support a global search 

at an early stage of the optimisation, and a local search thereafter. In [182], a GP with 

smart mutation was developed to discover and evolve agents for extracting regions-of-

interest (ROIs) in remotely sensed images. The mutator works by deleting internal 

nodes that decrease the overall fitness and keep promising ones. Kateb et al [183], 

developed a sputnik (an elitist mutator), which relies on selection based on a continuous 

learning of past effects on fitness functions, aiming to enhance the algorithm by guiding 

the search towards a faster trade-off to save time and number of fitness evaluations. 

While improving the EA’s performance and obeying all operational constraints, the 
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smart mutation operator developed in this thesis targets mutation on genes according to 

their respective contributions to the cost function and penalties violations. 

 

2.10 Summary  

Power system studies remain highly active research area, with research interests in the 

field growing on a daily basis because of the high importance of electricity. This chapter 

explored key concepts related to the research, including: use of optimisation as a 

problem solving tool, electrical energy and electrical power, (identifying power 

generation as the primary domain of the work),  concept of optimal power flow leading 

to economic load dispatch (ELD) problems. It presented the various formulations of 

ELD problems, including: smooth and non-smooth fuel cost functions, multiple fuels, 

ramp rate limits and prohibited operating zones constraints; and chronicled the historical 

developments in the solution approaches of ELD problems, consisting of mathematical 

programming methods, artificial intelligence methods and hybrid methods, with a 

review of related work in those approaches. Despite the advances in these solution 

approaches, there are still potential areas for further investigative study. The 

introduction of hybrid methods to solving ELD problems is a novel approach that is yet 

to be fully and exhaustively harnessed.  

 

Two major categories of ELD problems (SELD and DELD) were identified, which 

constitute distinct problem areas in the research. 

 

This chapter also presented a brief survey of evolutionary algorithms, the optimisation 

approach used in the research. It described the design and implementation details of a 

standard EA, justified its suitability to solving ELD problems, and reviewed recent and 

related work in power systems optimisation. Lastly, it discussed the concepts of multi-

objective EAs, non-evolutionary search algorithms and a brief review of aspects related 

to smart mutation. 
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Chapter 3 

 

 

A New Evolutionary Algorithm for the 

Static Economic Load Dispatch Problem 
 

SELD problems handle a single load optimisation period (e.g. of one hour duration), in 

which the variables (generator outputs) do not vary with time. In this chapter, we 

describe and evaluate improved EA approaches for realising optimal solutions for 

SELD problems in the electricity generation industry. The methods combine a standard 

EA with “smart mutation”. The key aspect of the method that improves performance is 

the smart mutation operator, which targets mutation on genes according to their 

respective contributions to the cost function. We consider benchmark instances of the 

economic load dispatch problem, which involve minimum/maximum generation limits, 

power balance, ramp rates and prohibited operating zones. Violation of either of these 

constraints introduces the concept of penalties, and these in turn provide the basis for 

the smart mutation operator. Our “Smart” EA (SEA) was compared with a Basic EA 

(BEA), and with reported results for other recent algorithms, on three benchmark cases 

involving 6, 15 and 20 generating units.  

 

3.1 Design Methodology 

Optimisation techniques for scientific and engineering systems involve the process of 

solving a set of non-linear equations describing the optimal or steady-state operation of 

the systems. The ELD problem is formulated as minimising a scalar objective function 

through the optimal operation of a vector  of control parameters. This is mathematically 

illustrated in (3.1), (3.2) and (3.3); and diagrammatically represented in Figure 3.1. 

 

Minimise:  C (x, u)        (3.1) 

 

Subject to:  

G (x, u) = 0         (3.2) 

H (x, u) ≤ 0         (3.3) 
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Where:  

C = Cost function  

x = vector of dependent variables (generating cost); 

u = vector of control variables (generator outputs); 

G(x, u) = Set of non-linear equality constraints (power balance); 

H(x, u) = Set of inequality constraints (limits in generators outputs). 

 

Pg1, Pg2, Pg3,…, Pgn

cost 

Cost Model

Solution Algorithm
 

Figure 3.1: Diagrammatic representation of the design approach 

 

The approach consists of two main components: the controlling device and the device to 

be controlled.  A typical ELD problem is one that involves the optimal set of generating 

units. This minimises the operation cost (mainly fuel cost). The device to be controlled 

is the generating cost model, while the solution algorithm (EA) is the controlling device. 

A vector of generators output is fed into the cost model, which produces a scalar cost of 

generating those outputs. The cost is passed on to the solution algorithm to be 

minimised, an iterative process which continues until either a cost lower than acceptable 

minimum is found or number of maximum iterations is completed. 

 

The approach we took in this paper was to build into the EA a straightforward way of 

adapting the search process to the search landscape, by targeting the mutation operation 

towards genes that had the most negative influence on the cost function. Such “smart” 

mutation has been used successfully in a variety of domains in which it is possible to 

relate components of the cost function to particular components of the genome. Figure 

3.2 shows a flow diagram for the SELD optimisation using EA. 
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Figure 3.2: Flow diagram for SELD optimisation 

 

3.2 Problem Formulation 

The SELD is an optimisation task whose goal is to find the optimal combination of 

online power generators that will minimise the total fuel cost to meet the total system’s 

load demand while satisfying various equality and inequality constraints. This is done 

over an appropriate short-term period, usually one hour. The constraints in a practical 

generator include minimum and maximum generation limits, power balance, ramp rate 

limits and prohibited operating zones. For a thermal generating station, the unit fuel cost 

is shown in the quadratic form, and the goal is to minimise the total fuel cost as in 

(2.11) and (2.12), subject to the generating limit constraint of (2.14), power balance 

constraint of (2.15), ramp-rate limits constraints of (2.21), and prohibited operating 

zones constraints of (2.22).  

 

3.3 The Optimisation Approach 

A key task in an optimisation process is constraints handling [33, 54]. Most algorithms 

were initially conceived to solve unconstrained problems. Therefore, application of the 

appropriate algorithm to solving constrained problems such as the present work 

involves various techniques of handling constraints to keep the control variables in 
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feasible regions where all constraints are satisfied. A technique for handling these 

constraints constitutes the “smartness” within our proposed EA approach to this 

problem.   

 

3.3.1 Basic (Conventional) Evolutionary Algorithm  

EAs are popular heuristic methods for realising solutions of unconstrained as well as 

constrained optimisation problems. Loosely reflecting Darwin’s evolutionary theory 

[63], an EA uses selection, crossover and mutation processes to create an environment 

where population of individuals (chromosomes) compete with one another, and only the 

fittest move from the current generation to the subsequent ones. Realisation of solutions 

to optimisation problems using conventional EAs, herein referred to as Basic EA (BEA) 

involves the following steps: 

 

1. Generate initial population of solutions; 

2. Fitness evaluation of each member of the population; 

3. Form breeding pair by selecting parent solutions; 

4. Recombination – perform crossover and mutation on selected parent  solutions; 

5. Replace parent population with the new (child) population 

6. If stopping criterion is not reached, go back to step 2. 

 

A BEA initialises the population by choosing each solution at random. An evaluation 

determines the fitness value of each solution (called chromosome) of the population. 

Each chromosome contains a number of genes. A value encoding method is used 

consisting of double numbers chromosome genes, representing the generating units 

within a plant. Selection chooses parent solutions, based on their fitness values to go 

into breeding. Crossover exchanges some of the genes between breeding parents. This 

occurs with a probability called crossover probability, usually greater than 50%. 

Mutation is applied to the resulting solution which changes the value of one or more 

genes, thereby introducing genetic variation between the parents and children. Mutation 

also occurs with a probability called mutation rate, which is usually small, resulting in 

typically one gene changed per chromosome. The resulting (child) population replaces 

the parent population. This process continue until a stopping criterion is reached – either 

a maximum number of functional evaluation is completed, or an acceptable cost value is 

found. 
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3.3.2         Constraints Handling  

The bulk of optimisation task done in an evolutionary algorithm is constraint handling. 

The random initialisation of chromosomes sets the genes (outputs of generating units) 

of each chromosome in the initial population to random double numbers representing 

the generators’ outputs, between their minimum and maximum generating limits. 

During fitness evaluation (computation of the cost function) of each chromosome, 

various checks are performed to ensure that the units’ outputs obey all operational 

constraints – remain within the generation limits, maintain power balance, ramp-rates 

limits and avoid the prohibited operating zones. Violation of any of the constraints 

constitutes a penalty, which augments the initial objective cost function of (2.11) to 

form the fitness function shown in (3.4).  
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This helps guide the search process towards repairing that solution. We describe here 

how the four operational constraints identified in section 3.2 are handled. 

 

(i) Generating Limit: A random small positive number less than one (scaling 

factor), ensures that the value of genes (generating units’ outputs) are within the 

legal minimum and maximum limits, according to (3.5): 

 

)(*(). minmaxmin
iiii PgPgrandomMathPgPg             (3.5) 

 

(ii) Power Balance: If the equality constraint of (2.15) is not satisfied, a penalty 

factor, q1, is used to normalise and maintain an overall power balance, using  

(3.6), ensuring that the terms in the bracket equal to zero: 
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(iii) Ramp-rates Limit: The power output of a unit at the current time depends on the 

output at the previous time, ramp up value (UR) and ramp down value (DR) of 
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the generator. The power output of a unit due to the ramp-rates limit is defined 

as follows: 
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           (3.7) 

 

If the inequality constraint of (2.21) is not satisfied, a penalty factor, q2, is 

assigned to the affected units outside the feasible regions, using (3.8): 
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     (3.8) 

 

(iv) Prohibited Operating Zones: The prohibited operating zone penalty function 

counts the number of units that fall within such prohibited zones, according to 

the following rules: 
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If the prohibited zones are not violated, the ELD is solved in a straightforward 

process, otherwise, a number ‘1’ is assigned to such occurrence, and the 

constraint is processed using (3.10): 

 





N

i
kiPZqpzPenalty

1
,3_

       (3.10) 

 

Where: q3 = penalty factor, k = number of prohibited zones in i, N = number of 

generating units.  

  

3.3.3 The Smart Evolutionary Algorithm 

The approach of capturing gene-specific contributions to costs, and using this 

information to help target the mutation operator, is at the heart of what we call a ‘smart 

evolutionary algorithm’ (SEA), and we use this approach in the current and later 

chapters on a series of specific optimisation problems. The method basically combines a 
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standard evolutionary algorithm with a smart mutation algorithm. In the standard 

evolutionary algorithm of section 3.3.1, single mutation per chromosome is used. 

Occurring at a low probability called ‘mutation rate’, it chooses an allele at random and 

changes it to a new value. It works as a background of the EA in introducing new 

genetic materials in the population by randomly modifying some building blocks, 

maintains population diversity, and helps solutions escape local optima. This mutation 

scheme has severally been used and shown in the literature to produce near-optimal 

results [191], including a real-life virology application [192]. The basic pseudo-code for 

SEA is given as follows: 

 

START  

DEFINE parameters and INPUT data 

 Cost coefficients of the generators (a, b, c) 

 B-matrix coefficients  

 Load demands (PD) 

 Generating limits (Pgmin and Pgmax) 

 Ramp-rate limits (Pgrrlim) 

 Prohibited zones (PZ) 

   

INITIALIZE a random population of chromosomes   

FOR i = 1 to N (N = No of Generating Units) 

)(*. min_max_min_ iiii PgPgRandomMathPgPg   

END FOR 

EVALUATE Objective function (For each chromosome in the population) 

FOR i = 1 to N 

iiiiii cPgbPgaPgf  2)(  

Compute power loss 

Check for constraints violation in power balance 

Check for constraints violation in generation and ramp-rates limit 

Check for constraints violation in prohibited operating zones 

Violation of a constraint leads to penalty treatment, defined as: 
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   IF no constraint is violated,  

Penalty = 0  

Fitness function = Objective function 

      ELSE   

Fitness function = Objective function + Penalty  

END IF 

END FOR 

WHILE (stopping criteria is not reached)  

 From the entire population 

 SELECT parent pairs for breeding 

 CROSSOVER the genes of selected parents 



 

77 

 Create an array to return children 

 Crossover parents to create children 

 Return the children in an array 

         Perform SMART MUTATION 

       EVALUATE   

       REPLACE parent population with children population  

       Perform ELITISM (Keep a percentage of best individuals) 

 FOR i = 1 to Population size 

 Sort Chromosomes according to their fitness (highest to lowest) 

  Calculate Number of Elites (based on elitism rate) 

  Copy Elites onto next Generation  

     END FOR 

END WHILE 

OUTPUT (The optimum/best compromising solution vector) 

 FOR i = 1 to N 
 ][ ,3,2,1 NPgPgPgPgPg    

 END FOR 

 Output Total Generation = Sum of all Generators’ Output  

 Output Total cost = Sum of Costs of generation 

STOP.  

 

3.3.4  The Smart Mutation 

Of the four constraints identified in section 3.3.2, generating limit, ramp-rates limit and 

prohibited operating zone constraints are local to each unit; while power balance 

constraint is global, applying to all the generating units. The smart mutation operator 

focuses mutation on units contributing most to cost and violates either or both of the 

local constraints – ramp-rates limit and prohibited operating zones (where available in a 

given problem case). The use of a scaling factor (a randomly generated small positive 

number between 0 and 1) ensures that the outputs of all the generation units are within 

feasible/legal regions; hence the local generating limits constraint is not violated. One of 

the ways to investigate the overall performance of an algorithm is by evaluating its 

constraints handling capabilities (described in section 3.3.2), which also contributes to 

the ‘smartness’ of the algorithm. The following is a pseudo code of the smart mutator. 

 

START 

INITIALIZE costs  

Calculate the costs produced by all the units  

SET cost of the first unit (i = 1) as the highest cost 

FOR i = 2 to N (where N = number of generating units)    

IF (cost[i] > highest cost) 

Highest cost = cost[i] 
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  Highest position = i 

 END IF 

Pgi = value of unit at highest position 

Mutate this Pgi by subtracting a small random deviation from the unit: 

Pgi (new) = Pgi – (Math.random ()   * Pgi)  

(Where: Math.random () is a random number between 0 and 1, e.g. 0.2) 

Replace Pgi with Pgi (new) 

 //Check for violation of local constraints 

 //Ramp-rates limits violation: 

 IF Generation decreases 

  Pgi = (Pgi-1 – DR)  

 IF Generation increases 

  Pgi = (Pgi-1 + UR) 

  (Where: Pgi = current value; Pgi-1 = previous value; UR = up-ramp rate limit) 

        ELSE 

  Pgi = Pgi-1  

 END IF 

        END IF 

 IF (Pgi < Max (lower limit, (Pgi-1 – DR))) OR (Pgi > Min (upper limit, (Pgi-1 + DR))) 

  (Where: lower limit and upper limit = legal lower and upper limits of the unit) 

  Pgi violates ramp-rates limit 

 Mutate this Pgi by subtracting a small random deviation from the unit: 

 Pgi (new) = Pgi – (Math.random () * Pgi) 

 END IF 

 Replace Pgi with Pgi (new) 

 //Prohibited operating zones violation 

FOR k = 1 to zi (where: zi = number of prohibited zones of unit, i) 

 IF (Pgi > Pg
l
i,k) AND (Pgi < Pg

u
i,k)  

     (Where: Pg
l
i,k  and Pg

u
i,k are the lower and upper bounds of the k

th
 prohibited zone) 

    Mutate this Pgi by subtracting a small random deviation from the unit 

     Pgi (new) = Pgi – (Math.random () * Pgi)  

     Assign the number “1” for every Pgi that violates prohibited operating zone  

    (i.e. counting every occurrence) 

  END IF 

 END FOR 

 Replace Pgi with Pgi (new) 

//Ensure that all the units’ outputs are within feasible limits (Generating limit constraint): 

Pgi = Pgi_min + (scaling_factor * (Pgi_max – Pgi_min)) 
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END FOR   

STOP 

 

The total number of units selected for mutation in addition to the highest cost producing 

one depends on the number of local constraints violated. Therefore a minimum of one 

and maximum of three genes are involved. Perhaps in some problem cases, either or 

both ramp-rates limit and prohibited operating zones constraints may not be present.  In 

some other cases, the unit with the highest cost may also violate a constraint, while in 

some other cases, no constraint may be violated. But where violation exists, their 

numerical (penalty) values – (3.8) and (3.10) for ramp-rates limit and number of 

prohibited operating zones violated, respectively; alongside the global load balance 

penalty value (3.6) augment the problem’s objective function to form a generalised 

fitness function. 

 

The magnitude of the constraints as well as the cost produced by each of the units 

contributes to the overall fitness.  As the penalties values gradually reduce to 0, total 

cost equals total fitness, which is the optimal value. By targeting the unit with the 

highest cost, the mutation operator attempts to minimise the total cost of producing an 

optimal power. We found out that reducing the values of those units reduces over 

generation of power, and consequently minimises power loss. Mutating the units that 

violate local constraints has a tendency of forcing them into the feasible regions. 

Besides, the small random deviation subtracted from the units ensures that the changes 

introduced are not too significant, thereby distorting the generating unit.  

 

3.3.5  SEA Variants  

Several variants of the smart mutator are possible. In this thesis, we investigated and 

implemented the following three smart evolutionary algorithms: SEA1, SEA2 and 

SEA3; resulting from three distinct variants of the smart mutator. We define and 

describe briefly the implementation differences between the three variations.  

 

3.3.5.1 SEA1 

This SEA variant involves the use of tournament selection based on the penalty values 

(costs and numerical values of the constraints) to decide which gene to mutate. It works 

in direct analogy to the tournament method of selecting parents from an initial 
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population to go into breeding in order to generate an offspring during an evolutionary 

process (see section 2.7.5). But while the EA selection method chooses individuals or 

chromosomes (the entire generating units) from the population (uniformly at random, 

with replacement), and the fittest of those individuals is the one returned as selected, the 

SEA1 chooses genes from the chromosome, by ‘targeting’ those with the highest 

operating cost and violate constraint(s). The less-fit units are selected in this case, 

having the highest cost of generation, and falling outside the feasible range respectively. 

This is the basis of the new chromosome, a potential solution to the problem. The 

number of units selected (tournament size) as well as the size of the problem case has 

combined effect on the selective pressure. A tournament size of 1, 2 or 3, out of 6 units 

has a higher selective pressure, than about same tournament size out of 20 or 40 units.  

 

3.3.5.2 SEA2 

In this variant, there is a mutation probability, called ‘smart mutation probability’, 

different from the normal ‘mutation rate’ of an EA. The smart mutation probability is 

used to bias the mutation operation, such that when the probability is met, smart 

mutation is done; otherwise, a ‘single-gene, uniform random mutation’ is done (that is, 

the mutated unit is randomly selected, and not targeted on the basis of the penalty 

values). This gene-specific mutation probability in SEA2 is a random number between 

‘0’ and ‘1’. In contrast with the ‘mutation rate’ which usually occurs with a much lower 

probability, and aims to maintain diversity in the entire population of individuals; the 

‘smart mutation probability’ is a fixed, higher-level probability operator that targets a 

particular gene, based on the criteria of merit (high fitness value, constraint violation, 

etc); uniformly or non-uniformly, deterministically and adaptive [187, 190].  

 

3.3.5.3 SEA3 

This EA variant of the smart mutator is an extension of SEA2, but instead of having a 

fixed value of the smart mutation probability, it is ‘computed’ (as the ratio of generation 

number over the maximum generation). Therefore, the mutation probability value starts 

at ‘0’, and gradually moves to ‘1.0’ in a linear fashion as we get to the maximum 

number of generations. This is a simple linear adaptation that works by linearly 

increasing the smart mutation probability from beginning to end of an optimisation run. 
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3.4 Experiments and Simulation Results 

We implemented a Basic EA (BEA) and three Smart EAs (SEA1, SEA2 and SEA3), 

from the three smart mutation variants, and used them to carry out detailed 

experimentations to investigate the efficiency, validity and robustness of the algorithms 

in three different problem areas involving 6, 15 and 20 generators.  

 

3.4.1 Test Case I: 6 Generators 

In [54], the conventional/SELD problem was solved using Differential Evolution (DE), 

allocating power output to 6 thermal generators, taking into account the effects of 

transmission losses. Using the data from this paper, we carried out several initial 

experiments aimed at selecting appropriate values for the genetic parameters - crossover 

rate, population size, tournament size and mutation rate. Total load demand was set at 

283.40MW; the detailed parameters are given in Table 3.1, and the loss coefficient B-

matrix given in (3.11).  

 

Units Pgmin Pgmax a b c 

1 50 200 0.00375 2.00 0 

2 20 80 0.01750 1.75 0 

3 15 50 0.06250 1.00 0 

4 10 35 0.00834 3.25 0 

5 10 30 0.02500 3.00 0 

6 12 40 0.02500 3.00 0 

 

Table 3.1: Generators’ data for the 6-unit problem from [54] 
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0.00021    0.00002       0.00005     0.000008     0.00001  0.00003-

0.00002    0.00025     0.000006       0.00001   0.000012            0.0

0.00005   0.000006       0.00015     0.00001-   0.000001  0.000005

0.000008     0.00001      0.00001-        0.0001   0.00002-  0.000015

0.00001   0.000012     0.000001     0.00002-       0.0003    0.00001

0.000030.00.0000050.0000150.000010.0002
         (3.11) 

 

 

B0 and B00 were neglected. Based on available data in this problem case, the main 

constraints which constitute the source of penalties are generating limits and power 

balance constraints. Augmenting the penalty function to the original objective cost 

function of (2.11) yields the generalised fitness function given by (3.12). 
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Where: q1 is a penalty factor which normalises the power balance, assigning a high cost 

of penalty to affected ones far from the feasible region [54, 101, 108]. The rule defined 

in (3.5) ensures that outputs of the generating units are within the legal minimum and 

maximum limits. Starting with SEA1, Tables 3.2, 3.3 and 3.4 summarise the results of 

different values for crossover rate, population size and tournament rate, averaged over 

30 runs. As in SEA1, SEA2 operates a single mutation per solution of rate 0.01 in 

addition to the smart mutation probability of 0.6, tuned in Table 3.5, averaged over 30 

runs. Arising from our findings on the tuning of EA parameters in section 2.7.8, we kept 

the mutation rate as low as 0.01, being a background operator, to provide a reasonably 

good diversity in the population, and avoid distortion of the building blocks. The 

resources allocations for crossover rate, population size, tournament size, and smart 

mutation probability (for SEA2) in the best solutions out of the 30 runs are respectively 

shown in Tables 3.6, 3.7, 3.8 and 3.9. This is in terms of realising the two main goals of 

the dispatch – lower cost of generation, and meeting load demand.  

 

Crossover Rate 0.6 0.7 0.8 0.9 

Av Cost 769.59 758.19 779.28 774.97 

Std Dev 15.41 12.25 12.78 18.04 

 

Table 3.2: Summary of results for different crossover rates, averaged over 30 runs of SEA1 algorithm on 

the 6-unit problem [54] 

 
 

Pop Size 10 20 30 40 50 100 150 

Av Cost 758.19 755.66 756.01 757.55 748.07 738.73 740.21 

Std Dev 12.25 15.30 18.66 12.82 11.02 9.28 12.36 

 

Table 3.3: Summary of results for different population sizes, averaged over 30 runs of SEA1 algorithm on 

the 6-unit problem [54] 

 

 
 

Tournament Size 2 4 6 8 10 

Av Cost 738.73 742.22 741.01 741.64 744.64 

Std Dev 9.28 11.00 10.45 13.28 12.77 

 

Table 3.4: Summary of results for different tournament sizes, averaged over 30 runs of SEA1 algorithm 

on the 6-unit problem [54] 

 
 

Smart Mutation  

Probability 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Av Cost 757.83 759.09 758.23 761.37 752.58 749.54 765.32 770.89 765.94 

Std Dev 15.07 15.62 14.56 13.92 15.33 13.34 13.24 14.51 16.88 

 

Table 3.5: Summary of results for different smart mutation probabilities, averaged over 30 runs of SEA2 

algorithm on the 6-unit problem [54] 
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Units 

 

Crossover Rate 

0.6 0.7 0.8 0.9 

1 173.15 168.89 120.10 95.48 

2 20.77 24.02 68.39 56.82 

3 19.41 48.30 31.12 77.99 

4 19.48 10.91 13.31 30.84 

5 21.57 15.56 21.22 25.67 

6 29.21 16.58 30.03 26.79 

Total Gen 283.61 284.29 284.18 283.58 

Total Cost 776.22 715.62 765.32 743.40 

Loss 0.21 0.89 0.78 0.18 
 

Table 3.6: Resources allocation for different crossover rates in the best of 30 runs of SEA1 algorithm on 

the 6-unit problem [54] 

 
 

Units 
Population Size 

10 20 30 40 50 100 150 

1 168.89 111.19 159.80 154.80 135.25 151.31 161.21 

2 24.02 76.03 25.95 34.44 33.69 24.69 27.39 

3 48.30 48.64 45.48 44.51 46.69 48.89 45.61 

4 10.91 15.58 17.44 27.63 33.44 23.45 19.87 

5 15.56 11.33 12.57 13.63 15.36 15.69 17.66 

6 16.58 21.08 22.92 13.62 20.83 19.85 15.25 

Total Gen 284.29 283.84 284.14 288.62 284.66 283.88 286.98 

Total Cost 715.62 730.56 713.66 724.54 720.60 709.60 719.72 

Loss 0.89 0.44 0.74 5.22 1.26 0.48 3.58 
 

Table 3.7: Resources allocation for different population sizes in the best of 30 runs of SEA1 algorithm on 

the 6-unit problem [54] 

 

 

Units 
Tournament Size 

2 4 6 8 10 

1 151.31 164.27 122.69 141.82 120.72 

2 24.69 26.66 43.06 40.04 65.25 

3 48.89 46.14 49.57 49.55 49.44 

4 23.45 18.27 30.23 17.93 20.40 

5 15.69 15.43 13.37 15.45 16.07 

6 19.85 14.58 24.56 20.91 12.57 

Total Gen 283.88 285.35 283.42 285.69 284.44 

Total Cost 709.60 711.74 713.65 719.00 715.55 

Loss 0.48 1.95 0.02 2.29 1.04 
 

Table 3.8: Resources allocation for different tournament sizes in the best of 30 runs of SEA1 algorithm on 

the 6-unit problem [54] 

 

 

Units 
Smart Mutation Probability 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 128.96 137.99 151.71 152.54 133.95 168.99 131.30 158.78 167.57 

2 51.11 29.72 22.55 34.07 47.37 30.54 55.50 50.44 35.77 

3 49.49 49.95 44.18 34.97 41.67 40.75 27.92 22.47 24.03 

4 12.73 11.54 20.18 22.78 17.48 11.68 19.62 17.17 29.20 

5 26.51 25.51 16.84 19.01 21.62 15.76 23.38 18.55 14.39 

6 17.44 29.86 28.33 20.55 21.36 15.71 25.92 16.08 13.92 

Total Gen 286.23 284.58 283.79 283.92 283.44 283.44 283.63 283.50 284.88 

Total Cost 719.98 723.70 726.12 731.53 721.24 711.86 726.39 737.76 740.02 

Loss 2.83 1.18 0.39 0.52 0.04 0.04 0.23 0.10 1.48 
 

Table 3.9: Resources allocation for different smart mutation probabilities in the best of 30 runs of SEA2 

algorithm on the 6-unit problem [54] 
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From these initial experiments, tuned values for population size, tournament size, 

crossover rate, and smart mutation probabilities were respectively determined from the 

lowest costs realised with the parameters’ values, given in Table 3.10, alongside with a 

fixed number of generations (of 100, to ensure the same number of fitness evaluations, 

penalty factor, q1= 500000, scaling factor, α = 0.1, as in [54]) and elitism rate, which 

were used for the main experiment involving SEA1, SEA2 and SEA3, with results 

shown in Table 3.11. 

 

Parameters Values 

Population size 100 

Tournament size 2 

Crossover rate 0.7 

Mutation rate 0.01 

Mutation probability (in SEA2) 0.6 

No of Generations 100 

Elitism Rate 10% 

No. or runs 30 

 

Table 3.10: Experimental parameters and values for the 6-unit problem 

 

 
 

 SEA1 SEA2 SEA3 

Ave Cost 738.73 749.54 744.49 

Std Dev 13.74 13.34 10.57 

Min Cost 709.60 711.86 710.13 

Max Cost 759.20 766.97 758.97 

 

Table 3.11: Summary of results, averaged over 30 runs in each of SEA1, SEA2 and SEA3 approaches on 

the 6-unit problem [54] 

 

To further demonstrate the efficiency of the SEAs, we consider the distribution pattern 

of the best solutions in each of the 30 runs as shown in Figure 3.3, which alongside 

Table 3.11 shows that the range of variation of the costs from each independent run is 

relatively small, and equally distributed between the minimum and maximum costs. 
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Figure 3.3: Distribution of generation costs for SEA1, SEA2 and SEA3, averaged over 30 runs on the 6-

unit problem [54] 

 

The results of SEA1, SEA2 and SEA3 were compared with our BEA [34], and 

previously published results from other algorithms that have been tested on the same 

problem case, namely: Differential Evolution [54], Genetic Algorithm [36][54], 

Successive Linear Programming [36][94] and the Quasi-Newton Method [36]. Table 

3.12 summarises the comparison results based on the resources allocation to the units 

from the best of 30 independent runs of algorithms BEA, SEA1, SEA2 and SEA3 (the 

number of runs for DE, SLP, GA and QN were not reported). This shows superior 

performance of the three SEAs in terms of both lower generation costs and lower power 

losses. All the three smart mutation variants performed very well on this problem, 

having low total cost of generation ($709.60/h, $711.86/h and $710.13/h) respectively 

for SEA1, SEA2 and SEA3; and reduced power losses of 0.48MW, 0.048MW and 

1.0MW respectively. The algorithms converged in less than 30 generation (out of 100), 

probably because of the relatively small size of the problem case. Although the 

population size of the SEAs was set to 100 following the parameters tuning (giving 

them higher number of fitness evaluations), while DE was set to 26 [54], and GA to 48 

[36], the results of Table 3.3 shows that during the tuning, with population size of 20, 

SEA1 still had a better average result of $755.66/h, than both DE and GA ($803.07/h 

and $803.69/h respectively). The experimental conditions of SLP and QN which were 

used to compare with DE and GA were not reported in literature.  It is also to be noted 

that the experimental parameters and conditions for BEA, although same as those of 

SEA1, SEA2 and SEA3, but had less tuning than SEA1, SEA2 and SEA3. 
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Units SEA1 SEA2 SEA3 BEA [34] DE [54] SLP [54] GA [54] QN [54] 

1 151.31 168.99 130.44 171.58 177.51 175.25 179.37 170.24 

2 24.69 30.54 41.12 49.26 48.61 48.34 44.24 44.95 

3 48.89 40.75 49.63 22.63 20.91 21.21 24.61 28.90 

4 23.45 11.68 27.55 21.20 21.64 23.60 19.90 17.48 

5 15.69 15.76 19.45 12.73 12.47 12.25 10.71 12.17 

6 19.85 15.71 61.21 14.17 12.02 12.33 14.09 18.47 

Total Gen 283.88 283.44 284.40 292.11 293.16 292.98 292.92 292.21 

Total Dem 283.40 283.40 283.40 283.40 283.40 283.40 283.40 283.40 

Loss 0.48 0.04 1.00 8.71 9.76 9.58 9.52 8.81 

Total Cost 709.60 711.86 710.13 801.30 803.07 803.08 803.69 807.78 

 

Table 3.12: Resources allocation in the best of 30 runs of SEA1, SEA2 and SEA3, and comparison with 

other approaches on the 6-unit problem 

 

We investigate the overall performance by comparing the penalties handling capabilities 

of BEA, SEA1, SEA2 and SEA3 as shown in the costs and penalties convergence 

characteristics of Figures 3.4, 3.5, 3.6 and 3.7. The vertical (fitness) axis of these curves 

refers to the values of the total cost and penalty in the average of 30 runs in each of the 

four algorithms. Starting with randomly generated populations at generation 0, the 

values of the costs and penalties gradually converge smoothly to the respective optima 

as generation increases in each of the four algorithms. There is a great similarity in the 

trend of cost curves of BEA and SEA1 (Figures 3.4 and 3.5), but the major difference is 

in the penalty curves. It can therefore be concluded that BEA is not very efficient in 

reducing penalty violations, unlike SEA1, SEA2 and SEA3. This contributes to the 

‘smartness’ of the algorithms. As the value of the total penalties gradually reduce to 0.0, 

total cost equals total fitness, which is the optimal value. Moreover, the best results 

from BEA have a considerably higher total cost than SEA1, SEA2 and SEA3. 

 

0.00

400.00

800.00

1200.00

1600.00

2000.00

0 200 400 600 800 1000

Generations

F
it

n
e

s
s

 V
a

lu
e

s
 (

$
/

h
)

Cost

Penalty

 
Figure 3.4: Cost and penalty convergence characteristics for an average of 30 runs of BEA on the 6-unit 

problem 
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Figure 3.5: Cost and penalty convergence characteristics for an average of 30 runs of SEA1 on the 6-unit 

problem 
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Figure 3.6: Cost and penalty convergence characteristics for an average of 30 runs of SEA2 on the 6-unit 

problem 
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Figure 3.7: Cost and penalty convergence characteristics for an average of 30 runs of SEA3 on the 6-unit 

problem 
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SEA3 shows the most active performance in reducing penalty violations, but not the 

best overall performance on the present test problem. This may be because the problem 

is relatively small, and the evidence suggests that SEA3 may show its value on larger 

scale test problems. However, the generation cost of $709.60/h from the best resources 

allocation of SEA1 (Table 3.12) is the lowest we have seen in the literature to date for 

this problem, while meeting load demand. 

 

3.4.2 Test Case II: 15 Generators 

In [33, 65], the SELD problem was solved using improved Particle Swarm Optimisation 

(PSO) based on Gaussian probability distribution/chaotic sequences and a simple but 

efficient Evolutionary Strategy (ES) respectively, to determine the optimal combination 

of power outputs of 15 generators that will minimise the total fuel cost, satisfying power 

demand, ramp-rates limits and prohibited operating zones violation. The total load 

demand was 2630MW. Table 3.13 shows the parameters for generating unit capacity 

and cost coefficients, while data for ramp rates and prohibited zones are shown in Table 

3.14. The B-matrices loss coefficient is taken from [33]. In this problem case, the 

constraints which constitute the source of penalties are generating limits, power balance, 

ramp-rates and prohibited operating zones violation constraints. Augmenting the 

penalty function to the original cost function of (2.11) yields the generalised fitness 

function given by (3.13). The rule defined in (3.5) ensures that outputs of the generating 

units are within the legal minimum and maximum limits. 

 

Units Pgmin Pgmax a b c 

1 150 455 0.000299 10.1 671 

2 150 455 0.000183 10.2 574 

3 20 130 0.001126 8.8 374 

4 20 130 0.001126 8.8 374 

5 150 470 0.000205 10.4 461 

6 135 460 0.000301 10.1 630 

7 135 465 0.000364 9.8 548 

8 60 300 0.000338 11.2 227 

9 25 162 0.000807 11.2 173 

10 25 160 0.001203 10.7 175 

11 20 80 0.003586 10.2 186 

12 20 80 0.005513 9.9 230 

13 25 85 0.000371 13.1 225 

14 15 55 0.001929 12.1 309 

15 15 55 0.004447 12.4 323 

 
Table 3.13: Generators’ data (limits and cost coefficients) for the 15-unit problem 
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Units P0 UR DR Prohibited Zones 

Zone 1 Zone 2 Zone 3 

1 400 80 120  

2 300 80 120 [185 255] [305 335] [420  450] 

3 105 130 130  

4 100 130 130 

5 90 80 120 [180 200] [305 335] [390  420] 

6 400 80 120 [230 255] [365 395] [430  455] 

7 350 80 120  

8 95 65 100 

9 105 60 100 

10 110 60 100 

11 60 80 80 

12 40 80 80  [30 40]  [55  65]  

13 30 80 80  

14 20 55 55 

15 20 55 55 

 
Table 3.14: Generators’ data (ramp-rates and prohibited zones) for the 15-unit problem 
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Where: Pgrrlim and PZi,k are as defined in (3.7) and (3.9) respectively; q1, q2 and q3 are 

penalty factors for the power balance, ramp-rates and prohibited operating zones 

violations respectively. The values of q1, q3 were determined by experiments, while q2 

was set at 0.01 for uniformity with the specifications of [33, 65]. Using the data from 

these papers, we carried out several rigorous initial experiments to select appropriate 

values for the scaling factor (α) and penalty factors (q1, q2 and q3). Starting with SEA1, 

Tables 3.15, 3.16, 3.17, 3.18 and 3.19 summarise the results of tuning both α and q1, all 

averaged over 30 runs, from where the values: 0.2 and 50,000 respectively were 

selected; while Table 3.20 summarises the results of tuning the q3 for q1 = 50,000 and α 

= 0.2, all average over 30 runs, from where a choice of 0.4 was made. 

 

α 0.1 0.2 0.3 0.4 0.5 0.6 

Av Cost 32,957.44 33,142.36 33,013.07 33,186.51 33,661.90 33,390.89 

Std  Dev 760.61 601.55 463.21 514.72 1145.81 950.63 

 

Table 3.15: Summary of tuning scaling factor (α), for power balance penalty factor (q1) = 5, averaged 

over 30 runs of SEA1 on the 15-unit problem [33, 65] 

 

 

α 0.1 0.2 0.3 0.4 0.5 0.6 

Av Cost 33,293.02 32,625.95 33,039.55 32,627.15 32,640.26 32,723.77 

Std Dev 768.36 670.68 650.67 470.13 876.77 609.79 

 

Table 3.16: Summary of tuning scaling factor (α), for power balance penalty factor (q1) = 50, averaged 

over 30 runs of SEA1 on the 15-unit problem [33, 65] 
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α 0.1 0.2 0.3 0.4 0.5 0.6 

Av Cost 32,943.18 32,654.30 32,734.35 32,725.23 32,711.46 32,659.72 

Std Dev 780.91 486.55 581.99 533.66 532.83 600.90 

 

Table 3.17: Summary of tuning scaling factor (α), for power balance penalty factor (q1) = 500, averaged 

over 30 runs of SEA1 on the 15-unit problem [33, 65] 

 

 

α 0.1 0.2 0.3 0.4 0.5 0.6 

Av Cost 32,673.29 32,768.52 32,705.95 32,668.49 32,637.27 33,195.28 

Std Dev 589.00 663.34 567.20 598.27 430.72 737.99 

 

Table 3.18: Summary of tuning scaling factor (α), for power balance penalty factor (q1) = 5000, averaged 

over 30 runs of SEA1 on the 15-unit problem [33, 65] 

 

 

α 0.1 0.2 0.3 0.4 0.5 0.6 

Av Cost 32,786.10 32,583.07 32,607.42 33,198.10 32,623.41 32,609.63 

Std Dev 696.77 334.57 396.58 475.78 674.77 617.60 

 

Table 3.19: Summary of tuning scaling factor (α), for power balance penalty factor (q1) = 50,000. The 

results are averaged over 30 runs of SEA1 on the 15-unit problem [33, 65] 

 
 

 q3 

0.2 0.4 0.6 0.8 1.0 
Av Cost 32,569.98 32,554.51 32,761.29 32,728.54 32,713.77 
Std Dev 575.86 562.64 567.26 421.53 703.60 

 q3 
1.2 1.4 1.6 1.8 2.0 

Av Cost 32,731.88 32,861.85 32,854.77 32,812.04 32,853.41 
Std Dev 632.39 414.88 585.86 445.42 661.31 

 
Table 3.20: Summary of tuning prohibited operating zones penalty factor (q3), for power balance penalty 

factor (q1) = 50,000 and scaling factor (α) = 0.2, averaged over 30 runs of SEA1 on the 15-unit problem 

[33, 65] 

 

The tuned values for α, q1, q3; tournament size, crossover rate, and smart mutation 

probability from the experiments of 6 units, the same population size and number of 

generations from [33, 65] (for equal number of fitness evaluations) are as shown in 

Table 3.21, which were used for the main experiment involving SEA1, SEA2 and 

SEA3, with results shown in Table 3.22 and Figure 3.8, averaged over 30 runs. 

 

Parameters Values 

Population size 50 

Tournament size 2 

Crossover rate 0.7 

Mutation rate 0.01 

Mutation probability (in SEA2) 0.6 

No of Generations 100 

Elitism Rate 10% 

Α 0.2 

q1 50,000 

q3 0.4 
 

Table 3.21: Experimental parameters and values for the 15-unit problem 
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 SEA1 SEA2 SEA3 BEA [1] PSO [2] GA [2] ES [3] 

Av Cost 32,552.37 32,669.92 32,549.90 33005.02 35122.79 33228 32620 

Std Dev 240.26 279.75 178.59 263.95 1918.62 - - 

Max Cost 33,004.98 33,330.68 32,841.26 33572.28 38044.42 33337 32710 

Min Cost 32,146.66 32,213.09 32,208.12 32774.19 33135.30 33113 32568 

 

Table 3.22: Summary of simulation results for SEA1, SEA2 and SEA3, averaged over 30 runs, and 

comparison with other approaches on the 15-unit problem 

 
 

 
 

Figure 3.8: Distribution of generation costs for SEA1, SEA2 and SEA3, averaged over 30 runs on the 15-

unit problem [33, 65] 

 
 

Units SEA1 SEA2 SEA3 BEA [34] PSO [33] GA [33] ES [65] 

1 396.96 330.12 295.19 402.08 440.50 415.31 455.00 

2 266.38 445.92 310.76 424.99 179.60 359.72 380.00 

3 125.31 88.68 107.58 92.11 21.05 104.43 130.00 

4 117.85 63.22 85.97 119.10 87.14 74.99 150.00 

5 308.33 373.19 446.78 401.60 360.77 380.28 168.92 

6 322.02 457.90 238.81 356.65 395.83 426.79 459.34 

7 460.06 452.62 403.37 157.84 432.01 341.32 430.00 

8 281.33 60.60 293.29 216.38 168.92 124.79 97.42 

9 88.18 36.60 59.25 81.58 162.00 133.14 30.61 

10 53.71 110.61 118.03 114.77 138.43 89.26 142.56 

11 47.77 78.91 71.95 73.29 52.63 60.06 80.00 

12 26.81 53.16 60.35 75.85 66.89 50.00 85.00 

13 66.30 25.71 76.63 69.13 62.75 38.77 15.00 

14 25.99 25.20 42.08 23.93 47.56 41.94 15.00 

15 32.78 36.68 20.02 37.22 27.61 22.64 15.00 

Total Gen 2630.79 2639.13 2630.05 2646.51 2643.68 2668.40 2653.85 

Total Dem  2630.00 2630.00 2630.00 2630.00 2630.00 2630.00 2630.00 

Loss  0.79 9.13 0.05 16.51 13.68 38.40 23.85 

Total Cost  32,771.63 32,651.91 32,556.90 32,561.06 33,135.30 33,113.00 32,568.54 

 

Table 3.23: Resources allocation in the best of 30 runs of SEA1, SEA2 and SEA3, and comparison with 

other approaches on the 15-unit problem 
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Again, the distribution curve of the best solutions in each of the 30 runs, which is shown 

in Figure 3.4, shows a relatively small range of variation, with the costs equally 

distributed between the minimum and maximum costs. Although, SEA3 has the lowest 

average cost of $32,549.90/h, but a solution from SEA1 has the lowest minimum cost of 

$32,146.66/h. A standard T-test (one tailed) with significance level p < 0.1 (confidence 

level 90%) was applied. The results show no significant difference statistically between 

the three approaches for this problem. Simulation results of SEA1, SEA2 and SEA3 

were compared with BEA [34], PSO [33], GA [33], and ES [65], with the same data. 

Tables 3.22 and 3.23 summarise the comparison results, including the best resources 

allocation. Table 3.22 shows that the results of SEA1, SEA2 and SEA3 were better than 

those of the other approaches. However, we noted that the generation cost from the 

minimum cost of PSO reported in [33] works out to the value shown in Table 3.23, but 

is wrongly calculated and/or reported in [33]. Although, there is not much difference in 

the generation costs of BEA, SEA1, SEA2, SEA3 and ES approaches, the much reduced 

power loss in SEA1, SEA2 and SEA3 is evident of the smart behaviour of the three 

approaches. Besides having lower generation costs, they did not over produce beyond 

the customers demand. The cost of the over generated electricity lost in ES is $292.69/h, 

against $202.58/h, $9.69/h, $112.03/h and $0.61/h respectively for BEA, SEA1, SEA2 

and SEA3. The generation cost and power loss of $32,556.90/h and 0.05MW from the 

best resources allocation of SEA3 (Table 3.23) are the lowest we have seen in the 

literature to date for this problem, while meeting load demand.   

 

3.4.3 Test Case III: 20 Generators 

In [33, 56], the SELD problem was solved using improved Particle Swarm Optimisation 

(PSO), Lamda-Iteration Method (LIM) and Hopfield Neural Network (HNN) to 

determine the optimal combination of the power outputs of 20 generators that will 

minimise the total fuel cost, satisfying power demand and considering power losses. 

This problem case investigates the performance of SEA in larger problem case, with the 

same overall fitness function as in the 6-unit problem case. The total load demand was 

2500 MW. Table 3.24 shows the parameters for generating unit capacity and cost 

coefficients, while the B-matrix loss coefficient is available from [33]. 
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Units P min P max a b c 

1 150 600 0.00068 18.19 1000 

2 50 200 0.00071 19.26 970 

3 50 200 0.00650 19.80 600 

4 50 200 0.00500 19.10 700 

5 50 160 0.00738 18.10 420 

6 20 100 0.00612 19.26 360 

7 25 125 0.00790 17.14 490 

8 50 150 0.00813 18.92 660 

9 50 200 0.00522 18.27 765 

10 30 150 0.00573 18.92 770 

11 100 300 0.00480 16.69 800 

12 150 500 0.00310 16.76 970 

13 40 160 0.00850 17.36 900 

14 20 130 0.00511 18.70 700 

15 25 185 0.00398 18.70 450 

16 20 80 0.07120 14.26 370 

17 30 85 0.00890 19.14 480 

18 30 120 0.00713 18.92 680 

19 40 120 0.00622 18.47 700 

20 30 100 0.00773 19.79 850 

 

Table 3.24: Generators’ data for the 20-unit problem 

 

 

We performed several initial experiments to select appropriate values for scaling factor 

and load balance penalty factors. Starting with SEA1, and using the previously tuned 

values of the parameters from the experiments of 3.4.1, Tables 3.25 and 3.26 summarise 

the results of tuning q1 and α, from where the values: 50,000 and 0.2 were selected 

respectively, average over 30 runs. Their respective resources allocations for the best of 

30 runs are shown in Tables 3.27 and 3.28. This is in terms of lower cost of generation 

and meeting load demand.  

 
 

 q1 

5 10 50 500 5,000 50,000 500,000 

Ave Cost 61552.11 61705.44 61782.95 61745.74 61600.49 61108.99 61710.03 

Std Dev 667.18 497.58 771.90 795.51 647.75 547.51 740.68 

 

Table 3.25: Summary of results for tuning power balance penalty factor (q1), averaged over 30 runs of 

SEA1, on the 20-unit problem 

 

  

 Α 

 0.1 0.2 0.3 0.4 0.5 

Ave Cost 61569.85 61108.99 61470.32 61487.66 61664.60 

Std Dev 807.29 547.51 570.23 672.05 679.05 

 Α 

0.6 0.7 0.8 0.9 1.0 

Ave Cost 61255.18 61371.29 61743.99 61406.48 61900.04 

Std Dev 901.48 625.59 501.21 541.59 1097.01 

 

Table 3.26: Summary of results for tuning scaling factor (α), averaged over 30 runs of SEA1 on the 20-

unit problem 
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Units 

 

q1 

5 10 50 500 5,000 50,000 500,000 

1 541.87 318.62 488.71 390.97 307.89 212.08 386.69 

2 191.59 155.34 65.41 88.84 125.65 75.33 101.72 

3 100.73 80.44 112.53 69.68 108.83 159.53 70.46 

4 151.07 198.61 96.77 73.51 101.43 153.53 78.34 

5 107.58 140.25 76.50 80.94 64.88 145.30 126.46 

6 39.25 98.89 53.54 21.59 36.07 31.89 59.64 

7 120.19 107.13 91.99 104.19 76.19 41.08 101.40 

8 68.31 81.04 149.31 146.89 129.49 142.45 61.10 

9 146.19 162.19 130.33 122.25 119.11 74.34 127.23 

10 82.06 33.78 72.61 130.62 148.31 117.10 52.56 

11 131.99 207.13 221.71 207.83 277.63 281.14 226.03 

12 197.05 210.50 388.51 431.27 469.72 413.08 451.76 

13 83.52 154.80 82.43 152.44 109.93 96.47 125.94 

14 125.21 110.62 98.31 43.36 96.66 127.99 80.99 

15 116.68 117.95 159.69 142.64 118.09 79.41 172.67 

16 49.59 48.05 24.31 35.50 28.30 40.04 45.38 

17 46.94 46.62 33.79 52.43 32.63 53.01 43.51 

18 61.74 76.90 35.79 87.36 35.63 110.82 44.70 

19 53.56 72.57 71.09 60.75 60.41 70.10 95.52 

20 86.08 83.21 52.49 70.59 55.11 75.77 54.99 

Total Gen 2501.19 2504.64 2505.83 2505.65 2501.96 2500.22 2507.09 

Total Dem 2500.00 2500.00 2500.00 2500.00 2500.00 2500.00 2500.00 

Total Cost 60801.21 60999.65 60692.22 60711.04 60720.35 60522.37 60580.86 

Loss 1.19 4.64 5.83 5.65 1.96 0.22 7.09 

 

Table 3.27: Resources allocation in the best of 30 runs of SEA1, for different power balance penalty 

factor (q1), on the 20-unit problem 

 
 

 

The tuned values α, q1, and those of tournament size, crossover rate, and smart mutation 

probability from experiments of 3.4.1; including the same population size and number 

of generations from [33, 56] (for uniformity of equal number of fitness evaluations) are 

as shown in Table 3.29, which were used for the main experiment, with results shown in 

Table 3.30 and Figure 3.9, average over 30 runs. 
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Units α 

0.1 0.2 0.3 0.4 0.5 

1 306.73 212.08 364.17 253.32 530.27 

2 151.69 75.33 176.68 131.13 152.06 

3 116.50 159.53 67.03 148.42 92.85 

4 174.69 153.53 167.47 108.47 102.09 

5 77.89 145.30 70.26 58.49 50.27 

6 73.81 31.89 48.84 57.68 72.90 

7 65.13 41.08 31.10 120.67 68.04 

8 79.19 142.45 90.30 99.26 137.26 

9 129.16 74.34 149.84 150.52 102.40 

10 105.37 117.10 37.09 104.92 77.89 

11 235.31 281.14 238.77 273.32 150.59 

12 439.05 413.08 468.90 296.66 299.14 

13 73.28 96.47 119.42 130.16 72.58 

14 125.38 127.99 52.87 32.20 121.37 

15 61.55 79.41 90.60 122.51 165.91 

16 57.53 40.04 72.16 74.00 53.86 

17 39.44 53.01 58.67 81.92 63.02 

18 68.59 110.82 35.65 99.23 43.81 

19 52.38 70.10 96.70 81.77 86.11 

20 20.10 75.77 64.24 79.32 60.26 

Total Gen 2501.78 2500.22 2500.75 2503.97 2502.65 

Total Dem 2500.00 2500.00 2500.00 2500.00 2500.00 

Total Cost 60837.01 60522.37 60732.54 61054.07 60772.39 

Loss 1.78 0.22 0.75 3.97 2.65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.28: Resources allocation in the best of 30 runs of SEA1, for different scaling factor (α), on the 20-

unit problem, for power balance penalty factor (q1) = 50,000 

 

 

 

Units α 

0.6 0.7 0.8 0.9 1.0 

1 582.80 438.73 533.40 504.56 388.85 

2 96.93 184.64 112.56 171.65 171.84 

3 54.50 52.01 124.79 83.91 176.84 

4 146.56 79.89 103.17 119.05 176.10 

5 142.65 144.39 94.62 130.40 81.16 

6 43.12 73.90 52.25 20.85 28.91 

7 105.69 88.29 91.98 36.96 93.04 

8 50.54 109.39 85.64 63.52 107.64 

9 136.80 60.98 53.21 198.31 166.47 

10 62.43 145.21 148.29 44.47 92.87 

11 158.88 178.21 121.28 109.13 138.71 

12 354.77 339.44 410.90 417.83 254.69 

13 139.27 153.47 53.70 56.18 97.55 

14 83.78 73.97 96.33 82.55 121.59 

15 46.42 25.25 116.21 143.47 98.93 

16 29.39 28.85 47.11 39.10 45.91 

17 38.52 52.90 59.62 65.90 75.61 

18 118.97 100.20 66.54 50.19 76.74 

19 47.14 89.50 78.88 83.79 52.61 

20 65.61 89.74 57.07 78.20 53.99 

Total Gen 2504.77 2508.97 2507.54 2500.03 2500.05 

Total Dem 2500.00 2500.00 2500.00 2500.00 2500.00 

Total Cost 60576.81 60848.93 60850.22 60718.27 61028.95 

Loss 4.77 8.97 7.54 0.03 0.05 
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Parameters Values 

Population size 30 

Tournament size 2 

Crossover rate 0.7 

Mutation rate 0.01 

Mutation probability (in SEA2) 0.6 

No of Generations 100 

Elitism Rate 10% 

Α 0.2 

q1 50,000 

 

Table 3.29: Experimental parameters and values for the 20-unit problem 

 

 

 
 

Figure 3.9: Distribution of generation costs for SEA1, SEA2 and SEA3, averaged over 30 runs on the 20-

unit problem [33, 56] 

 

 

Simulation of SEA1, SEA2 and SEA3 were compared with BEA [34], particle swarm 

optimisation (PSO) [33], Lambda-iteration method (LIM) [56] and Hopefield neural 

network (HNN) [56], all with the same set of data.  

 

 SEA1 SEA2 SEA3 BEA [34] PSO [33] LIM [56] HNN [56] 

Av Cost  60,492.99 60,671.28 60,659.80 61,654.76 61,171.84 - - 

Std Dev  464.65 442.11 331.24 515.57 532.44 - - 

Max Cost 61,422.78 61,359.72 61,498.31 62,648.52 63,184.63 - - 

Min Cost 59,588.38 59,687.80 60,003.02 60,727.19 60,760.25 62,456.64 62,456.63 

 

Table 3.30: Summary of results, averaged over 30 runs for SEA1, SEA2 and SEA3, and comparison with 

other approaches on the 20-unit problem 
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Units SEA1 SEA2 SEA3 BEA [34] PSO [33] LIM [56] HNN [56] 

1 289.17 482.25 598.68 520.89 536.32 512.7805 512.7804 

2 143.69 186.31 90.90 115.14 106.56 169.1033 169.1035 

3 139.32 77.08 63.61 122.24 98.71 126.8898 126.8897 

4 53.29 88.32 87.35 94.36 117.32 102.8657 102.8656 

5 110.31 100.97 113.77 86.18 67.08 113.6836 113.6836 

6 93.32 23.15 46.52 60.39 51.47 73.5710 73.5709 

7 121.79 97.58 118.37 56.63 47.73 115.2878 115.2876 

8 116.38 122.65 120.57 87.13 82.43 116.3994 116.3994 

9 89.77 154.67 74.99 49.45 52.09 100.4062 100.4063 

10 125.11 111.42 88.70 114.46 106.51 106.0267 106.0267 

11 255.72 159.23 215.88 200.39 197.94 150.2394 150.2395 

12 315.95 367.03 233.96 410.74 488.33 292.7648 292.7647 

13 65.91 99.12 153.89 117.98 99.95 119.1154 119.1155 

14 112.47 49.61 84.57 65.63 79.89 30.8340 30.8342 

15 80.27 85.92 132.17 125.34 101.53 115.8057 115.8056 

16 38.32 52.92 36.65 33.21 25.84 36.2545 36.2545 

17 58.66 69.92 43.61 82.43 70.02 66.8590 66.8590 

18 94.51 52.46 41.88 60.43 53.95 87.9720 87.9720 

19 117.02 46.76 94.70 71.28 65.43 100.8033 100.8033 

20 79.06 73.70 59.23 34.01 36.26 54.3050 54.3050 

Total Gen  2500.02 2501.06 2500.00 2508.31 2512.33 2591.9671 2591.97 

Total Dem 2500.00 2500.00 2500.00 2500.00 2500.00 2500.00 2500.00 

Total Cost 60846.10 60609.72 60483.14 60727.19 60760.25 62456.64 62456.63 

Loss 0.02 1.06 0.00 8.31 12.33 91.97 91.97 

 

Table 3.31: Resources allocation in the best of 30 runs of SEA1, SEA2 and SEA3, and comparison with 

other approaches on the 20-unit problem 

 

Tables 3.30 and 3.31 summarise the comparison results. The distribution curve of the 

best solutions in each of the 30 runs as shown in Figure 3.8, alongside Table 3.30 shows 

that the range of variation of the total costs from each run is also relatively smallest in 

SEA3. From Table 3.30, SEA1 has both lowest average cost and lowest minimum cost. 

Generally, the results of SEA1, SEA2 and SEA3 were better than those of the other 

approaches. Again, the minimum cost of PSO reported in [33] works out to the value 

shown in Table 3.32, but is wrongly calculated and/or reported in [33]. In Table 4.31, 

SEA3 has the lowest generation cost of $60483/h; against $60609.72/h, $60727.19/h, 

$60760.25/h, $60846.10/h, $62456.63/h and $62456.64/h respectively for SEA2, BEA, 

PSO, SEA1, LIM and HNN. No power was lost in SEA3, as it exactly generated the 

customers’ load demand of 2500MW; against 0.02MW, 1.06MW, 8.3139MW, 

12.33MW, in  SEA1, SEA2, BEA, PSO respectively, and 91.97MW in both LIM and 

HNN. Standard T-test (one tailed) with significant level p < 0.1 was applied to see 

which method is better.  We confirmed that SEA1 is superior to SEA3 with 94% 

confidence, SEA1 is superior to SEA2 with 93% confidence, and SEA1 is superior to 

BEA with 95% confidence. As noted in Table 3.31, the generation cost of $60,483/h 

from the best resources allocation/dispatch of SEA3 is the lowest we have seen in the 

literature to date for this problem case, while meeting the load demand.   
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3.7 Summary 

The chapter described and evaluated a novel smart EA used to solve SELD problems. 

We considered practical instances of SELD problems involving generation limits, 

power balance, ramp-rates and prohibited operating zones constraints and described the 

mechanisms for handling any of the violated constraints.  We developed three versions 

of the smart mutation operator and performed rigorous genetic tuning of genetic 

parameters to select values for further experimental runs in the three versions on three 

benchmark cases involving 6, 15 and 20 generating units; the ones commonly explored 

in recent literature, with a focus on the larger problem cases. We compared results with 

those reported for a range of recent alternative algorithms, where they exhibited 

superior performances. In the 6-unit problem case, simulation results of SEA1, SEA2 

and SEA3 were compared with BEA [34], DE [54], GA [54], SLP [94] and QN [36], 

with the same set of data. On the basis of the best resources allocation to the units, they 

were all better in terms of both lower generation costs and lower power losses. On the 

basis of constraints handling capabilities using cost and penalty curves, SEA3 proved 

the optimisation approach. In the 15-unit problem case, simulation results of SEA1, 

SEA2 and SEA3 were compared with BEA [34], PSO [33], GA [33], and ES [65], with 

the same data. From the results, there is not much difference in the generation cost using 

BEA, SEA1, SEA2, SEA3 and ES approaches, but they did not over produce electricity. 

In the 20-unit problem case, generally, the results of SEA1, SEA2 and SEA3 were 

better than those of BEA [34], PSO [33], LIM [56] and HNN [56], all with the same set 

of data. Both lowest average cost and lowest minimum cost were realised using SEA1, 

but the best resources allocation of these approaches (Table 3.31) reveals a lowest 

generation cost being realised using SEA3; and no power was lost.  From the above 

results, SEA1 and SEA3 appear to be the best optimising approaches in this problem.    
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Chapter 4 

 
 

A New Evolutionary Algorithm for the 

Dynamic Economic Load Dispatch 

Problem 
 

In dynamic environments, optimisation problems change over time. They are also called 

time-dependent problems or dynamic time-linkage problems, where decisions made at a 

given time may affect output obtained in a later time [1, 95]. It is expected of algorithms 

solving dynamic optimisation problems to both locate optimal solutions of the given 

problem and keep track of such solutions as they change with time. We show in this 

chapter how the SELD has been extended by others to the dynamic context, and then we 

extend our approach to solve it. From the experiments that provided superior results on 

the SELD using three versions of the smart mutation operator, we adapt the algorithm 

for the dynamic case, and investigate three optimisation approaches. This chapter 

compares the results of our algorithms on two published dynamic ELD test cases, 

systems of 5 and 10 generators with identified methods from the literature. These are 

the major test cases in the literature for which we have comparative results for other 

algorithms. We also describe, present and evaluate results of 18 variants of the dynamic 

approach.  

 

4.1  From SELD to DELD Optimisation 

DELD optimisation is an extension of SELD optimisation in the context of electrical 

power generation [4, 5]. The goal is to determine the optimal power generation schedule 

of on-line generators in a real time basis.  In the static problems, the purpose is to 

optimise the settings for each unit in a generating station so as to supply sufficient 

power to meet a given overall predicted demand for minimal cost. In the dynamic 

problems, predicted demand exists for each of a number of successive periods (e.g. 

hourly periods), and the static problems are solved for each period. The generated 

power of each unit is determined with respect to predicted load demand over the 
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dispatch period. Traditionally, SELD minimises the total generation cost among the 

committed units satisfying all constraints. But in practical systems involving ramp-rate 

limits, operational decisions at a given hour affect the decision at a later hour. Due to 

the change in load conditions arising from these limits, the power generation has to be 

altered to meet the demand [2]. This is a major limitation of SELD optimisation. To 

solve this problem, DELD takes into consideration the dynamic costs involved in 

changing from one output level to another [5]. Until recently, DELD has been treated as 

a series of static problems. It is therefore, now, an accurate formulation of the ELD 

problem on a real time basis, but also a difficult and complex optimisation task.  

 

While optimum static dispatch problems have received considerable attention since 

1920 or even earlier, the dynamic dispatch problem was first introduced in 1972 by 

Bechert and Kwatny [6, 96].  Initially formulated as optimal control dynamic dispatch 

(OCDD), it modelled power system generation by means of state equations where the 

state variables are the outputs of the generators and the control inputs are the generators’ 

ramp rates [40, 51]. In a later approach, the optimisation was carried out with respect to 

the dispatchable powers of the committed generation units, formulated as a 

minimisation problem of the total cost over the dispatch period under some constraints 

[51]. This formulation is known as dynamic economic load dispatch (DELD). In this 

chapter, we extend the SELD formulation to a dynamic context, implement three 

dynamic approaches using the earlier developed smart mutation operator, and test on 

two cases. 

 

4.2   Steps in DELD Optimisation  

In the most general terms, the following steps are taken to formulate a DELD problem 

in any given scenario. 

 

1) Select an appropriate objective function representing the problem: 

a. Minimisation of total cost (main objective); 

b. Minimisation of emissions (oxides of carbon, nitrogen and sulphur). This 

may be considered as a constraint, with the resulting problem referred to 

as emission constrained economic load dispatch (ECELD), or in 

conjunction with cost minimisation. 

c. Maximisation of profits (revenue minus cost). This is used in deregulated 

electricity market, detailed in Chapter 5. 
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2) Determine the constraints under which the problem will be solved – equality, 

inequality and dynamic. 

a. Load balance; 

b. Ramp-rate limits; 

c. Generation capacity; 

d. Security constraints; 

e. Emission constraints. 

3) Choose a suitable optimisation method which gives an optimal solution within 

acceptable computational time. The choice of the optimisation method depends 

on several considerations, such as: 

a. Type of objective function; 

i. Linear/non-linear; 

ii. Smooth/non-smooth; 

iii. Convex/non-convex. 

b. Constraints; 

c. Complexity of problem. 

For DELD with smooth, convex and incrementally increasing cost function, 

mathematical programming (gradient-based) methods are used. For non-smooth 

or non-convex cost functions (problems with valve-point effects, ramp-rate 

limits and prohibited operating zones), artificial intelligent methods are used. 

 

4.3   Previous DELD Solution Approaches 

The development of DELD formulations and approaches is a dynamic research area, 

due to the dynamic nature of power systems and large variations of load demands. 

Solution is achieved by means of discretisation of the entire dispatch period into a 

number of small intervals over which the load is assumed to be constant and the system 

in a temporal steady state [40]. Various methods have been applied to solve the DELD 

in the past decades with varying degree of success, in terms of yielding an optimal 

solution, and possibility of getting stuck at local optima.  Recent solutions to DELD 

problems with non-smooth and non-convex cost functions include: General algebraic 

modelling system [5], Maclaurin Series-Based Lagrangian Method [6], Sequential 

Approach with Matrix Framework [96], Fuzzy-Optimisation Approach [97], Genetic 

Algorithm [98, 99], Hopfield Neural Network/Quadratic Programming [100], Swarm 

Intelligence-Based Harmony Search Algorithm [101], Particle Swarm Optimisation [4, 

102, 103, 104, 105, 106], Evolutionary Programming/Sequential Quadratic 



 

102 

Programming [107], Differential Evolution [108, 109], Simulated Annealing [64] Fuzzy 

Logic/Simulated Annealing [110], Clonal Selection Algorithm [111].  

 

The major common difficulty with all these methods is choosing control parameters. 

The approach in [6] is simple and easy to implement, with a fast convergence rate, low 

computational time demands, and produces a unique solution, unlike other stochastic 

search methods. However, it is mainly applicable to low-dimensional and relatively 

simple functions. For large power systems, the sequential approach with matrix 

framework suffers from the curse of dimensionality due to the matrix size and coupled 

with the sequentiality of the algorithm. In [99], a hybrid approach to the DELD problem 

was explored, where calculus of variations and a GA jointly optimise the variables, with 

the GA focussing on penalty weighting parameters. However, a problem involving only 

3 generating units was considered and they were not sure of its applicability to larger 

systems. 

 

Artificially intelligent methods such as GA, ANN, FL, EP, DE, SA, and PSO have 

attracted great interest in the recent past for realising optimal solutions, and applied to 

solve DELD problems [96, 106, 107]. However, they are population-based search 

methods, with random control parameters, and where the number of the search variables 

are large and highly correlated, realising global optimal solutions becomes a problem 

due to the large dimensionality of the dynamic dispatch [96, 106]. 

 

4.4  DELD Problem Formulation and Constraints 

 The main objective of a DELD problem formulation [103,105] is to simultaneously 

minimise the generation cost and meet the consumers’ load demand over a given period 

of time while satisfying three major constraints – load demand balance, generation limit 

and ramp rates. The SELD objective function of (2.11) is modified to DELD, as shown: 
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         (4.1) 

 

Where, CT is the total operating cost over the whole dispatch period, T is the number of 

intervals in time in the scheduled horizon, N is the number of generating units, and Ci,t 

(Pgi,t) is the fuel cost of i
th

 generating unit at time, t, for real power output (Pg). We use 

the cost function with valve-point loadings effect, represented as the sum of the smooth 
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quadratic function and the absolute value of the sinusoidal function given in (2.19), with 

the power balance, generation limit and ramp-rates limit constraints modified 

dynamically as shown in (4.2) to (4.10). 

 

Power Balance: 
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        (4.2) 

 

Where, t = 1, 2, 3… T, PD,t is the total system power demand at time, t, PL,t is the 

transmission power losses at time interval, t, which is given by: 
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     (4.3) 

 

Generation Limit: 

max
,

min
itii PgPgPg          (4.4) 

 

Where, Pgi
min

 and Pgi
max

 are the lower and upper limits of the i
th

 generating unit 

respectively, for i = 1, 2, 3… N and t = 1, 2, 3… T. 

 

Ramp-Rates Limit: 

The decisions at the current time period will affect the decisions at a later time period 

due to variation in power demands over time. There exist three possible cases in actual 

operation of the units [65, 78]: steady state condition, increasing generation and 

decreasing generation conditions, as shown in Figure 4.1 (a), (b) and (c) respectively.  

 

 
 

         Figure 4.1: Three possible situations of an on-line generator due to ramp-rates 
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For steady state: 

1,,  titi PgPg          (4.5) 

 

If Generation increases: 

ititi URPgPg  1,,
                         (4.6) 

 

If Generation decreases: 

ititi DRPgPg  ,1,
        (4.7) 

 

Where, Pgi, t-1 is the power generation of unit i at the previous time period, URi and DRi 

are ramp-up and ramp-down limits of generating unit i, respectively, for: i = 1, 2, 3… N 

and t = 1, 2, 3… T. Therefore the constraint of (4.4) due to dynamic ramp-rates is 

modified as: 

 

),min(),max( ,
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min
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   (4.8) 

 

Where: 

),max( 1,
min
,

min
, itititi DRPgPgPg  

                 (4.9) 

 

),min( 1,
max
,

max
, itititi URPgPgPg  

                 (4.10) 

 

4.5  SEA for the DELD Problem 

We investigate three dynamic optimisation approaches used in solving DELD problems 

with valve-point effects and ramp-rate dynamic constraint for a 24-hour dispatch period.  

 

4.5.1 Problem Representation 

Assuming there are N generators and T dispatch periods, the control variables can be 

represented by the following array, with N x T as dimension: 
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Where Pg
j
 is the j

th
 element in the solution space, PgiT is the output of generator i at 

time T.  

 

4.5.2  Dynamic Optimisation Approaches 

In this formulation, we took SEAs that have recently provided superior results on the 

three benchmark problems of SELD, adapted them for the dynamic case, and 

investigated three dynamic optimisation methods (M1, M2 and M3): 

1. M1 is a baseline dynamic optimisation method; it solves the dynamic form of 

the problem, but by solving the static problems in sequence; 

2. M2 involves solving the static problems together, treated as a single multi-part 

problem with suitably adjusted constraints; 

3. M3 extends M2, with the final population of previous periods being used to 

initialise the populations of subsequent periods.  

 

4.5.3 A Solution Algorithm Procedure for the DELD Problem 

Starting with initial feasible solution vectors of (4.12), we describe here the flow of 

work for the implementation of the dynamic approaches. 

 

)]()[( NT2T,1T,N131,21,11, PgPgPgPgPgPgPgPg              (4.12) 

 

i. Read system data. 

ii. Initialise randomly at the first period, the population of chromosome within the 

generating units’ range of operation according to the specifications of M1, M2 

and M3. 

iii. Uniform gene distribution ensures that the values of the generators’ outputs are 

within the legal minimum and maximum limits defined in (3.5). This is modified 

dynamically as: 
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Where: α is a scaling factor (user-defined small positive number less than one).  

 

iv. With additional dynamic constraints involved (load balance and ramp rate 

limits) across the dispatch periods, handling constraints violation becomes a 

harder task, and consequently smart mutation is not as straightforward as in 

SELD.  There exists also a complexity in realising an optimum solution in this 

formulation due to the presence of valve-point loading effects, which creates 

additional ruggedness in the cost curve and is likely to increase the density of 

local optima.  

v. In a given dispatch period, the initial population of chromosomes contains 

feasible genes (outputs for each generating unit) which must be within the 

minimum and maximum generation limits according to (4.13).  

vi. Checks are made to ensure that violations in power balance and ramp-rate limits 

constraints are handled. Violation of either or both of them constitutes the 

penalty in this case. The mechanisms of handling these constraints were 

described in section 3.3.2. 

vii. Compute costs of individual genes using the objective function of (4.1). 

viii. The genes with the highest cost, including those that violate load balance and/or 

ramp-rates constraints are subject of the smart mutation. 

ix. The penalties augment the objective function to form the generalised fitness 

function of equation (4.14), used in a similar problem case of [101, 108]. 
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Where: q1 and q2 are penalty terms which reflect the violation of the power 

balance and ramp-rates constraints respectively, assigning a high cost of penalty 

to affected ones far from the feasible region.   

 

x. Output the best compromising solution vector for each of the dispatch periods: 

 

)]()[( ,2,11,31,21,11 NTTTN PgPgPgPgPgPgPgPg                  (4.15)
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4.6 Experimental Design and Simulation Results 

The performances of M1, M2 and M3 were tested in two different problem cases 

involving 5 and 10 generators. The results of parameter tunings for the evolutionary 

runs and penalty parameters q1 and q2 in (4.14), are as described in the experiments of 

chapter 3. A total of 18 experiments were carried out, making use of SEA1, SEA2 and 

SEA3 (from chapter 3) for each of M1, M2 and M3 in both 5 and 10 generators. 

 

4.6.1 Case I: 5 Generators 

The generators’ data and load demand in each hour are shown in Tables 4.1 and 4.2 

respectively, which were taken from [6, 102, 108, 109]. The loss coefficients matrix is 

given in (4.16). The dispatch period is an arbitrary 24 hours and losses were considered. 

Simulation of the algorithm was made for 30 runs, with the hourly costs for SEA1, 

SEA2 and SEA3 in each of M1, M2 and M3 given in Table 4.3, while Table 4.4 

compares the results with other approaches in the literature using the same set of data.  

 

Unit ai 

$/h 

bi 

$/MWh 

ci 

$/(MW)
2
h 

ei 

$/h 

fi 

1/MW 

Pi
min

 

MW 

Pi
max

 

MW 

UR DR 

1 25 2.0 0.0080 100 0.042 10 75 30 30 

2 60 1.8 0.0030 140 0.040 20 125 30 30 

3 100 2.1 0.0012 160 0.038 30 175 40 40 

4 120 2.0 0.0010 180 0.037 40 250 50 50 

5 40 1.8 0.0015 200 0.035 50 300 50 50 

 

Table 4.1:  Generators’ data for the 5-unit problem, taken from [6, 102, 108, 109] 
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Period 

(Hour) 

Load 

(MW) 

Period 

(Hour) 

Load 

(MW) 

Period 

(Hour) 

Load 

(MW) 

Period 

(Hour) 

Load 

(MW) 

1 410 7 626 13 704 19 654 

2 435 8 654 14 690 20 704 

3 475 9 690 15 654 21 680 

4 530 10 704 16 580 22 605 

5 558 11 720 17 558 23 527 

6 608 12 740 18 608 24 463 

 

          Table 4.2:  Hourly load demand for the 5-unit problem, taken from [6, 102, 108, 109] 
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Hour M1 M2 M3 

SEA1 SEA2 SEA3 SEA1 SEA2 SEA3 SEA1 SEA2 SEA3 

1 1646.82 1590.39 1480.86 1617.40 1590.78 1611.09 1542.27 1587.03 1508.49 

2 1756.98 1594.84 1528.35 1646.99 1667.11 1658.81 1615.11 1685.58 1579.03 

3 1673.56 1624.81 1604.98 1665.97 1657.17 1789.49 1650.18 1673.40 1663.93 

4 1847.47 1683.50 1662.49 1768.70 1752.72 1848.14 1830.90 1766.13 1726.54 

5 1860.56 1789.59 1757.44 1808.95 1936.41 1835.29 1842.68 1915.13 1782.90 

6 2067.11 1925.39 1943.08 2001.13 1914.91 1901.05 1909.81 1929.46 1849.05 

7 2055.72 1962.25 1933.60 2093.54 1895.70 1930.68 1962.25 1888.83 1838.46 

8 2066.91 2010.32 2003.64 2059.04 1906.76 1920.18 2010.32 1904.95 1911.67 

9 2150.78 2090.26 2096.37 2114.96 1993.82 1899.48 2090.26 1962.76 1892.80 

10 2255.42 2173.67 2121.94 2130.19 2033.66 1932.01 2165.05 2017.54 1950.94 

11 2272.31 2171.65 2140.43 2150.46 2197.13 1836.63 2120.43 1997.92 1790.95 

12 2297.44 2225.73 2280.74 2084.66 2124.66 1844.66 2112.56 2027.72 1827.45 

13 2217.35 2187.57 2130.41 2208.62 2146.13 1867.34 2108.30 2039.44 1850.53 

14 2244.22 2112.98 2103.93 2193.17 2187.55 1916.75 2073.03 1989.88 1922.89 

15 2131.26 2145.01 1978.04 2192.03 2114.59 1907.77 1972.87 1991.86 1893.28 

16 1985.26 1908.59 1924.83 2054.26 1920.37 1911.12 1891.49 1894.66 1867.16 

17 1895.88 1823.78 1744.80 1972.13 1915.78 1917.19 1734.05 1935.75 1831.04 

18 1983.59 1936.27 1923.54 2029.02 1898.46 1976.09 1917.25 1853.46 1874.35 

19 2100.15 2014.84 1979.08 1902.70 1995.21 1910.49 1939.36 1886.44 1896.29 

20 2266.59 2181.62 2134.24 1913.84 2030.30 1918.76 1920.51 1985.91 1914.25 

21 1953.88 1930.19 1902.16 1872.82 1999.92 1873.74 1905.38 1910.93 1832.89 

22 1954.74 1950.85 1975.22 1845.43 1713.15 1919.60 1867.29 1847.69 1901.64 

23 1860.02 1827.82 1773.09 1785.91 1709.48 1879.93 1712.58 1802.90 1782.82 

24 1701.37 1731.69 1583.11 1873.91 1670.39 1878.00 1582.90 1762.05 1701.60 

Total 48,245.39 46,493.59 45,706.37 46,985.80 45,972.22 44,884.35 45,476.82 45,257.42 43,590.76 

 

Table 4.3: Hourly costs of the 9 dynamic approaches, averaged over 30 runs on the 5-unit problem 

 

Approach Min Cost ($/hr) Av  Cost ($/hr) Max  Cost ($/hr) 

PSO [6] 50,124.00 - - 

PSO [4] 49,970.43 50216.59 51803.30 

MSL [6] 49,216.81 - - 

SA [64] 47,356.00 - - 

EAPSO [102] 43,784.00 43,794.00 44,041.00 

Clonal [111] 43,446.22 - - 

DE [101] 43,213.00 43,813.00 44,247.00 

HHS[101] 43,154.86 - - 

M1_SEA1 46,985.74 48,245.39 49,417.14 

M1_SEA2 45,414.51 46,493.59 49,711.25 

M1_SEA3 44,810.20 45,706.37 46,655.38 

M2_SEA1 45,680.25 46,985.80 48,104.08 

M2_SEA2 42,125.08 45,972.22 47,379.97 

M2_SEA3 38,638.89 44,884.35 48,437.36 

M3_SEA1 44,325.67 45,476.82 46,451.82 

M3_SEA2 41,704.25 45,257.42 48,280.88 

M3_SEA3 40,837.70 43,590.76 46,395.08 

 

Table 4.4: Summary of costs of the 9 dynamic approaches, averaged over 30 runs and comparison with other 

approaches on the 5-unit problem 

 

Table 4.4 reveals that M2_SEA3 and M3_SEA3 seem to be the best two dynamic  

optimisation approaches for this problem, with the former having the lowest minimum 

cost and the latter having the lowest average cost over 30 runs among the 9 approaches. 

To further explore the differences between the two approaches, we make a plot of the 

variation of their generation costs across the 24 hours dispatch period, as shown in 

Figure 4.2 (averaged over 30 runs).  
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Figure 4.2: Variation of costs of the best two approaches (M2_SEA3 and M3_SEA3), averaged over 30 

runs, in the entire dispatch, on the 5-unit problem 
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Figure 4.3: Load curve comparing the best approach (M3_SEA3) and worst approach (M1 SEA1), 

averaged over 30 runs, with load demand on the 5-unit problem 

 

 

From the curve, it is clear that M3_SEA3 outperforms M2_SEA3. Standard T-test (one-

tailed) with confidence level p < 0.1 (90% confidence) was applied to see if this 

difference was statistically significant. With 97% confidence, we confirmed by 

experimental results that M3_SEA3 is superior to M2_SEA3 (p < 0.03).  Figure 4.3 is a 

load curve distribution comparing the best and worst approaches (M3_SEA3 and 

M1_SEA1) respectively, with the load demand across the entire dispatch. Being a 

smaller problem case, all the 9 approaches performed relatively well, confirming the 

performance efficiency of the SEAs.  Table 4.5 shows the resources allocation in the 

best of 30 runs of M3_SEA3. 
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Hour Unit 1 Unit  2 Unit  3 Unit  4 Unit  5 Total Gen Power Dem Loss 

1 55.95 48.53 102.50 101.75 103.91 412.65 410 2.65 

2 11.68 85.48 38.58 187.98 123.53 447.25 435 12.25 

3 45.66 88.52 45.97 220.10 75.19 475.44 475 0.44 

4 40.29 119.52 121.15 72.43 177.34 530.73 530 0.73 

5 58.37 36.13 129.48 141.09 194.85 559.93 558 1.93 

6 40.16 116.94 72.47 127.07 263.27 619.92 608 11.92 

7 23.99 66.46 154.50 204.16 182.51 631.63 626 5.63 

8 46.61 111.47 123.59 151.18 227.65 660.51 654 6.51 

9 28.99 61.37 143.64 217.51 240.21 691.71 690 1.71 

10 64.02 58.59 115.99 235.61 230.82 705.03 704 1.03 

11 12.67 88.14 157.76 198.53 269.80 726.90 720 6.90 

12 47.36 67.41 164.07 201.92 264.84 745.60 740 5.60 

13 60.73 75.93 142.12 180.72 253.79 713.28 704 9.28 

14 53.89 60.59 150.14 156.54 275.85 697.02 690 7.02 

15 51.94 107.42 118.20 91.55 286.47 655.58 654 1.58 

16 27.48 86.36 62.23 129.23 275.41 580.71 580 0.71 

17 69.00 102.91 93.12 65.13 228.24 558.40 558 0.40 

18 34.09 85.21 86.36 187.22 224.51 617.38 608 9.38 

19 37.20 99.94 93.13 181.54 250.74 662.55 654 8.55 

20 70.59 97.61 102.99 207.10 228.39 706.68 704 2.68 

21 29.48 94.44 44.96 132.89 285.47 587.24 580 7.24 

22 24.29 101.17 142.06 86.52 256.22 610.26 605 5.20 

23 63.41 32.84 55.05 134.67 241.62 527.60 527 0.60 

24 67.26 72.62 127.17 148.95 51.09 467.08 463 4.08 

 

Table 4.5: Resources allocation in the best of 30 runs of M3_SEA3, on the 5-unit problem 

 

4.6.2 Case II: 10 Generators  

The generators’ data and load demand in each hour are shown in Tables 4.6 and 4.7 

respectively, which were taken from [64, 102, 107, 108, 109]. The dispatch period is 24 

hours, with transmission losses ignored for ease of comparison of results with those of 

other approaches reported in literature.   

Unit ai 

$/h 

bi 

$/MWh 

ci 

$/(MW)2h 

ei 

$/h 

fi 

1/MW 

Pi
min 

MW 

Pi
max 

MW 

UR DR 

1 958.20 21.60 0.00043 450 0.041 150 470 80 80 

2 131.60 21.05 0.00063 600 0.036 135 460 80 80 

3 604.97 20.81 0.00039 320 0.028 73 340 80 80 

4 471.60 23.90 0.00070 260 0.052 60 300 50 50 

5 480.29 21.62 0.00079 280 0.063 73 243 50 50 

6 601.75 17.87 0.00056 310 0.048 57 160 50 50 

7 502.70 16.51 0.00211 300 0.086 20 130 30 30 

8 639.40 23.23 0.00480 340 0.082 47 120 30 30 

9 455.60 19.58 0.01091 270 0.098 20 80 30 30 

10 692.40 22.54 0.00951 380 0.094 55 55 30 30 

 

       Table 4.6: Generators’ data for the 10-unit DELD problem, taken from [64, 102, 107, 108, 109] 

 

Period 

(Hour) 

Load 

(MW) 

Period 

(Hour) 

Load 

(MW) 

Period 

(Hour) 

Load 

(MW) 

Period 

(Hour) 

Load 

(MW) 

1 1036 7 1702 13 2072 19 1776 

2 1110 8 1776 14 1924 20 2072 

3 1258 9 1924 15 1776 21 1924 

4 1406 10 2072 16 1554 22 1628 

5 1480 11 2146 17 1428 23 1332 

6 1628 12 2220 18 1628 24 1184 

 

      Table 4.7:  Hourly load demand for the 10-unit DELD problem, taken from [64, 102, 107, 108, 109] 
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Table 4.8 shows the hourly costs (averaged over 30 runs) for SEA1, SEA2 and SEA3 in 

each of M1, M2 and M3 throughout the entire dispatch period, while Table 4.9 

compares the results with other approaches in the literature using the same set of data in 

terms of total minimum, average and maximum costs.  

 

Table 4.8: Hourly costs of the 9 dynamic approaches, averaged over 30 runs on the 10-unit problem 

 

Approach Minimum 

Cost ($/hr) 
Average  Cost 

($/hr) 
Maximum  

Cost ($/hr) 

PSO [4] 1,052,655.81 1,055,963.30 1,046,633.42 

SQP [101] 1.051,163.00 - - 

EP [101] 1,048,638.00 - - 

EP-SQP [107] 1,031,746.00 1,035,748.00 - 

DGPSO [104] 1,028,835.00 1,030,183.00 - 

DE [109] 1,023,432.00 1,026,475.00 1,027,634.00 

DE [108] 1,019,786.00 - - 

HHS [101] 1,019,019.11 - - 

M1_SEA 1 1,027,664.37 1,038,149.43 1,046,674.90 

M1_SEA 2 803,166.34 1,027,291.99 1,217,239.92 

M1_SEA 3 734,893.10 1,021,824.75 1,234,955.97 

M2_SEA 1 930,464.83 1,034,984.93 1,142,581.07 

M2_SEA 2 983,428.21 1,014,319.09 1,055,054.96 

M2_SEA 3 996,122.31 1,012,208.44 1,030,564.23 

M3_SEA 1 917,565.27 1,016,280.95 1,090,724.60 

M3_SEA 2 817,541.23 1,014,592.37 1,088,462.06 

M3_SEA 3 977,838.55 999,832.63 1,021,407.08 

 

Table 4.9: Summary of results, over 30 runs and comparison with other approaches on the 10-unit problem 

 

 

 

Hour M1 M2 M3 

SEA1 SEA2 SEA3 SEA1 SEA2 SEA3 SEA1 SEA2 SEA3 

1 38313.31 39447.60 41574.58 37978.41 36083.14 32690.97 38772.73 34796.03 31651.14 

2 37833.66 41988.94 41389.04 42475.48 37035.72 32482.32 37247.33 35422.78 32846.53 

3 39415.11 42466.12 41667.97 42264.87 38227.26 33128.10 43202.17 39002.20 33042.93 

4 38348.55 41762.94 41697.76 44254.34 37168.62 35559.17 43224.84 42183.15 34291.91 

5 46739.43 43303.06 43288.42 42427.66 35848.01 37250.11 51973.64 41984.53 37207.67 

6 45113.18 43604.58 42986.19 45029.90 41895.95 44609.36 42489.33 44285.52 43035.50 

7 40002.55 43790.85 43256.59 40195.71 41477.43 43819.79 41115.17 43247.89 44537.43 

8 44843.25 42568.29 42022.86 49444.02 40029.04 43484.71 36637.04 39568.58 43058.17 

9 46233.03 44030.63 43013.12 47704.65 47371.31 42199.89 37420.92 43374.70 42055.26 

10 50229.33 44517.13 43916.68 41945.22 49310.68 51361.63 36158.64 49869.40 51640.30 

11 49902.08 44624.73 43810.38 38092.73 50804.44 50962.26 46018.19 49215.63 51154.60 

12 49592.99 44498.43 43803.11 36142.29 51006.72 50947.07 47630.11 49105.43 52197.39 

13 50929.33 44807.00 43883.21 43492.44 49520.47 51486.81 43677.24 41263.10 51573.64 

14 40490.97 42843.23 42302.61 43761.07 47495.42 42280.53 43314.59 38577.28 42221.92 

15 39802.55 42545.08 41951.01 47698.34 40057.86 43340.43 44862.99 38854.36 43091.51 

16 38999.82 42408.81 41596.97 46354.95 39667.70 41075.00 41665.71 42872.50 39006.07 

17 39228.40 42231.53 42431.22 44650.54 36081.35 37216.78 42619.52 42431.22 37474.33 

18 46213.18 43887.67 43093.84 42317.32 41962.62 44673.83 42405.33 43093.84 42925.24 

19 38820.45 42094.32 41421.31 39986.82 40162.38 43618.04 42575.22 41421.31 43358.17 

20 50629.33 44696.57 44116.68 44534.58 49477.35 51461.63 43847.04 44116.68 51806.97 

21 45133.03 44115.38 42849.77 44691.47 47537.98 42566.24 43059.67 42849.77 42155.26 

22 43413.18 43751.03 42439.76 40200.68 42229.29 44491.83 42940.73 42439.76 43068.84 

23 38846.08 42448.25 41661.37 44076.25 37959.39 36116.77 42844.65 43484.71 34097.31 

24 39121.64 34859.84 41650.29 45265.22 35908.52 35385.16 40551.13 41075.00 32334.55 

Total 1038149.4 1027292.0 1021824.8 1034984.9 1014319.1 1012208.4 1016281.0 1014592.4 999832.6 
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Figure 4.4: Variation of costs of the best 4 dynamic approaches, averaged over 30 runs, in the entire 

dispatch on the 10-unit problem 
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Figure 4.5 Load curve comparing the best (M3_SEA3) and worst (M1_SEA1) approaches, over 30 runs, 

with load demand on the 10-unit problem 
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Hour Unit 

1 

Unit 

2 

Unit 

3 

Unit 

4 

Unit 

5 

Unit 

6 

Unit 

7 

Unit 

8 

Unit 

9 

Unit  

10 

Total 

Gen 

Power 

Dem 

1 125.2 150.2 160.1 120.3 122.2 117.2 107.2 85.1 20.4 55 1063.0 1036 

2 226.3 149.9 164.9 121.8 122.1 120.3 119.1 85.1 20.3 55 1184.9 1110 

3 300.4 135.5 184.2 114.6 173.1 129.4 118.1 85.1 20.6 55 1315.9 1258 

4 380.0 232.9 188.5 169.7 133.9 118.0 119.1 85.1 25.1 55 1507.5 1406 

5 370.8 321.6 85.3 235.0 117.5 117.8 117.1 81.1 40.1 55 1541.3 1480 

6 387.4 326.5 195.1 192.1 110.6 117.4 124.2 115.2 26.9 55 1650.5 1628 

7 450.8 326.6 200.6 192.4 114.1 118.8 128.3 110.1 26.2 55 1722.9 1702 

8 455.8 328.1 307.8 193.1 118.5 115.8 129.1 85.1 27.3 55 1815.6 1776 

9 455.2 451.8 307.2 231.2 117.7 113.2 115.2 85.1 30.2 55 1961.9 1924 

10 459.8 452.5 337.2 233.2 217.8 119.8 117.2 85.1 39.0 55 2116.6 2072 

11 459.6 446.9 338.1 227.9 223.2 133.6 129.7 85.1 49.3 55 2148.4 2146 

12 459.1 443.0 339.9 279.8 234.7 159.1 129.1 85.1 49.1 55 2233.9 2220 

13 460.8 447.9 333.7 229.7 234.0 124.8 129.0 47.0 20.0 55 2091.9 2072 

14 454.8 348.8 279.8 229.4 237.7 124.8 129.5 47.4 20.0 55 1927.1 1924 

15 380.4 396.7 224.9 225.0 234.2 127.4 127.2 47.5 20.1 55 1838.4 1776 

16 303.9 316.6 317.4 130.5 116.6 120.9 129.9 47.0 20.8 55 1558.5 1554 

17 307.0 229.9 343.8 124.9 115.2 120.0 118.8 47.5 26.0 55 1488.1 1480 

18 379.2 396.2 286.8 123.1 146.7 129.2 117.5 48.2 29.0 55 1711.0 1628 

19 379.4 396.9 285.8 129.0 230.1 129.4 119.2 47.2 26.1 55 1798.1 1776 

20 456.0 458.0 330.7 127.0 226.4 123.0 119.1 87.7 97.1 55 2080.0 2072 

21 457.1 396.9 315.3 123.1 227.7 123.1 122.0 87.2 28.3 55 1935.7 1924 

22 399.0 324.1 306.6 80.2 175.6 119.0 119.4 85.4 21.0 55 1685.4 1628 

23 303.1 236.1 198.9 67.1 122.7 125.1 115.1 86.9 28.2 55 1338.1 1332 

24 227.3 222.0 197.5 67.1 207.7 123.3 89.1 47.0 21.0 55 1256.8 1184 

 

Table 4.10: Resources allocation in the best of 30 runs of M3_SEA3, on the 10-unit problem 

 

 

Table 4.9 reveals comparatively lower costs from M1_SEA2, M1_SEA3, M3_SEA2 

and M3_SEA3 out of the 9 approaches for this problem in terms of total minimum and 

average costs. Figure 4.4 shows the variation of their average total costs across the 24 

hours dispatch period (over 30 runs), while Figure 4.5 compares the load curve 

distribution of the best and worst approaches across the entire dispatch period. Again, 

from the two figures, M3_SEA3 seems to be the best optimiser for this problem, with 

lower cost (Figure 4.4), and its load trend (Figure 4.5).   Results of a standard T-test 

(one-tailed) with confidence level p < 0.1 indicated that M3_SEA3 outperforms 

M3_SEA2 (with 93% confidence). We also confirmed that M3_SEA3 is superior to 

M1_SEA2 with 95% confidence, and M3_SEA3 is significantly better than M1_SEA2 

with confidence level 97%. Overall, the results tentatively indicate that M3_SEA3 is 

generally the choice to be recommended. Table 4.10 shows the resources allocation in 

the best of 30 runs of M3_SEA3. 

 

4.7 Summary 

This chapter extended the SELD formulation to a dynamic context. It takes into 

consideration the dynamic costs involved in changing from one output level to another 

and is therefore a more applicable formulation of the ELD problem as it is faced by 
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generating stations worldwide. The various steps involved in DELD formulation were 

shown, and a review of related work on DELD problems was made.  The chapter 

described the DELD problems formulation involving dynamic constraints, and the 

computational algorithm used. Guided by the smart mutation approaches that provided 

superior results on in the case of the SELD, we adapted these for the dynamic case, and 

investigated three optimisation approaches. Finally, we compared the results of two 

problems test cases, involving systems of 5 and 10 generating units, with identified 

methods from the recent literature. 

 

In the DELD context, we assessed three approaches: treating the DELD simply as a 

series of static problems, treating the DELD as a single many-parameter problem, and a 

basic dynamic optimisation approach, in which the final population of one part of the 

DELD became the initial population for the next. The two test cases used are the ones 

commonly explored in recent literature. In conjunction with the three versions of the 

smart operator we used for the SELD, our results suggest that the third method, which 

exploits the dynamic nature of the problem, was capable of superior performance to the 

other two approaches. Comparisons with all approaches so far in the literature that have 

addressed these problems suggest that this method is superior to previous work. In both 

test cases, our average and minimum best costs are better than those of the published 

approaches whenever the comparative figure is obtainable. 
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Chapter 5 

 

 

A New Evolutionary Algorithm for the 

Dynamic Economic Load Dispatch Problem 

in a Deregulated Electricity Market 
 

Unlike a regulated power system where utility companies share their generating 

resources to minimise the total cost of supplying the demanded load in a given interval, 

they compete with each other in a deregulated market to increase their profits [7]. In the 

deregulated case, the dispatch problem considers generators and financial transactions. 

The deregulation aims to move electrical power industry from government ownership to 

private ownership, which results in consumers making their choices of electricity 

suppliers.  

 

Scenarios in the electrical power industry fall under two broad categories. In the first 

category, there is sufficient generation capacity to meet demand. Deregulation here 

creates a healthy competition between the marketers in order to minimise arbitrary price 

hikes, with improved services. In the second category, the output is not enough to meet 

the demand. Here, there are a number of sector reforms that precede deregulation, which 

creates opportunities for more investment funding to provide more infrastructure, 

including building of more power plants. Generally, deregulation of the power sector 

helps to increase the efficiency of the generation, transmission and distribution of 

electrical power, with lower offer prices and higher quality, increased reliability and 

security.  

 

In most researches involving deregulated environments, DELD transactions were 

carried out in static context. Here, transactions in the successive dispatch 

periods/intervals were presented as exclusive events, that is, they were functions of the 

state of the system at that particular period. But in reality, as evident from the findings 

of the previous chapter, transactions in one dispatch period will be subject to various 

decisions in the preceding periods due to incorporation of dynamic constraints such as 
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ramp rates, minimum up/down times, minimum/maximum generating capacity, fuel 

constraints, etc. The effects of these constraints were analysed in [7], where transition 

states were calculated using successive dynamic programming, applying Newton’s 

method to compute the optimal states for a given set of transactions within a utility.   

Deregulation shifts the goal of ELD in the power market from the traditional cost 

minimisation to maximisation of social profit, an approach termed “profit-based 

dynamic economic load dispatch” (PBDELD) [9, 10, 11, 12, 13].  

 

This chapter investigates the use of smart EAs to maximise social profit in a deregulated 

electricity environment. It reviews related work in the literature and describes the 

solution optimisation procedure, involving three bidding strategies – low, medium and 

high bidding strategies. It compares results of the best two versions of the smart 

mutation operator with previous results in the literature involving two test cases, and 

also defines and show results using a new, larger test case. 

 

5.1 Deregulation in the Global Electricity Market 

The global electricity market has for many decades experienced reforms, leading to 

liberalisation, privatisation and full deregulation. The rate of these reforms however, 

varies from country to country, with USA and Chile regarded as pioneers of 

deregulation [112]. In 1978, the Public Utility Regulatory Policies Act of USA and 

Wholesale Market Pool of Chile were set up. The former required utility firms to buy 

electricity from “qualifying facilities” of co-generators and smaller power plants, while 

the latter ensured that generating companies sell their power to retailers [113]. Table 5.1 

shows a summary of introduction of reforms and restructuring, leading to liberalisation 

and privatisation, which subsequently culminated to electricity market deregulation in 

selected countries. 
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S/N Countries Established Legislation Year 

1 USA Public Utility Regulatory Policies Act 1978 

2 Chile Wholesale Market Pool 1978 

3 United Kingdom Electricity Act  1989 

4 Norway Energy Act 1990 

5 New Zealand  Energy Act and Company Act 1992 

6 Australia Electricity Industry Act 1994 

7 Spain Electricity Act 1994 

8 Finland Electricity Market Act 1995 

9 Japan Electric Utility Law 1995 

10 Poland Energy Act 1997 

11 Canada Energy Competition Act 1998 

12 Netherlands The Electricity Act 1998 

13 Ireland Electricity Regulation Act 1999 

14 Czech The Energy Act 2000 

15 Hungary Electric Power Act 2001 

16 Iceland Electricity Act 2003 

17 India Electricity Act 2003 

18 Nigeria Electric Power Sector Reform Act 2005 

 
Table 5.1: Introduction of deregulation in selected countries 

 

 

The model of deregulation in Britain, USA and Norway has particularly attracted much 

discussion attention and growing interest [112, 113]. An ideal deregulated power market 

controller consists of two entities: the power exchange, and the independent system 

operator. The power exchange is responsible for the spot trade in the day-ahead market 

whose main task is to deal with the DELD problem, while the independent system 

operator (ISO) regulates the activities of the participating companies and stakeholders, 

including management of traffic, reserve, network security, etc. However, in most cases, 

these two entities are hybridised into the ISO only (as used in this work), which 

performs both of these functions. 

 

5.2 Optimal Transactions Dispatch in a Deregulated Market 

To achieve a deregulated electrical power sector, there must be the presence of 

generation companies (GENCOs), transmission companies (TRANSCOs) and 

distribution companies (DISCOs). Before restructuring, utility companies have the 

obligation of meeting the predicted load demand of their customers.  But with 

deregulation, GENCOs might decide to produce less than the predicted load in order to 

maximise their profits [8]. In this scenario, each participating utility submits its bid in 

form of an offered price for each transaction to the market controller, and receives a 

scheduled transaction for that particular dispatch period. It is the responsibility of each 

utility to determine the time, price and the power output that must be transacted within 

the network in order to maximise its profit. The market controller defines the prevailing 
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market prices for maximising the overall profit. This function is carried out by the 

independent system operator (ISO). Figure 5.1 shows a system of three utilities and 

available generators for transactions. 

 

 
 

Figure 5.1:  A power system showing 3 utilities and 4 generators   

 

Depending on the resultant market structure, there are two cases involved in the 

formulation of the dispatch problems [51]. The first case is the sole responsibility of 

individual GENCOs. Here, the ELD schedule of the committed generating units is 

based on a compromise between the forecasted power/load demand and prices. 

Therefore, in solving the problem, GENCOs aim not only to minimise total generation 

cost, but to maximise their profits, with the power price forming a major decision-taking 

yardstick. This is referred to as Price-Based Dynamic Economic Load Dispatch 

(PBDELD), to emphasise the importance of energy price in the dispatch transaction [8, 

10, 114, 115, 116, 117, 118]. In the second case, the increased competition also 

increases the number of trading/bidding stakeholders. Both the GENCOs and their 

customers submit their bids in advance of each bidding period on a daily or hourly basis 

to ISO, who matches the bids and conducts the DELD, with an aim to maximise the 

social profit during the trading time-period, while maintaining system reliability and 

security. This formulation is referred to as Bid-Based Dynamic Economic Load 

Dispatch (BBDELD) [119, 120, 121, 122, 123]. It moves the dispatch operations from 

traditional cost-based to a bid-based mechanism.  
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5.2.1 Price-Based DELD 

In this formulation, each GENCO runs its own dispatch based on the forecasted power 

demands. It might decide to sell its power at less than the forecasted level to maximise 

profits. Figure 5.2 depicts a typical offered and required price curve in a scheduling 

transaction T, at each dispatch period for each generating unit.  

 

 
 

Figure 5.2: Offered and required price curve [7] 

 

The local generation is P0, and the corresponding incremental cost is λ0. If the prevailing 

market price forecasted by ISO is as high as λmax, the transacting utility might decide to 

increase generation to Pmax. On the other hand, if the price is below λ0, the utility will 

consider importing power. As λ1 tends to λmin, the utility might replace all the local 

power generation with imported power, while the entire generated power is available for 

export as λ2 tends to λmax. Given a set of spot prices (market prices at each dispatch 

period), the objective in each utility is defined as follows: 
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Where: ρt is the spot price at hour, t, defined and/or computed as: 
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Fℓ is the power flow in line ℓ, μℓ is a constant (Lagrange multiplier) for each line, while 

ψ is the set of lines in the utility. Obtaining optimality in the online generating units is 

the overall objective of a PBDELD problem [7], mathematically formulated as: 

 

Maximise: PF = RV – TC        (5.3) 

 

Where PF is profit; TC, RV are total cost and revenue, defined respectively as shown in 

(5.4) and (5.5). 
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The power demand constraint is given in (5.6), while the generation limit constraint is 

as shown in (4.4). 
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Where: 

Cit  =  Production cost, as calculated from (6.1); 

Pgi,t  =  Power generated in i
th

 unit at t hour; 

STt  =  Start-up cost; 

T  =  Dispatch period; 

t  =  Time index; 

i  =  Generator index; 

Ng  =  Number of online/committed generators; 

σt  =  Forecasted market price of power at time, t; 

Dt = Total system demand at time, t; 

 

In (5.3), (5.4) and (5.5), given the values of start up costs and/or spot prices at the 

various dispatch periods, revenue computation is a straight forward task and 
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consequently, profit is easily deduced. This reduces the complexity of the PBDELD, 

with more research attention given to BBDELD.  

 

5.2.2 Bid-Based DELD 

In this formulation, both the suppliers and customers submit their bids (hourly or daily 

ahead) to ISO who obtains transmission line capability and availability from 

TRANSCO and uses the submitted bids to determine the corresponding supply and 

demand schedules of all generators and customers, and determine the market clearing 

price.  

 

5.3 Previous BBDELD Solution Approaches 

Several approaches have been proposed to solving the PBDELD problem including: 

Predicted-Corrected Interior Point Quadratic Programming Algorithm (PCIPQP) [121], 

Linear Programming (LP) [124], Dynamic Programming (DP) [7, 125, 126, 127], 

Simulated Annealing (SA) [128, 129, 130], Evolutionary Strategy (ES) [131], Genetic 

Algorithm (GA) [119, 120, 123, 132,  133, 134, 135], Particle Swarm Optimisation 

(PSO) [122, 136], and Differential Evolution (DE) [137].  

 

The PCIPQP algorithm creates room for both the demand and supply sides participation 

in the spot market bidding mechanism, involving a multi-player, multi-period and 

various dynamic constraints. The initial quadratic programming problem formed is 

solved using interior point-based algorithm, hence the PCIPQP is said to be an 

extension of interior point quadratic programming (IPQP).  Development of the IP- 

based QP problem involved the use of Fiancco and McCormick’s barrier, Newton’s and 

Lagrange’s optimisation methods [121].  

 

In [124], a Linear Programming (LP) approach was proposed for bidding of generators 

in restructured power industry by simulating risk profiles of generators for different 

bidding strategies. This approach minimises only linear objective functions with linear 

constraint variables. While solutions obtained have better computation efficiency and 

avoid problems of premature convergence, the optimisation limitation implies that any 

non-linear function will have to be approximated by linear functions.  

 

In [125], a Successive Approximations Dynamic Programming (SADP) algorithm was 

developed for dispatching generation to predicted load over a given time-horizon. The 
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central idea in the successive approximations method involves breaking large power 

system problems containing many control (power generation) variables into a number of 

smaller sub-problems, each containing only one control variable and only one state 

variable. This reduces the computational difficulty as the computational requirements of 

dynamic programming increase exponentially with the number of state variables.  The 

iterations (successive approximations) are based upon pairing of generation units, with 

the resulting one-dimensional dynamic problem being solved by forward dynamic 

programming. At each time period, Bellman’s Principle of Optimality [138], is applied 

to the resulting simple solution procedure to determine the optimum control (generation 

change) that will bring the unit to an acceptable output level. 

 

In [126], a series of computer programs using Dynamic Programming (DP) was 

developed to calculate pseudo incremental heat rate curves that are monotonically 

increasing, including the actual economic dispatch points. Modelling unit input/output 

characteristics using third or higher order polynomial curves increases the accuracy of 

output, but results in some incremental heat rate curves that are not monotonically 

increasing. A great problem arises when many units with such characteristics are 

dispatched. Overcoming the problem involves using DP to calculate each unit’s output 

over the range of the sum of minimums to the sum of the maximums on all units to be 

dispatched. A curve fitting routine is used to smooth the results of each unit’s output 

over the range of system load. Another DP is used to divide the curve fit into connecting 

straight line segments that are monotonically increasing. The DP problem is 

characterised by stages, states, decision variables at every stage and a good (recursive) 

relationship. Each generating unit has an associated stage, with the number of stages in 

the economic dispatch problem being equal to the number of committed units. The 

states are total amount of generation at a particular stage, with values ranging from the 

sum of the minimum outputs of all units in that stage to the sum of the maximums of the 

units in that stage. The decision made at a particular stage is the amount of generation 

allocated to the generating unit associated with that stage, which are assumed to be 

discrete. A zoom feature was added during the iterative process of a DP in order to 

converge to the economic dispatch solution, reducing computer time and memory 

requirements [127]. The zoom feature reduces both the search step size and search range 

during successive iterations. While there is a rapid convergence with the approach, there 

are no restrictions on the shape of the generator operating costs functions. It could also 
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be combined with short-term load forecast to minimise total operating costs over the 

present and short-term future.  

 

Simulated Annealing (SA) is a much faster algorithm than DP [128].  SA is similar to 

local search techniques with the capability to guarantee only a local optimum solution, 

but its probabilistic approach in accepting candidate solution enables it to jump out of 

the local optimum solutions [129]. SA is advantageous in that, it does not need a 

complex mathematical model of the optimisation problem; the solution process is 

independent of the fuel cost characteristic function of the generators; the feasible 

solution is independent of the choice of initial solution, it could improve a solution 

output from other sub-optimal or heuristic methods; it has a faster convergence, and low 

memory requirements [129, 130]. However, the major disadvantage is the high 

computing time requirement. This could be improved by adopting parallel processing, 

by modifying the algorithm into a form suitable for execution in a multi-processor 

system.   

 

In recent researches, solutions to BBDELD were realised using Particle Swarm 

Optimisation (PSO) [122], Genetic Algorithm (GA) [119, 123] and Differential 

Evolution (DE) [137]. All these approaches proved to be efficient in solving the 

problems, but they seem to lack the ability of finding global optimal solutions due to 

their inherent drawbacks. Besides, the problem cases were very limited (3 generators, 2 

customers in 2 trading periods in [121, 122] and 4 generators, 3 customers in 3 trading 

periods in [119, 123]). In [137], the effects of three bidding strategies – low, medium 

and high on the amount of social profit realised were investigated, and tested with 6 

generators, 2 customers in 2 trading periods.  While the results confirm the high bidding 

strategy as best suitable for optimal dispatch in deregulated power systems (receiving 

higher customer benefits which lead to maximum social profit), again, the problem size 

is very limited. No literature has yet explored the performances of these approaches in 

larger test cases. It is required that the current solution algorithms work well for a wider 

variety of cases, and expanded to deal with larger scale energy optimisation tasks. This 

is because there is continual expansion of the electricity market as a result of the healthy 

competition which means addition of more generating units. 

 

The social profit depends on the effectiveness of the bidding strategy, first introduced 

by A. K. David in [139]. Since the submitted bids determine GENCOs’ revenues, 
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attempts have been made to formulate strategies to get the best bids. Therefore, 

developing appropriate and optimal bidding strategies has been an issue of great 

concern among researchers in recent years [116]. Generally, bidding problems have 

been addressed subject to market structure, available generating units and bid functions 

[140]. According to the authors, bidding strategies in competitive electricity market 

include: auction, single-part bidding, multi-part bidding, demand-side bidding and 

supply-side bidding.   

 

5.4 The BBDELD Problem Formulation 

A bid is made up of the offer price from GENCOs and the amount of load demanded by 

the customers at a given despatch time period [142]. Two trading mechanisms exist in 

electricity markets: centralised auction and bilateral trading [137]. In centralised 

auction, both the suppliers and customers submit their bids to ISO who performs the 

dispatch depending on the price and quantity of power involved in the bidding. In 

bilateral trading, both the sellers and buyers submit their bids, trade the quantities 

involved at their own discretion without involving ISO. It is only notified of the 

transaction with a request to make transmission facilities available for a given quantity 

of power. The ISO then despatches the request and transaction charged accordingly, 

with payment made by both the sellers and buyers. The transaction model presented in 

this work is based on the centralised auction trade mechanism.  

 

A consideration is made of both the supply and demand side bids to stabilise the power 

price by adjusting the balance of demand and supply during a multi-player transaction 

in a multi-period dispatch [122]. The social profit is computed as the difference between 

the total customers benefit and the total generators cost in a deregulated (competitive) 

electricity market. The bid price curve for each of the market participants is modelled 

by a quadratic function of the real power output. The BBDELD is formulated as: 

 

 
  


T

t

Nd

j

Ng

i
tiitjj PgCDBPFMax

1 1 1
,, )()(

       (5.7) 

 

Subject to: 

djtjdjtidjtjj cDbDaDB  ,
2
,, )(        (5.8) 

 



 

125 

gitigitigitii cPgbPgaPgC  ,
2
,, )(       (5.9) 

 

Where: 

 Bj(Dj,t)  = Benefit (or bid) function of customer, j; 

 Ci(Pgi,t) = Cost (or bid) function of generator, i; 

 Nd  = Number of customers; 

 Ng  = Number of generators; 

 Dj,t  = Bid quantities of customer, j at t; 

 Pgi,t  = Bid quantities of generator, i at t; 

 adj, bdj, cdj = Benefit (or bid) coefficients of j
th

 customer; 

 agi, bgi, cgi = Cost coefficients of i
th

 generator; 

 i   =  Generator index, i.e., 1, 2, 3,…, Ng; 

 j   =  Customer index, i.e., 1, 2, 3,…, Nd;  

t   =  1, 2, 3,…T; 

T  = Number of time period. 

 

The power demand, generation limit and bid quantities constraints are respectively 

shown in (5.10), (4.4) and (5.12). 
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max,,min, titjtj DDD          (5.11) 

 

Where: 

Dj,t min = Minimum bid limit of customer j at time t.  

Dj,t max = Maximum bid limit of customer j at time t. 

 

5.5 The BBDELD Optimisation Procedure 

 

5.5.1 Bidding Strategies 

GENCOs adopt the production cost bidding strategy. Here, they bid according to their 

plants’ incremental cost, acting as a pure price taker in the market [141]. The 
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generators’ bid price curves are approximated as quadratic functions, as shown in (5.9). 

The bid function of the customers is also approximated in quadratic form, shown in 

(5.8). Three bidding strategies exist for participating customers, classified as: low, 

medium and high bidding, based on the bid price coefficients. Previous experiments in 

literature show that the value of customer bid coefficient, adj, is less than 0.01 for low, 

in the region of 0.05 for medium, and above 0.09 for high bidding strategies. The 

recommended range of customer bid coefficient, bdj, is between 0 and the energy 

clearing (or equilibrium) price [137, 142].  

 

5.5.2 SEA for the BBDELD Problem 

For a system of N generators and T dispatch/trading periods, the control variables are 

represented by an array of dimension N x T. The following pseudo code describes the 

procedure used to solve the BBDELD problem: 

 
START  

DEFINE parameters and INPUT data    

INITIALIZE a random population of chromosomes   

EVALUATE Objective function (For each chromosome in the population) 

FOR t = 1 to T  

FOR i = 1 to Nd and Ng  
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       Subject to: 

         
djtjdjtidjtjj cDbDaDB  ,
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gitigitigitii cPgbPgaPgC  ,
2
,, )(  

Compute power losses 

Check for constraints violation in the power balance 

Check for constraints violation in the generator bid limits 

Check for constraints in ramp rate limits 

Check for constraints violation in the customer bid limits 

  Violation of a constraint leads to penalty treatment, defined as: 








penaltyPF

PF
FMax

 

            i.e.: 

   IF no constraint is violated,  

Penalty = 0  

Fitness function = Objective function 

          ELSE   

Fitness function = Objective function + Penalty  

           END IF 

END FOR 

END FOR    
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WHILE (stopping criteria is not reached)  

 From the entire population 

 SELECT parents for breeding 

 CROSSOVER the genes of selected parents 

 Create an array to return children 

 Crossover parents to create children 

 Return the children in the array 

 Perform SMART MUTATION 

 EVALUATE   

         REPLACE parent population with children population  

         Perform ELITISM (Keep a percentage of best individuals) 

END WHILE 

OUTPUT the optimal solution vector, and compute the cost, benefit and profit as: 

     Total cost = Sum of generation costs of in all the periods  

     Total benefit = Sum of customer benefits in all the periods  

     Social Profit = Total benefits – Total costs 

STOP 

 

The DELD solution algorithm in section 4.5.3 was utilised here, in realising the total 

costs in all dispatch periods.  Similar to the DELD, with additional dynamic constraints 

involved (load balance, ramp rate limits and generators’ output limits), handling penalty 

violation becomes a harder task, and consequently smart mutation is not as 

straightforward as it is in the SELD.  In a given time period, an initial population of 

chromosomes contains feasible genes (outputs in each generating unit) which must be 

within the minimum and maximum generation limits. Checks are made to ensure that 

violations in power balance, ramp rate limits, generator bid limits and customer bid 

limits are handled. Violation of power balance and ramp rate limits leads to penalty 

treatment. Costs of individual genes are computed using (5.9), and the genes with the 

highest cost alongside with those that violate the above penalties are subjects of the 

smart mutation, defined in (5.12). 

 

)()( )(,)(,)(, oldtioldtinewti PgrandomPgPg      (5.12) 

 

The penalties augment objective function to form a generalised fitness function for 

social profit (SP) shown in equation (5.13), with the aim of maximising it. 
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Where: q1 and q2 are penalty parameters which reflect the violation of the power 

balance and ramp-rate limit constraints in each unit and at each dispatch period. Their 

values are tuned experimentally; and random () generates a small random positive 

number between 0 and 1. As the bid function of the customers is based on high bidding 

strategy, it is unlikely that the bid limits constraint is violated.  

 

5.6  Experimental Design and Results 

The BBDELD optimisation was performed using the smart mutator in three different 

experiments involving three problem cases:  

 

(a) A system of 3 generators, 2 customers in 2 dispatch periods;  

(b) A system of 6 generators, 2 customers in 2 dispatch periods; 

(c) A system of 10 generators, 6 customers in 12 dispatch periods.  

 

All the experiments were based on dynamic optimisation method M3 where the 

problem is solved as a single multi-part problem with suitably adjusted constraints, and 

the final population of preceding periods used to initialise the populations of succeeding 

periods. For the purpose of comparison with other approaches in literature with the 

same set of data, the genetic parameters were set as: crossover probability: 0.9, 

population size: 20, and maximum generation: 200.  

 

5.6.1 Case I: 3 Generators, 2 Customers in 2 Dispatch Periods 

This problem case involves a 5-bus test system, consisting of 3 generators and 2 

customers, 6 lines, in 2 dispatch periods, shown in Figure 5.3 [121, 122].  This case 

aims at illustrating the operational transaction of BBDELD.  
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Figure 5.3:  A 5-bus problem test (case I), consisting of 3 generators, 2 customers and 6 lines 

 

Tables 5.2 and 5.3 show the bid data for generators and customers. For simplicity and 

ease of comparison with other approaches, ramp rates constraints and transmission 

losses were not considered. Table 5.4 gives a summary result showing the total 

customer benefits, total generation costs and social profit, average over 30 runs for the 

three dynamic optimisation approaches of M3 (M3_SEA1, M3_SEA2 and M3_SEA3); 

while the bid quantities for the generators and customers are optimally allocated among 

the two periods as shown in Table 5.5 for M3_SEA3. 

 

 agi bgi cgi Pgmin Pgmax 

Generator 1 0.001562 7.92 560 0 600 

Generator 2 0.001940 7.85 310 0 400 

Generator 3 0.004820 7.97 78 0 200 

 

Table 5.2: Generators’ bid data for case I (3 generators and 2 customers, in 2 dispatch periods) 

 
 

 

adj bdj cdj 

Dmin Dmax 

Period 1 Period 2 Period 1 Period 2 

Customer 1 -0.175 100 0 400 200 650 300 

Customer 2 -0.150 110 0 200 300 350 400 

 

Table 5.3: Customers’ bid data for case I (3 generators and 2 customers, in 2 dispatch periods) 

 
 

 Total 

Benefits ($) 

Total 

Costs ($) 

Social 

Profits ($) 

M3_SEA1 64,705.67 13,060.79 51,644.88 

M3_SEA2 66,824.78 13,467.59 53,357.19 

M3_SEA3 67,462.09 13,217.62 54,244.47 

PCIPQP [121] 66,246.00 13,158.00 53,088.00 

GA [122] 67,005.00 13,294.00 53,711.00 

PSO [122] 66,315.00 13,198.00 53,117.00 

LP [122] 64,372.00 13,426.00 50,936.00 

 

Table 5.4: Summary of results for case 1 (3 generators and 2 customers, in 2 dispatch periods), averaged 

over 30 runs 



 

130 

 

Parameters Period 1 Period 2 Total 

Customer 1 380.39 292.64  

Customer 2 374.85 329.77  

Total Demand (MW) 755.24 622.41  

Total Benefit ($) 37316.23 31204.71 68,520.93 

Generator 1 411.80 432.76  

Generator 2 166.28 4.77  

Generator 3 186.17 185.99  

Total Gen (MW) 764.25 623.52  

Total Cost ($) 7484.04 6354.58 13,838.62 

Losses (MW) 9.01 1.11  

Social Profit ($)  54,682.31 

 

Table 5.5: Resources allocation in the best of 30 runs of M3_SEA3, for case I (3 generators and 2 

customers, in 2 dispatch periods) 

 
 

5.6.2 Case II: 6 Generators, 2 Customers in 2 Dispatch Periods 

This problem case involves an 8-bus test system, consisting of 6 generators, 2 customers 

and 12 lines, in 2 dispatch periods shown is Figure 5.4 [136, 137].  

 

 
 

Figure 5.4: An 8-bus test system (case II), consisting of 6 generators 2 customers and 12 lines 

 

 

Generators’ and customers’ bid data (Tables 5.6 and 5.7) and loss coefficients were 

taken from [54, 136, 137]. Optimised values of the bidding quantities for generators and 

customers, as well as total generation cost, total customer benefit and social profit for 

the bidding strategies are presented respectively for low, medium and high bidding 

strategies in Tables 5.8, 5.9 and 5.10.  
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Generators agi bgi cgi Pgmin Pgmax URi DRi 

1 0.00375 2.00 0 50 200 65 85 

2 0.01750 1.75 0 20 80 12 20 

3 0.00625 1.00 0 15 50 12 15 

4 0.00834 3.25 0 10 35 8 16 

5 0.02500 3.00 0 10 30 6 9 

6 0.02500 3.00 0 12 40 8 16 

 

Table 5.6: Generators’ bid data for case II (6 generators and 2 customers, in 2 dispatch periods) 

 

 

       5.14 

  

 

 

 

 Customer 1 

Low/Medium/High 

Customer 2 

Low/Medium/High 

adj ($/MWh
2
) -0.06/0.07/0.1 -0.08/0.05/0.09 

bdj ($/h) 20 15 

Load demand at Period 1 Min: 100 Min: 50 

Max: 150 Max: 100 

Load demand at Period 2 Min: 20 Min: 100 

Max: 70 Max: 200 

 

Table 5.7: Customers’ bid data for case II (6 generators and 2 customers, in 2 dispatch periods) 

 

In the low bidding strategy, bid coefficients, adj are -0.06 $/MWh
2
 and -0.08 $/MWh

2
 

respectively for Customers 1 and 2 in both trading periods. The energy clearing price is 

$20/h, and the bid coefficients, bdj for Customers 1 and 2 are $20 and $15 respectively 

in both periods. In period 1, Customer 1 submits a minimum bid of 100MW and a 

maximum bid of 150MW, and Customer 2 submits a minimum bid of 50MW and 

maximum bid of 100MW. Under the medium and high bidding strategy, the same 

generators and customers bid data were used, except for the medium bid coefficients 

(0.07 $/MWh
2
 and 0.05 $/MWh

2
) and the high bid coefficients (0.1 $/MWh

2
 and 0.09 

$/MWh
2
) respectively for Customers 1 and 2 in both trading periods. Also, the 

generators supplied maximum power demand by both customers (250MW in period 1 

and 270MW in period 2) in both the medium and high bidding strategies.  Table 5.8 

shows the total generation costs, total customer benefits and social profits averaged over 

30 runs, obtained using SEA compared with those of DE and PSO with the same set of 

data for the three bidding strategies.  
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 Total  

Benefits ($) 

Total 

 Costs ($) 

Social  

Profits ($) 

Low 

Bidding 

M3_SEA1 3,762.28 1,409.82 2,352.45 

M3_SEA2 3,641.26 1,362.95 2,278.31 

M3_SEA3 3,698.17 1,343.88 2,354.28 

DE 4,101.30 989.72 3,111.50 

PSO 3,483.80 1,851.00 1,632.80 

Medium 

Bidding 

M3_SEA1 13,318.00 1,201.23 12,116.77 

M3_SEA2 13,318.00 1,196.70 12,121.30 

M3_SEA3 13,318.00 1,170.96 12,147.04 

DE 13,318.00 1,432.00 11,886.00 

PSO 12,141.00 1,928.00 10,213.00 

High 

Bidding 

M3_SEA1 16,140.00 1,169.44 14,970.56 

M3_SEA2 16,140.00 1,125.97 15,014.03 

M3_SEA3 16,140.00 1,115.67 15,024.33 

DE 16,140.00 1,432.00 14,708.00 

PSO 15,571.00 1,793.00 13,778.00 

 

Table 5.8: Summary of results for case II (6 generators and 2 customers, in 2 dispatch periods), averaged 

over 30 runs, and comparison with other approaches  

 

 

The results show the performance of SEAs to be better than DE and PSO in both 

medium and high bidding strategies. DE performed better in the low bidding strategy. 

The values of social profit are generally low in the low bidding strategy; therefore, 

economic dispatch of the resources with low bids is not advisable in a deregulated 

electricity market. The M3_SEA3 approach produced the highest social profits in both 

medium and high strategies. In all the three bidding strategies, based on the prevailing 

market price, customers submit their bids with the aim to yield higher benefits, while 

GENCOs submit their bids with the aim to increase their profits. ISO as the market 

operator regulates the bid resources of these participants, and ensures that social profit is 

maximised, which is the overall goal of DELD in a deregulated power system.  Tables 

5.9 shows optimal resource allocation under low, medium and high bidding strategies 

realised using the M3_SEA3 approach. 
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 Low Bidding Medium Bidding High Bidding 

Period Total Period Total Period Total 

1 2 1 2 1 2 

Cust 1 132.72  69.59   150 70  150 70  

Cust 2 71.50 127.33  100 200  100 200  

Total  

Dem 

204.22 196.92  250 270  250 270  

Total  

Ben 

2261.03 1714.14 3975.17 6575 6743 13,318 7650 8490 16,140 

Gen 1 62.72 74.08  66.39 99.32  63.58 93.41  

Gen 2 34.61 55.94  28.01 32.87  25.02 22.13  

Gen 3 48.78 28.68  28.57 18.88  29.39 33.79  

Gen 4 22.19 21.60  18.86 11.23  15.66 22.02  

Gen 5 12.12 20.46  27.26 17.43  20.08 18.63  

Gen 6 33.73 36.41  13.45 14.78  17.26 23.61  

Total  

Gen 

206.05 199.62  251.58 272.55  251.36 272.38  

Total  

Cost 

531.26 643.50 1174.76 455.22 480.38 935.60 414.37 532.70 947.07 

Losses  1.83 2.70  1.58 2.55  1.36 2.70  

Social  

Profit 

 $2,800   $12,382   $15,193 

 

Table 5.9: Resources allocation in the best of 30 runs of M3_SEA3, under the 3 bidding strategies: low, 

medium and high, for case II (6 generators and 2 customers, in 2 dispatch periods) 

 

This case has primarily achieved the main objective of BBDELD optimisation of 

matching both the demand and supply bids within the operational standards of ISO. The 

results have also successfully proved performance effectiveness of the SEAs in 

balancing the bids submitted by power generating companies and customers with a 

consideration of power transmission losses, which were effectively minimised. We can 

deduce from the results in Table 5.9 that social profits are higher from matching the 

bids of GENCOs and customers under the high bidding strategy. The implication of this 

finding is that, in a deregulated market, customers can buy power from any GENCO of 

their choice participating in the competition.  

 

5.6.3 Case III: 10 Generators, 6 Customers in 12 Dispatch Periods 

This problem case involves a 16-bus test system consisting of 10 generators, 6 

customers and 24 lines, in 12 dispatch periods shown is Figure 5.5: 
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Figure 5.5: A 16-bus test system (case III), consisting of 10 generators 6 customers and 24 lines 

 

We investigated the optimisation performance of M3_SEA1, M3_SEA2 and M3_SEA3 

under the high bidding strategy. The generators bid data (Table 5.10) were taken from 

[109].  We generated the customers bid data (Table 5.11) using the recommendations 

and specifications of the high bidding strategy from [137, 142], to meet the load 

demand requirements of [4, 109]. The dispatch was for an arbitrary 12-hour period, and 

losses were not considered. 

  

Gen. agi bgi cgi Pgmin Pgmax URi DRi 

1 0.00043 21.60 958.20 150 470 80 80 

2 0.00063 21.05 131.60 135 460 80 80 

3 0.00039 20.81 604.97 73 340 80 80 

4 0.00070 23.90 471.60 60 300 50 50 

5 0.00079 21.62 480.29 73 243 50 50 

6 0.00056 17.87 601.75 57 160 50 50 

7 0.00211 16.51 502.70 20 130 30 30 

8 0.00480 23.23 639.40 47 120 30 30 

9 0.10908 19.58 455.60 20 80 30 30 

10 0.00951 22.54 692.40 55 55 30 30 

 

Table 5.10: Generators’ bid data for case III (10 generators and 6 customers, in 12 dispatch periods) 
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Customers D1 D2 D3 D4 D5 D6 Demand 

Per 

Period 
adj ($/MWh

2
) 0.1 0.099 0.097 0.094 0.093 0.09 

bdj ($20/h) 20 19 17 16 15 12 

M
a
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im
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m

 L
o
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d

 D
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n

d
 

B
id
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 a
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ea

ch
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1 300 180 130 200 116 110 1036 

2 190 220 100 200 150 250 1110 

3 208 150 250 300 100 250 1258 

4 270 230 256 200 300 160 1406 

5 300 280 240 260 150 250 1480 

6 400 320 170 230 208 300 1628 

7 250 192 350 300 400 200 1702 

8 370 250 350 406 150 250 1776 

9 320 400 200 350 420 234 1924 

10 472 300 400 350 300 250 2072 

11 500 490 250 240 360 306 2146 

12 410 420 380 350 360 300 2220 

 

Table 5.11: Customers’ bid data for case III (10 generators and 6 customers, in 12 dispatch periods) 

 

 

Table 5.12 and Figure 5.6 show optimised values for total generation costs, total 

customer benefits and social profits, while Figure 5.7 is a load curve. 

 

 Total Generation 

Cost ($) 

Total Customer 

Benefit ($) 

Social  

Profit ($) 

Standard 

Deviation 

M3_SEA1 447,212.98 913,897.45 466,684.47 9437.23 

M3_SEA2 462,658.97 913,897.45 451,238.48 14248.36 

M3_SEA3 446,679.14 913,897.45 467,218.31 4853.70 

 

Table 5.12: Summary of results for M3_SEA1, M3_SEA2 and M3_SEA3, averaged over 30 runs, for 

case III (10 generators and 6 customers, in 12 dispatch periods) 
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Figure 5.6: Bar chart showing the generation costs, customer benefits and social profits  of M3_SEA1, 

M3_SEA2 and M3_SEA3, averaged over 30 runs, for case 3 (10 generators and 6 customers, in 12 

dispatch periods) 
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Figure 5.7: Load curve showing the hourly outputs of M3_SEA1, M3_SEA2 and M3_SEA3, in 

comparison with total hourly demand for case III (10 generators and 6 customers, in 12 dispatch periods) 

 
 

As seen in Table 5.12 and Figure 5.6, for fixed customer benefits of $913897.45, 

M3_SEA3 yielded a higher social profit of $467,218.31, against $466,684.47 and 

$451,238.48 for M3_SEA1 and M3_SEA2 respectively. Although there is a very small 

difference in the values of the average social profits from M3_SEA3 and M3_SEA1, 

but there is much significant deviation between the values obtained using M3_SEA1 

(9437.23) compared to those of M3_SEA3 (4853.70) in both social profits and total 

generation costs, averaged over 30 runs. From these results, and the load curve of 

Figure 5.7, all three methods show promising performance. Standard T-tests (one-tailed) 

with significance level p < 0.1 reveals 100% confidence that both M3_SEA1 and 

M3_SEA3 are better than M3_SEA2. However, there is no significant difference 

between M3_SEA1 and M3_SEA3, although we tend towards the suggestion that the 

latter is better, having slightly higher social profit, lowest standard deviation, and its 

load trend is closest to the demand trend than the former. 

 

5.7 Summary 

Based on the prevailing market price, customers (DISCOs) submit their bids with the 

aim of getting higher benefits, while power generating companies (GENCOs) submit 

their bids with the aim of minimising their costs (and consequently increasing their 



 

137 

profits). The market regulator (ISO) therefore plays an important role in regulating the 

resources of GENCOs as well as the needs of DISCOs. The results of this chapter is 

very useful to ISO as a guide in the process of matching both the supply side and 

demand side bids in an economic way with the overall aim of maximising the social 

profit throughout the dispatch period.   

 

This chapter investigated the use of smart EAs to maximise social profit in the context 

of a BBDELD formulation in a deregulated electricity environment. This formulation 

builds in part on earlier works in the SELD and DELD problems. We briefly examined 

the introduction of deregulation to global electricity market, and identified price-based 

DELD and bid-based DELD as profit-oriented DELDs involved in optimal transaction 

dispatch formulations in a deregulated market. The chapter reviewed related work in 

BBDELD, and investigated the effects of three bidding strategies on the social profit, 

where we found that social profits are greater from matching the bids of generating 

companies and customers (distribution companies) under the high bidding strategy. We 

compared results of the best two versions of the smart mutation operator with previous 

results in literature involving two test cases (3 units, 2 customers in 2 dispatch periods 

and 6 units, 2 customers in 2 dispatch periods). From the superior results obtained with 

the smart EA in these test cases over other approaches, we defined and presented results 

for a new and larger test case (10 units, 6 customers in 12 dispatch periods) that yielded 

very high social profit. 
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Chapter 6 

 

 

Case Study: Application of BBDELD to 

Nigerian Electrical Power Sector 

Reforms 

 
Nigeria, a West African country is bounded by Gulf of Guinea, Republics of Benin, 

Niger, Cameroon and Chad to the south, west, north, east and north-east respectively; 

and occupies a total area of 923,768 sq km. With a population of about 178 (Nov. 2014 

estimate), she is ranked 7
th

 in the world [143] [144].  In this chapter, we adopt a case 

study approach, applying the research to the Nigerian electrical power system that has 

recently been deregulated. We identify the challenges to effective power provision in 

the country that led to various reforms of the power sector. We describe the design and 

implementation of a constrained elitist genetic algorithm for the country’s power system 

before the sector reforms, adapt the BBDELD formulation to the country’s deregulated 

electricity market using the best two versions of the smart mutation operator, and 

investigate the ability of the SEA to deal with larger scale energy optimisation task in 

the bid based dispatch problems. 

 

6.1 History of Electrical Power Supply in Nigeria 

In Nigeria, electrical energy supply started in 1896 when two small generators were 

used to generate electricity at Ijora, Lagos by the British Colonial Administration [145]. 

In 1929, Nigerian Electricity Supply Company (NESCO) commenced operation with 

the establishment of a hydro-electric power station at Kura Falls in Plateau State [146]. 

The Electricity Corporation of Nigeria (ECN) and the Niger Dams Authority (NDA) 

were established in 1950 and 1962 to manage the diesel/coal plants, and the hydro 

electrical sub-sector respectively [147], with ECN solely charged with the responsibility 

of distributing and the sale of electricity. The merger of ECN and NDA formed the 

National Electric Power Authority (NEPA) in 1972, whose mandate was managing, 

maintaining, and overseeing electricity generation, transmission and distribution in the 
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country [148]. It was restructured in 2005 and renamed Power Holding Company of 

Nigeria (PHCN) [149].  

 

The main readily available fuel sources for electricity in Nigeria are coal, gas, oil and 

hydro. Until recently, the country had 14 generating plants consisting of 11 thermal and 

3 hydro, which supply electricity to the National Grid, a 31-bus system made up of 

4889.2km of 330kV line, 6319.33km of 132kV, 6098MVA transformer capacity at 

330/132kV and 8090MVA transformer of 132/33kV. Table 6.1 shows the number, type, 

location of the generating plants, as well as their installed/available units and capacities 

as at 2008. 

 

S/N Plants Types Location No. of 

Units 

Available 

Units 

Installed 

Capacity 

(MW) 

Available 

Capacity 

(MW) 

1 Sapele Thermal Delta 10 1 1020 90 

2 Afam Thermal Rivers 20 3 702 350 

3 Egbin Thermal Lagos 6 4 1320 880 

4 Delta Thermal Delta 18 12 840 540 

5 Ijora Thermal Lagos 9 9 270 270 

6 Okpai Thermal Cross River 3 2 480 480 

7 Omoku Thermal Rivers 6 4 150 100 

8 Geregu Thermal Kogi 3 3 414 414 

9 Ajaokuta Thermal Kogi 2 2 110 100 

10 Omotosho Thermal Ondo 8 2 335 80 

11 Olorunsogo Thermal Ogun 8 2 335 80 

12 Kainji Hydro Niger 8 6 760 440 

13 Jebba Hydro Niger 6 6 540 386 

14 Shiroro Hydro Niger 4 2 600 600 

Total 111 58 7876 4816 

 

Table 6.1: Power generating plants in Nigeria as at 2008 [148] 

 

6.2 Challenges to Effective Power Provision in Nigeria 

The country’s geographical terrain consists of thick evergreen rainforests in the 

southern lowlands with lots of rivers, through the hills and plateaus of the central 

middle belt zone, to the open savannah plains of the far north. The climate varies with 

equatorial in south, tropical in centre and arid in north. This distribution trend presents 

enormous challenges for the efficient and effective provision of electrical power to all 

parts of the country, and demand for electrical energy is continuously on high increase 

to residential, commercial as well as industrial consumers, with the highest increase on 

residential consumption. Figure 6.1 shows a 10 years trend of electrical energy 

consumption by these three classes of consumers.  
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Figure 6.1: Trend in Electrical Energy Demand in Nigeria from 1993 to 2003 [150] 
 

The greatest problem facing the country’s electrical power sector is therefore increasing 

residential demand. This has posed several challenges in the generation, transmission 

and distribution sub-sectors. 

 

6.2.1 Generation 

Nigerian electricity sector is characterised by low generation [24]. As seen in Table 6.1, 

of the 111 installed units, only 58 units are being utilised.  With an installed capacity of 

7876MW and available capacity of 4816MW, total daily power generation at the end of 

2008 was 2400MW. The generation rose to 3700MW at the end of 2009, and 4420MW 

in 2011. Identified causes of the low power generation include, but not limited to the 

following [147, 149]:  

1. Obsolete equipment; 

2. Poor maintenance culture; 

3. Insufficient funding;  

4. Employees’ aptitude and sabotage; 

5. Lack of interest to explore other renewable energy sources. 

 

6.2.2 Transmission 

Nigeria’s electricity transmission network does not currently cover every part of the 

country. It does not also have the capacity to transmit all the power generated. Factors 

that account for this inefficiency include, but not limited to the following [149]:  

1. The country’s geographic terrain; 
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2. Federal government’s sole funding; 

3. Vandalisation of lines; 

4. Lack of modern monitoring and communication technologies; 

5. Outdated network grid; 

6. Lack of regular human capacity re-training schemes.  

 

6.2.3 Distribution 

Currently, electricity distribution network in most parts of the country is not very 

efficient, resulting in consumers experiencing low voltage and inaccurate billing. The 

distribution sub-sector is characterised by [149]:  

1. Inadequate, obsolete distribution network with overloaded transformers; 

2. Poor billing system; 

3. Regular theft and vandalism of distribution equipment; 

4. Employees’ sabotage and non payment of bills by consumers;   

5. Poor communication equipment and customer service; 

6. Lack of regular human capacity re-training schemes.  

 

The result of these challenges is erratic, epileptic and unreliable supply of electricity, 

forcing most consumers to resort to self-generation of power. This situation has no 

doubt created a harsh environment for both national development as well as 

discouraging foreign investments. The power problem has been top in the list of 

priorities of successive leadership in Nigeria, making the country to witness several 

reforms in the electrical sector.  

 

6.3 Electrical Power Sector Reforms 

Nigeria’s electricity per capita in both generation and consumption is one of the lowest 

in the world, making it the most problematic electricity sector. Figure 6.2 shows a pie 

chart comparison of Nigeria’s generation per capita with contemporary developing 

nations in 2009 [24]. With a net electricity generation of 3700MW, Nigeria’s generation 

per capita was 24.67MW for a population of 150 million, against South Africa’s 

1510.2MW for a population of 44 million and electricity generation of 46000MW; 

United Arab Emirate’s 1184MW for a population of 4 million and electricity generation 

of 4740MW; Malaysia’s 960MW for a population of 25 million and electricity 
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generation of 24000MW; and Iran’s 676.9MW for a population of 65 million and 

electricity generation of 44,000MW.  

 

 
 

Figure 6.2: Per capita generation of Nigeria and selected developing energy Nations [24] 

 

 
Table 6.2 compares the electricity consumption per capita of Nigeria (in KWh) with 

selected developing and developed countries from 2009 to 2013. Its worldwide ranking 

was 188
th

 in 2013 [144, 151, 152, 153]. 

 
S/N Countries 2009 2010 2011 2012 2013 

1 Iceland 51,259 51,440 52,374 52,621 51,024 

2 Norway 23,860 24,891 23,174 24,558 23,538 

3 Canada 15,120 16,154 16,406 16,020 14,714 

4 UAE 9,998 9,845 9,389 13,281 13,947 

5 USA 12,914 13,395 13,246 11,920 12,391 

6 France 7,340 7,735 7,289 7,023 6,878 

7 Germany 6,753 7,162 7,081 6,697 6,754 

8 Japan 7,838 8,378 7,848 6,750 6,750 

9 UK 5,686 5,745 5,516 5,467 5,168 

10 South Africa 4,532 4,654 4,694 4,373 4,222 

11 China 2,633 2,944 3,298 3,494 3,494 

12 Brazil 2,202 2,381 2,438 2,286 2,199 

13 Mexico 1,870 1,916 2,092 1,579 1,773 

14 Gabon 1,004 974 907 995 809 

15 Cameroon 261 258 256 176 251 

16 Ghana 280 299 344 284 248 

17 Angola 255 247 248 186 202 

18 Sudan 114 133 143 111 135 

19 Kenya 146 155 155 125 128 

20 Nigeria 120 135 149 107 103 

 

Table 6.2: Electricity consumption per capita (in KWh) of selected countries from 2009 to 2013 [144, 

151, 152, 153] 

 

Only about 36% of the total population have access to the public grid power [24]. The 

wide gap between electricity demand and the installed/available capacity in the 

generating stations has resulted to acute power shortage in the country, leading to self-

generation of power by residential, commercial and industrial consumers. It is estimated 
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that an average of ₦2billion (about $12 million) is spent on this per week [154]. There 

are enormous opportunities in Nigeria’s electricity power sector for private investment 

but for the witnessed poor performance, leading to huge losses. This has greatly 

hindered social development and economic growth. The factors that have led to this 

inefficiency as well as their consequences have been outlined in sub-sections 6.3.1, 

6.3.2 and 6.3.3. But with the successes recorded in the deregulation of other sectors (e.g. 

telecommunications), the federal government realised that the future of the power sector 

rests on private sector participation.  

 

The Privatisation and Commercialisation Decree No. 25 of 1988 established the 

Technical Committee on Privatisation and Commercialisation (TCPC), and led to the 

review of the failures of NEPA and consequently proposals to commercialise same 

[155]. With the enactment of the Public Enterprises Act of 1999, TCPC was replaced by 

the Bureau of Public Enterprises (BPE) [156]. This shifts emphasis from 

commercialisation to privatisation, encouraging core investors and promoting foreign 

investment. With the continued low electricity supply experienced in the country, the 

federal government in 2000 formed Electric Power Implementation Committee (EPIC), 

which prepared the National Electric Power Policy (NEPP) in 2001, with the following 

objectives [154]: 

 

1. Attract private investors from both within and outside the country; 

2. Establishment of an independent regulatory agency; 

3. Development of a wholesale electricity market; 

4. Establishment of a consumer assistance fund to ensure the efficient and targeted 

application of subsidies to less privileged Nigerians; 

5. Establishment of a Rural Electrification Agency (REA) to manage the rural 

electrification fund. 

 

These objectives were legally backed up by the Electric Power Sector Reform Act 

(EPSRA) of 2005, removing the operational and regulatory responsibilities of the 

electricity sector from the federal government [145]. NEPA was renamed PHCN, and 

unbundled into 18 successor companies, comprising of: 6 GENCOs, 1 TRANSCO and 

11 DISCOs [157]. The Act established the Nigeria Electricity Regulatory Commission 

(NERC) as an independent industry regulator, for effective monitoring of tariffs and 

quality of service, with supervisory input from the Federal Ministry of Energy.  
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In August 2010, a Roadmap on the power sector reform was presented by the Federal 

Government to the stakeholders (National Council on Privatisation, Bureau of Public 

Enterprises, Ministry of Energy and NERC) and investors in the power sector [158]. 

Private sector investment/participation was encouraged for generation and distribution, 

while the TRANSCO belonged exclusively to the Federal Government.  

 

Until its liquidation in 2011, the 18 successor companies operated as subsidiaries of 

PHCN, but have now inherited all its operations. Consequently, the Nigerian Electricity 

Liability Management Company (NELMCO) was created to inherit and manage all the 

liabilities of the successor companies.  The Nigerian Bulk Electricity Trading Plc 

(NIBET) was created and inaugurated in 2011 as middle machinery between the 

GENCOs and the DISCOs through bulk electricity purchase from GENCOs and 

Independent Power Producers (IPP), and re-sell same to DISCOs until the latter are 

financially able to function independently [158]. The reform created a platform/enabling 

environment for IPP’s participation in electricity generation and distribution, with the 

granting of more IPP licenses. Table 6.3 shows the approximate sector’s reform targets 

for generation, transmission and distribution from 2010 to 2013.  

 

Section Yearly Target Capacity (MW) 

2010 2011 2012 2013 

Generation 6,000 9,867 11,879 14,218 

Transmission 5,500 7,488 8,986 9,885 

Distribution 5,300 7,485 8,061 9,057 

 

Table 6.3: Nigerian power system reform targets [158] 

 

In line with the vision 20:2020 on energy sector (the target of being among the world’s 

top 20 energy sector by the year 2020) [158], the Federal Government aims a target 

generation of 40,000MW with an annual investment of ₦1.5 trillion ($10 billion) 

suggested by the reform roadmap.  In 2012, a true deregulation was put in place, with 

the successor companies (Table 6.4) commencing independent activities in 2013 with a 

full privatisation [159]. The current research is therefore a timely intervention on this 

subject. 
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GENCOs TRANSCO DISCOs 

Afam Power Plc Transmission Company 

of Nigeria 

Abuja Electricity Distr. Co. Plc 

Geregu Power Plc Benin Electricity Distr. Co. Plc 

Kainji Power Plc Eko Electricity Distr. Co. Plc 

Sapele Power Plc Enugu Electricity Distr. Co. Plc 

Shiroro Power Plc Ibadan Electricity Distr. Co. Plc 

Ughelli Power Plc Ikeja Electricity Distr. Co. Plc 

 Jos Electricity Distr. Co. Plc 

Kaduna Electricity Distr. Co. Plc 

Kano Electricity Distr. Co. Plc 

Port Harcourt Electricity Distr. Co. Plc 

Yola Electricity Distr. Co. Plc 

 

Table 6.4: PHCN Successor Companies [159] 

 

6.4 Case Study I: Application of SEA to the Nigerian 

Power System before Deregulation 
 

In this section, we applied the smart evolutionary algorithm to solve the problem of real 

power dispatch for the Nigerian power system grid before the sector reforms that 

preceded the deregulation. The aim is to reduce both the total cost of generation and 

transmission power loss, while maintaining an acceptable generation output in the 

context of SELD. The grid involves a 31-bus, 330kV network interconnecting 4 thermal 

and 3 hydro stations to several load centres.  

 

6.4.1 Related Work 

Very limited work in ELD has been done so far in relation to the electrical power 

system of Nigeria.  A vast majority of published work ([145, 146, 147, 148, 149, 150, 

154, 157, 159]), amongst others merely describes theoretically the challenges and 

reforms within of the power sector. 

 

In [53], conventional genetic algorithm (CGA) and micro genetic algorithm (μGA) were 

developed for the ELD. The effectiveness of the approaches was tested with the IEEE 6-

bus and 31-bus Nigerian grid system. While satisfactory results were realised in both 

approaches over classical method (CM) and Hopefield Neural Network (HNN) [160], 

CGA has a major drawback of long computation time, while μGA worked well on small 

population to reduce computation time [161], with mutation set to 0 [53]. This leads to a 

quicker convergence, and may not be a good approach for bigger population, where 

solutions might be stuck in local optima. Much genetic variations are not introduced. 

These problems were overcome in the present application case study, whose strength 
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lies in the preservation of the “elite members” and copying them across generations to 

avoid losing promising solutions in a given generation. 

 

Power flow and contingency analysis were carried out in [162] to compute bus voltages, 

bus powers and transmission losses in a section of the Nigerian transmission network. 

This was achieved using Guass-Siedel iteration method to evaluate voltages for the 

330kV ring network (Benin – Ikeja West – Ayede – Oshogbo – Benin), to determine the 

weak areas resulting in high technical losses in order to improve the efficiency of the 

network. The 330kV electricity transmission network of Nigeria consists of a long 

radial transmission lines and this loop connection within the network [163]. 

Performance comparison of the results obtained was made with Newton-Raphson 

method in Power World Simulator environment [164] which proved to be satisfactory 

and reliable. Technical and financial losses in the network were estimated in [163]. 

Results from all the studies show that the present state of the Nigerian electricity grid is 

not up to expectation, requiring lots of modifications. 

 

In [165], power distribution planning problem of Nigeria was solved using the 

decomposition approach and integer programming method. The large problem was 

divided into three optimisation stages: substation, feeder and outage cost optimisations, 

with each stage formulated as a quadratic mixed integer programming problem and 

solved sequentially. Radial distribution network system used in the work ensured that 

electricity leaves the substation, passing through the network without any connection to 

other distributors. The study was however limited to Enugu DISCO.  

 

6.4.2 Problem Formulation 

In a system of generating units connected to a transmission network, modelling and 

formulating the ELD problems in relation to Nigerian power system involve three 

different cases:  

 

(i) Neglecting both generators’ limits and power losses;  

(ii) Including generators’ limits, but neglecting losses;  

(iii) Including both generators’ limits and power losses.  
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In case (i), the total power demand is equal to the sum of all generating units output, 

where a cost function is assumed to be known for each unit. The problem here is the 

computation of total generation cost, CT, and determination of the generators output for 

such that CT as defined in (2.11) and (2.12) is minimised, subject to (2.13). In case (ii), 

the generating limits constraint of (2.14) is considered. Case (iii) involves the power 

transmission losses, PL, of (2.18), the power balance constraint of (2.15), in addition to 

the generating limits constraint of (2.14), which is the case considered in this 

application study. 

 

6.4.3 Optimisation Approach 

The following is the work flow/description of the algorithm adopted in the optimisation 

approach for this application case study. The key concept used here is elitism. It is a 

strategy that ensures the best solutions of the previous generation are maintained in the 

next population. 

 

(i) Generate an initial population P of size N. 

(ii) Evaluate the fitness of each solution, S. 

(iii) Select the best solution(s) Sbest, to form the mating/breeding pool (parents). 

(iv) Perform breeding (crossover and mutation operations) on the parent solutions 

from the mating pool and obtain a new population, Pnew.  The smart mutation 

approach is adopted in this SELD problem, using SEA1, SEA2 and SEA3.  

(v) Evaluate the fitness of each solution S of Pnew with Sbest. If the optimum solution 

is found or maximum generation is reached (stopping criteria), output result, 

otherwise process elitist strategy. 

(vi) In the elitist process, if the fitness of each solution in Pnew is less than the fitness 

of Sbest, replace the worst solution of Pnew with Sbest. Sort chromosomes in the 

resultant population. Based on elitism rate (x% of N), compute the elites and 

copy to next generation. Go back to step (ii) above. 

 

6.4.4 Experimental Design, Results and Discussion 

In practical implementation, (2.15) can be re-written as an error function in (6.1), with 

an aim to minimising it. 
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Convergence is achieved when the error decreased to a tolerance level. To speed up the 

convergence and realise the best solution, the fitness values were normalised to a range 

between 0 and 1, with the fitness function defined by (6.2), where k is a penalty factor 

which reflects the violation of the power balance constraint, assigning a high cost of 

penalty to affected ones far from the feasible region [108, 101], and σ a scaling factor 

defined by (6.3).  
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This process iterates until convergence occurs. With the best solution obtained, the total 

power generated, total generation cost, and total transmission loss are computed. Table 

6.5 shows parameters for the capacities and cost coefficients from [53], for the 

generators in 4 of the 7 thermal stations used in this case study.  

 

Power  

Station 

Pg
min

 

(MW) 

Pg
max

 

(MW) 

a 

(₦/hr) 

B 

(₦/MWhr) 

c 

(₦/MW
2
hr) 

Egbin 275.0 1100.0 12787.00 13.10 0.031 

Sapele 137.5 550.0 6929.00 7.84 0.130 

Delta 75.0 300.0 525.74 -6.13 1.200 

Afam 135.0 540.0 1998.00 56.00 0.092 

 

Table 6.5: Nigerian thermal stations generating capacities and cost coefficients  

 

Parameters for the 3 hydro plants (Shiroro, Kainji and Jebba) were fixed according to 

the respective utility’s operating practices [53]. The power loss was computed using 

(2.18), with the loss formula (B-coefficients) for the Nigerian power system shown in 

(6.4), (6.5) and (6.6), as provided in [53].  
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SEA1, SEA2 and SEA3 were applied using these data. For the purpose of comparison 

with other approaches in literature with the same set of data (CGA and μGA), the 

genetic parameters were set as shown in Table 6.6. 

 

Parameters Values  

Generation 350 

Population size 100 

Selection method Tournament 

Crossover rate 0.7 

Mutation rate 0.01 

Smart Mutation Probability (in SEA2) 0.6 

Elitism rate 10% 

Penalty factor 50,000 

 

Table 6.6: Experimental parameters for the application of SEA1, SEA2 and SEA3 to the Nigerian Power 

System before Deregulation 

 

 

Table 6.7 summarises the results for the application of SEA1, SEA2 and SEA3 to the 

Nigerian Power System before deregulation, averaged over 30 runs, and compared with 

CGA and μGA [53]; while Table 6.8 gives the resources allocation in the best of 30 

runs of all the approaches. As seen in Table 6.8, the total generation cost and power loss 

of ₦99,143.50/hr and 9.45MW respectively are the lowest and best obtainable from 

literature till date. 
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Cost (₦/hr) SEA1 SEA2 SEA3 CGA [53]       μGA [53] 

Average 106,634.97 105,813.69 102,752.05 - - 

Std Dev 5,668.90 5,347.82 4,707.22 - - 

Maximum 117,312.34 116, 273.05 112,417.22 - - 

Minimum 95,072.02 100,504.81 91,701.62 110,640 107,540 

 

Table 6.7: Summary of results for the application of SEA1, SEA2 and SEA3 to the Nigerian Power 

System before Deregulation, over 30 runs, and comparison with other approaches 

 
 
 

 CGA [53]        μGA [5] SEA1 SEA2 SEA3 

Egbin (Pg1) 877.15 1011.39 1011.90 984.54 1044.40 

Sapele (Pg2) 194.64 173.28 276.57 178.22 279.05 

Delta (Pg3) 106.49 111.18 109.57 77.72 83.12 

Afam (Pg4) 371.13 261.43 146.52 303.36 135.99 

Shiroro (Pg5) 490.00 490.00 490.00 490.00 490.00 

Kainji (Pg6) 350.00 350.00 350.00 350.00 350.00 

Jebba (Pg7) 450.00 450.00 450.00 450.00 450.00 

Total generated 2839.41 2847.28 2834.56 2834.84 2832.55 

Total demand 2823.10 2823.10 2823.10 2823.10 2823.10 

Power loss 16.31 24.18 11.46 11.74 9.45 

Total cost (₦/hr) 110,640.00 107,540.00 103,264.07 102,940.36 99,143.50 

 

Table 6.8: Resources allocation in the best of 30 runs of SEA1, SEA2 and SEA3 applied to the Nigerian 

Power System before Deregulation, and comparison with other approaches 

 

Tables 6.7 and 6.8 show that SEA1, SEA2 and SEA3 approaches performed better than 

μGA and CGA, two similar approaches identified in literature with the same set of data 

in terms of both generation cost and power loss in this application case; with SEA3 

having a comparatively lowest cost and power loss than all the approaches.  A standard 

T-test (one-tailed) with significance level p < 0.1 shows 99.7% confidence that SEA3 is 

better than SEA1 in this problem. We also confirmed that SEA3 is superior to SEA2 

with 97.5% confidence. There is insufficient information to compare statistically with 

μGA and CGA. On the overall, the results indicate that SEA3 is the best solution 

approach for this problem. The SEAs kept the good features of EA over μGA in being 

able to optimise problems with higher population size, while eliminating the major 

draw-back of CGA which is long execution time.  

 

6.5 Case Study II: A BBDELD Solution Approach for 

the Nigerian Deregulated Electricity Market 
 

With the approval and granting of independent power provision (IPP) licenses as part of 

the sector reforms preceding the market deregulation, a total number of 43 electricity 

power stations from the initial 14 stations was targeted, for a capacity of 24,106MW 
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[148, 166]. The 6 generating companies (GENCOs) share these 43 power stations in 

terms of geographical proximity to reduce transmission losses. At the moment, their 

status vary from existing, ongoing, new IPP commissioned IPP, approved IPP, approved 

licenses IPP, license granted IPP [166]. In this section, we developed a new BBDELD 

for the Nigerian deregulated electricity market, consisting of 40 generators and 11 

customers (DISCOs) in a 24 trading (dispatch) periods. 

 

In the proposed model, we investigated the performance of two optimisation solution 

approaches that have recently provided superior results on related benchmark problems 

for the BBDELD in 12 trading periods, under the high bidding strategy (M3_SEA1 and 

M3_SEA3), and we now adapt them for larger energy optimisation scenario in 24 

trading (dispatch) periods. The generators bid data with valve-point loading effects were 

taken from [167]; a larger and more complex test case than previous experiments. There 

is therefore a tendency of having several local optima, and consequently a difficulty in 

locating global optima.  Solutions involving this large test case (total load demand of 

10,500MW) had been realised using EP [167], BCO [168], PSO [169, 170], DE [45], 

BBO [171] SI [172, 173], MGSO [174], SA [175]. But all these were for an SELD 

problem.  This therefore makes the current test case study very challenging, but 

appropriate and timely. We generate the customers bid data (Table 6.9) using the 

recommendations and specifications of the high bidding strategy from [137, 142], to 

meet the load demand requirements of [4, 109], with modifications to incorporate the 

larger generators bid data of [167], as shown in Table 6.10.  

 

Customers D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

adj ($/MWh2) 0.1 0.099 0.098 0.097 0.096 0.095 0.094 0.093 0.092 0.091 0.09 

bdj ($/h) 20 19 18 17 16 15 14 13 12 11 10 

 

Table 6.9: Customers bid data for the Nigerian deregulated electricity market 
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Hour D1 

(MW) 

D2 

(MW) 

D3 

(MW) 

D4 

(MW) 

D5 

(MW) 

D6 

(MW) 

D7 

(MW) 

D8 

(MW) 

D9 

(MW) 

D10 

(MW) 

D11 

(MW) 

Total  

(MW) 

1 1300 1000 1200 1100 1060 1100 1000 700 500 800 600 10,360 

2 1400 1300 1200 900 1000 1000 900 900 800 600 500 10,500 

3 1080 1300 1500 1400 900 1100 1200 1400 700 1000 1000 12,580 

4 1700 1800 1560 1200 1600 1500 1000 1000 1000 800 900 14,060 

5 1400 1800 1200 1100 1500 1700 1200 1500 1000 1100 1300 14,800 

6 2100 1200 1700 1300 1080 2000 1400 1400 1300 1600 1200 16,280 

7 1500 1920 1500 2000 2100 2000 1100 1400 1000 1200 1300 17,020 

8 2400 2500 2000 2060 1400 1500 1300 1000 1500 1000 1100 17,760 

9 2200 1400 2000 2500 2200 2340 1600 1200 1400 1300 1100 19,240 

10 2720 2000 2600 1500 1000 2500 1400 1200 2000 1800 2000 20,720 

11 2000 1900 1500 2100 1600 2060 2500 2300 2100 1900 1500 21,460 

12 3100 2200 1800 2500 2000 2400 2200 1600 1300 1700 1400 22,200 

13 2720 2000 2600 1500 1000 2500 1400 1200 2000 1800 2000 20,720 

14 2200 1400 2000 2500 2200 2340 1600 1200 1400 1300 1100 19,240 

15 2400 2500 2000 2060 1400 1500 1300 1000 1500 1000 1100 17,760 

16 2000 1600 1300 1240 1200 1900 1600 1400 1000 1200 1100 15,540 

17 1400 1800 1200 1100 1500 1700 1200 1500 1000 1100 1300 14,800 

18 2100 1200 1700 1300 1080 2000 1400 1400 1300 1600 1200 16,280 

19 2400 2500 2000 2060 1400 1500 1300 1000 1500 1000 1100 17,760 

20 2720 2000 2600 1500 1000 2500 1400 1200 2000 1800 2000 20,720 

21 2200 1400 2000 2500 2200 2340 1600 1200 1400 1300 1100 19,240 

22 2100 1200 1700 1300 1080 2000 1400 1400 1300 1600 1200 16,280 

23 1500 1100 1300 1220 1200 1400 1100 1200 1000 1200 1100 13,320 

24 1040 1300 1200 1400 900 1100 1200 1300 700 900 800 11,840 

 

Table 6.10: Hourly maximum customers’ load demands for the Nigerian deregulated electricity market 

 

The total hourly load demands therefore range from 10,360MW to 22,200MW 

depending on the time of the day; in line with the targeted generating capacity of 

24,106MW for the Nigerian deregulated electricity market following the power sector 

reforms [148, 166]. Due to lack of related data on loss coefficients in literature for 

comparison and validation purposes, transmission losses were neglected. 

 

For the purpose of comparison with other approaches in literature with the same set of 

data (where appropriate), the following parameters Table 6.11 were used. 

 

Parameters Values 

Generation 200 

Population size 100 

Selection method Tournament 

Crossover rate 0.7 

Mutation rate 0.01 

Smart Mutation Probability (in SEA2) 0.6 

Elitism rate 10% 

Penalty factor 50,000 

Scaling factor 0.2 

 

Table 6.11: Experimental parameters for use in the BBDELD for the Nigerian deregulated electricity market 
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Table 6.12 and Figure 6.3 show optimised values for total generation costs, total 

customer benefits and social profits of the two optimisation approaches averaged over 

30 runs, which shows both approaches realising very high social profit, with M3_SEA3 

slightly higher.  

 

 M3_SEA_1 M3_SEA_3 

Total Customer Benefit ($) 69,816,712.80 69,816,712.80 

Total Generation Cost ($) 2,878,213.85 2,854,985.59 

Average Social Profit ($) 66,938,498.95 66,961,727.21 

Standard Deviation 31,279.67 18,853.54 

Minimum Social Profit ($) 66,922,574.43 66,933,214.72 

Maximum Social Profit ($) 66,964,004.04 67,011,371.19 

 

Table 6.12: Summary of results of M3_SEA1 and M3_SEA3, averaged over 30 runs, in the BBDELD for 

the Nigerian deregulated electricity market 
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Figure 6.3: Bar chart showing the generation costs, customer benefits and social profits of M3_SEA1 and 

M3_SEA3, averaged over 30 runs, in the BBDELD for the Nigerian deregulated electricity market, consisting of 

40 generators and 11 customers, in 24 dispatch periods 

 

 

To explore the relative performance of the two approaches, we considered the 

distribution pattern of social profits across the 30 independent runs as shown in Figure 

6.4. Standard T-test (one-tailed) with significance level p < 0.1 was also applied. We 

confirmed that M3_SEA3 is superior to M3_SEA1 with 99.9% confidence, and the best 

for the current large scale problem. Figure 6.5 is a load curve comparing the two 

approaches with the total hourly load demands across the entire dispatch period. 
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Figure 6.4: Distribution of social profits of M3_SEA1 and M3_SEA3, averaged over 30 runs, in the 

BBDELD for the Nigerian deregulated electricity market 
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Figure 6.5: Load curve comparing the outputs of M3_SEA1 and M3_SEA3 with hourly load demands in 

the entire dispatch in the BBDELD for the Nigerian deregulated electricity market 

  
 

Table 6.13 compares the total generation costs of M3_SEA1 and M3_SEA3 with other 

approaches in literature for the same set of data, as in dispatch period 2 (total load of 

10,500MW). The best generation cost reported in literature until now for this load 

demand is $121,412.55/h [175], but much lower costs were realised using both 

M3_SEA1 and M3_SEA3 approaches. 
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Approach Min Cost ($/hr) Avg Cost ($/hr) Max Cost ($/hr) 

IFEP [167] 122,624.35 123,382.00 125,740.63 

ABC [168] 121,432.39 121,995.82 122,123.77 

SOH_PSO [169] 121,501.14 121,853.57 122,426.30 

DE [45] 121,416.29 121,422.72 121,431.47 

ICA_PSO [170] 121,413.20 121,428.14 121,453.56 

BBO [171] 121,426.95 121,508.03 121,688.66 

SI [172, 173] 121,415.59 121,615.85 - 

MGSO [174] 121,412.57 - - 

SA [175] 121,412.55 121,418.05 121,425.28 

M3_SEA 1 121,379.15 121,410.72 122,307.02 

M3_SEA 3 121,315.60 121,339.30 121,669.75 

 

Table 6.13: Comparison of generation costs for M3_SEA1 and M3_SEA3 with other approaches in 

dispatch period 2 of the same load demand (PD=10,500MW) 

 
 

6.6 Summary 

This chapter applied various elements of the research presented in earlier chapters to the 

Nigerian electrical power system. It presented a chronological history of power 

generation in Nigeria, identifying the challenges to effective power provision which led 

to the various power sector reforms. We applied the three SEA approaches (SEA1, 

SEA2 and SEA3) to the country’s power system before the sector reforms that preceded 

deregulation, a SELD problem, and demonstrated that these approaches show superior 

performance in comparison with Micro GA (μGA) and Conventional GA (CGA), two 

similar approaches identified in literature with the same set of data in terms of both 

generation cost and power loss.  As seen from the resources allocation of Table 6.8,  the 

total generation cost and total power loss of ₦99,143.50/hr and 9.45MW respectively, 

realised using SEA3, are the lowest and best obtainable from literature till date. This is 

in comparison with total generation costs of ₦102,940.36/hr, ₦103,264.07/hr, 

₦107,540.00/hr, ₦110,640.07/hr respectively for SEA2, SEA1, μGA, CGA; and total 

power loss of 11.74MW, 11.46MW, 24.18MW, and 16.31MW respectively for SEA2, 

SEA1, μGA, CGA. Standard T-test (one-tailed) with significance level p < 0.1 shows 

99.7% confidence that SEA3 is better than SEA1 in this problem, and also that SEA3 is 

superior to SEA2 with 97.5% confidence. There is insufficient information to compare 

statistically with μGA and CGA. On the overall, the results indicate that SEA3 is the 

best solution approach for this SELD problem. 

 

From the good solutions obtained in the SELD problem, we adapted the BBDELD 

formulation and proposed a solution model to the country’s deregulated electricity 

market using our smart EA, and demonstrated the ability of our SEA to deal with larger 



 

156 

scale energy optimisation tasks in the bid based dispatch problems by means of a very 

high social profit, and superior performance over other reported approaches where the 

same set of data was used. We investigated the performance of two optimisation 

solution approaches that earlier provided superior results on related benchmark 

problems for the BBDELD in 12 trading periods, under the high bidding strategy 

(M3_SEA1 and M3_SEA3), and adapted them for a larger energy optimisation scenario 

in 24 dispatch periods. Optimised values for total generation costs, total customer 

benefits and social profits using the two approaches (Table 6.12 and Figure 6.3) show 

both approaches realising very high social profit, with M3_SEA3 slightly higher 

($66,961,727.21 against $66,938,498.95 for M3_SEA1). From the distribution pattern 

of social profits across the 30 independent runs (Figure 6.4), standard T-test (one-tailed) 

with significance level p < 0.1, and load curve comparing the two approaches with the 

total hourly load demands across the entire dispatch period (Figure 6.5), we confirmed 

that M3_SEA3 is superior to M3_SEA1 with 99.9% confidence, and the best for the 

current large scale problem. Further exploration of the relative performance of the SEA 

was made by comparing the total generation costs of M3_SEA1 and M3_SEA3 with 

other approaches in literature for the same set of data, including the same static load 

demand in a common dispatch period (period 2, with total load demand, PD of 

10,500MW). The lowest/best generation cost reported in literature until now for this 

load demand is $121,412.55/h using Simulated Annealing (SA) approach [175], but 

much lower costs were realised using both M3_SEA1 and M3_SEA3 approaches - 

$121,315.60/h and $121,379.15/h respectively. 
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Chapter 7 

 

Conclusion 

 

7.1 Summary  

Chapter 2 presented a background discussion of the research. The concept of 

optimisation was described, including the process, categories, cycle and its use as a 

problem solving tool. The chapter introduced the concept of electrical energy and 

electrical power, identifying power generation as the primary research domain.  It 

highlighted the concept of optimal power flow, distinguishing between unit 

commitment and economic load dispatch (ELD) problems. In addition, it presented the 

various formulations of ELD problems, chronicled the historical developments in the 

solution approaches to ELD problems, and identified the two major types/categories of 

ELD problems – static ELD and dynamic ELD problems. The second part of the chapter 

presented a survey and study of evolutionary algorithm (EA), the optimisation tool used 

in the research. It described the design and implementation details of a standard EA, 

investigated and justified its suitability to solving ELD problems, reviewed recent and 

related work on power system optimisation. Lastly, it discussed the concepts of multi-

objective EA, other non-evolutionary search algorithms and a review of smart mutation.  

Chapter 3 described and evaluated a new EA for solving SELD problems. The 

formulation considered practical instances of SELD problems involving: 

minimum/maximum generation limits, power balance, ramp rates and prohibited 

operating zones constraints. In addition, work in the chapter involved various methods 

of handling constraints to keep the control variables in feasible regions where all 

constraints are satisfied. A technique for handling these constraints constitutes the 

“smartness” within the proposed EA approach to the SELD problem.  The chapter 

described the features of a conventional EA used as a baseline approach, and gradually 

progressed to develop three versions of the smart mutation operator that are tailored for 

constrained ELD problems.  It performed rigorous tuning of genetic parameters to select 

values for further experimental runs in the three versions of the smart mutation operator 

on three benchmark cases involving 6, 15 and 20 generating units; the ones commonly 
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explored in recent literature, with a focus on the larger problem cases. Performance 

evaluation was made on the methods, and the results were compared with those reported 

for a range of recent alternative algorithms. 

Chapter 4 described and evaluated a new EA for solving DELD problems, which 

extended the SELD formulation to a dynamic context. DELD is one of several 

optimisation problems that need repeatedly to be solved in the electricity sector. The EA 

developed in the SELD problems minimised total generation costs among the 

committed units satisfying all constraints. But in practical systems involving ramp-rate 

limit constraints, operational decisions at a given hour will affect the decision at a later 

hour. Due to the change in load conditions arising from these limits, the power 

generation has to be altered to meet the demand. DELD takes into consideration the 

dynamic costs involved in changing from one output level to another and is therefore a 

more applicable formulation of the ELD problem as it is faced by generating stations 

worldwide. The chapter showed the various steps involved in DELD formulation, and 

reviews recent literature of related work in the DELD problems.  It described the DELD 

problems formulation involving dynamic constraints, and the computational algorithm 

used in the optimisation. From the results that provided superior results on the three 

versions of the smart mutation operator from SELD, the chapter adapted the solution 

algorithm for the dynamic case, and investigated three optimisation approaches. It 

compared the results of two problems test cases: systems of 5 and 10 generating units 

(involving a total of 18 instances of the algorithm – the three versions of the smart 

mutation operator in each of the three dynamic approaches, applied to the two test 

cases) with each other, and with identified methods from literature. 

Chapter 5 investigated the use of EAs to maximise social profit in the context of 

BBDELD formulation in a deregulated electricity environment. It discussed the 

introduction of deregulation to the global electricity market, and identified price-based 

DELD and bid-based DELD as profit-based DELD formulations involved in optimal 

transaction dispatch in a deregulated market. The chapter reviewed related work in 

BBDELD and described the solution optimisation procedure, involving three bidding 

strategies – low, medium and high. It compared results of the best two versions of the 

smart mutation operator with previous results in the literature involving two test cases: 3 

units, 2 customers in 2 dispatch periods and 6 units, 2 customers in 2 dispatch periods. 

Finally, the chapter defined and showed results on a new and larger test case – system 

of 10 generating units, 6 customers in 12 dispatch periods. 
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Chapter 6 adopted a case study approach, relating the work in previous chapters to the 

Nigerian electrical power system that has recently been deregulated and privatised. It 

presented the history of power generation in Nigeria and identified the challenges to 

effective power provision in generation, transmission and distribution of electricity that 

led to various reforms which took place in the power sector. It described the design and 

implementation of a constrained elitist genetic algorithm for the country’s power system 

prior to the sector reforms, adapted the BBDELD formulation to the country’s 

deregulated electricity market using the best two versions of the smart mutation 

operator from chapter 5, and investigated the ability of the SEA to deal with larger scale 

energy optimisation task in the bid based dispatch problems. 

 

7.2 Contributions 

The following summarise the main contributions of this thesis: 

 Rather than use a generic/off-the-shelf EA-based optimisation package, we 

developed and demonstrated a novel approach to solving certain kinds of real-

world problems. Here, we implemented a smart evolutionary algorithm (SEA), 

which combines a standard EA with a “smart mutation” operator that is tailored 

to the problem domain.  This operator focused mutation on genes contributing 

most to cost and penalty violations in the fitness function. We investigated and 

analysed three distinct variants of the smart mutation operator. The pseudo-code 

of this algorithm was described in section 3.4, building on the smart mutation 

first described in section 2.9.  We also demonstrated that this approach is 

successful on a range of problems in the electricity supply industry. 

 We contributed a new approach to solving SELD problems.  This optimisation 

approach was described in sections 3.2, 3.3 and 3.4, including how penalty 

violations were handled. In section 3.5, we demonstrated that this approach 

show superior performance to other previously published algorithms, on the 

basis of the common published test problems used in the literature on three 

benchmark cases involving 6, 15 and 20 generating units in terms of lowest cost 

and meeting load demand, with minimal power losses (see Tables 3.12, 3.22, 

3.23, 3.30 and 3.31). In the 6-unit problem case, simulation results of SEA1, 

SEA2 and SEA3 on the basis of resources allocation in the best of 30 runs of the 

three approaches show that they are all better than other approaches in literature 
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with the same set of data in terms of both lower generation costs and lower 

power losses. The generation cost of $709.60/h from the resources allocation in 

the best of 30 runs of SEA1 (Table 3.12) is the best we have seen in the 

literature to date for this problem, in terms of lowest cost. In the 15-unit problem 

case, although SEA3 has the lowest average cost of $32,549.90/h, but a solution 

from SEA1 has the lowest minimum cost of $32,146.66/h. Besides having lower 

generation costs, all three approaches did not over produce power. Standard T-

test (one tailed) with significance level p < 0.1 (confidence level 90%) shows no 

significant difference statistically between the three approaches for this problem, 

but the generation cost and power loss of $32,556/h and 0.05MW from the 

resources allocation in the best of 30 runs of SEA3 (Table 3.23) are the best we 

have seen in the literature to date for this problem, in terms of lowest cost and 

meeting load demand. In the 20-unit problem case, SEA1 has both average cost, 

but from a typical resources allocation of SEA3 has the lowest generation cost of 

$60483/h; and 0.0MW respectively, the best we have seen in the literature to 

date for this problem. No power was lost in SEA3, as it exactly generated the 

customers’ load demand of 2500MW (Table 3.31). Standard T-test (one tailed) 

with significant level p < 0.1 show that SEA1 and SEA3 appear to be the best 

optimising approaches in this problem.  We also investigated the overall 

performance of the three approaches by comparing their penalties handling 

capabilities. This contributes to the ‘smartness’ of the algorithms. SEA3 shows 

the most active performance in reducing penalty violations (see Figure 3.7), an 

evidence that it will perform well in larger scale test problems.  

 We contributed a new approach to solving DELD problems, by taking the 

approaches that provided superior results in SELD problems and adapted them 

to solving DELD problems. The various steps involved in this optimisation 

approach, problem formulation and computational algorithm) are described in 

sections 4.2, 4.4 and 4.5 respectively. In the experimental design, we 

investigated three dynamic optimisation methods in conjunction with each of the 

three smart mutation variants, a total of 18 distinct experiments on benchmark 

cases involving 5 and 10 generating units (see Tables 4.3 and 4.8), the major test 

cases in the literature for which we have comparative results for other 

algorithms. Our results in section 4.6 suggest that the third method (M3), which 

exploits the dynamic nature of the problem, was capable of superior to the other 

two methods (M1and M2). Comparisons with all approaches so far in the 
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literature that have addressed these problems show that these EA-based 

approaches, especially M3_SEA3 is superior to other algorithms (see Tables 4.4 

and 4.9). In both test cases, our average and minimum best costs are better than 

those of the published approaches whenever the comparative figure is 

obtainable. 

 We contributed a new approach to solving the BBDELD problem in a 

deregulated electricity market by building on the successes of the SEAs for 

SELD and DELD problems. We matched the bids submitted by GENCOs and 

their customers in each trading transaction in a multi-player/multi-period 

transaction to maximize social profit. We investigated the effects of three 

bidding strategies (low, medium and high) on the social profit, where we found, 

by experiments, that social profits are higher from matching the bids under the 

high bidding strategy (see Tables 5.8 and 5.9). The problem formulation and 

optimisation procedure, including the bidding strategies and computational 

algorithm are described in sections 5.4 and 5.5 (including the pseudo-code). In 

section 5.6, we demonstrated that our SEAs (based on dynamic method M3) 

show superior performances to other published algorithms on BBDELD on the 

basis of the common published test problems used in the literature – systems of 

3 generators, 2 customers in 2 dispatch periods, and 6 generators, 2 customers in 

2 dispatch periods (see Tables 5.4, 5.8).  We also defined and showed results on 

a new and larger test case – a system of 10 generators, 6 customers in 12 

dispatch periods (section 5.6.3), where we investigated the optimisation 

performance of M3_SEA1, M3_SEA2 and M3_SEA3. We generated the 

customers bid data (see Table 5.11) using the recommendations and 

specifications of the high bidding strategy from literature to meet a 

corresponding set of load across the entire 12-hour dispatch. The results (see 

Table 5.12 and Figures 5.7 and 5.8) show that the approaches (especially 

M3_SEA1 and M3_SEA3) are capable of large scale optimisations.  

 We also contributed a new technique to solving the BBDELD in a case study 

involving the application of the bid-based SEAs to power sector reforms that led 

to the deregulation of the Nigerian electrical power industry.  In section 6.4, we 

applied the three SEAs to solve the SELD problem of real power ELD for the 

Nigerian power system grid before the sector reforms. Here, we demonstrated 

that SEA1, SEA2 and SEA3 performed better than micro-GA and convectional 
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GA, two similar approaches from literature with common test problems in terms 

of lowest cost and power loss, with the best result from SEA3. In 6.5 we 

developed a novel solution model for the country’s deregulated electricity 

market involving 40 generating power stations from 6 generating companies 

(GENCOs) and 11 customers (DISCOs) in a 24 trading (dispatch) periods. We 

generated the customers bid data (Tables 6.9 and 6.10) using the 

recommendations and specifications of the high bidding strategy from related 

published work in literature to meet the load demand requirements of the case 

study, with modifications to incorporate the larger generators bid data, where the 

total hourly load demands range from 10,360MW to 22,200MW depending on 

the time of the day. This is in line with the targeted generating capacity of 

24,106MW for the Nigerian deregulated electricity market following the power 

sector reforms. We demonstrated the ability of both M3_SEA1 and M3_SEA3 

to deal with larger scale energy optimisation task in the bid-based dispatch 

problems by means of a very high social profit (see Table 6.12 and Figures 6.3, 

6.4 and 6.5), and superior performance over other reported approaches where the 

same set of data was used (see Table 6.13). Finally, from standard T-test (one-

tailed) with significance level p < 0.1, we confirmed that M3_SEA3 is superior 

to M3_SEA1 with 99.9% confidence, and the best for the case study 

optimisation problem. 

 

7.3 Future Work 

The contributions in this thesis are partly in the area of applied computer science and 

partly in regard to a specific application area (electrical power system optimisation). 

Regarding applied computer science, we have shown how a specific approach to 

designing the mutation operator in an EA can advance performance on certain types of 

problem. Regarding specific application area (electrical power system optimisation), we 

have contributed methods that have advanced the state of the art in solving three 

specific optimisation problems under study in the area of Economic Load Dispatch. 

Areas of future work similarly align with these two areas of contribution. On the one 

hand, a number of related optimisation problems in economic load dispatch could be 

addressed with the smart mutation approach described in this thesis, and potentially 

provide further improvement in performance. On the other hand, there are many 

opportunities to further investigate variations in the general approach to smart mutation. 
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Among the many possibilities, we outline four specific areas of further work that may 

be fruitful in the first instance. 

1. The power dispatch considered in this work is for thermal plants only (driven by 

heat released from burning of fossil fuels - coal, petroleum, natural gas). The 

power allocations to hydro units (where applicable) were fixed in-line with the 

utility’s operating practices [53]. One potentially fruitful area of future work is 

to extend the approach to handle generating stations that use multiple fuel types. 

In such cases the quadratic relationships and constraints could be formulated in a 

very similar way to that of the SELD.  

2. Generation of electricity from fossil fuel releases hydrocarbon emissions 

(gaseous pollutants - oxides nitrogen, sulphur and carbon dioxide) that pose 

environmental risks from thermal plants [27, 30, 31]. Practical generators’ 

dispatch therefore requires a consideration of emission constraints. With the 

growing interests in this area, another possibility is to extend the formulation of 

the ELD problems to a true multi-objective optimisation with the addition of 

emission dispatch. In the literature surveyed, there were no sufficiently available 

data for comparison, especially for larger optimisation tasks considered in this 

work. Previous works were restricted to a maximum of 6 generators which is 

considered relatively too small in the present context. The different types of 

emissions could therefore be additional objectives. 

3. Investigate more variants of the smart mutation operator. When using smart 

mutation, it is possible that in some problems, the chosen genes will cycle, i.e., 

mutating gene 1 moves the problem to gene 3.  Mutating gene 3 in the next time 

moves the problem back to gene1, and so on.  In the current work we focussed 

on performance in the application domain, and did not investigate this and 

related issues in depth. Future work could attempt a detailed investigation of this 

phenomenon, leading to designs for new, adaptive approaches to smart mutation 

that could avoid this situation. Regarding other aspects of the smart mutation 

approach, it seems a good idea in general to further investigate adaptive 

versions. We found, in this thesis that simple linear adaptation (linearly 

increasing the probability of a smart mutation from beginning to end of an 

optimisation run) seemed to outperform the use of smart mutation at a fixed rate. 

However, non-linear adaptive schedules could be explored, and it may also be 

sensible to explore schedules that adapt according to the total level of penalties 



 

164 

in the population. Further alternative adaptive approaches could include, for 

example, setting the smart mutation probability according only to the penalty 

value of the selected chromosome (perhaps normalised according to total 

penalties in the population).  

4. In the DELD formulation, we only looked at three different approaches from a 

wide variety of possibilities:    

(i) Treating the DELD simply as a series of static problems,  

(ii) Treating the DELD as a single many-parameter problem, and  

(iii) A basic dynamic optimisation approach, in which the final population of 

one part of the DELD became the initial population of the next.  

At least, we showed that the general direction of using the final population of 

previous step seems promising.  However, there are so many possibilities we 

could try here, such as using elitism. We keeping the best percentage of the 

population unchanged, and randomly generating the rest. Or, we could keep the 

best population, and generate the rest through mutations applied to these best 

populations.  Also, in the context of a 24-hour DELD, at 4pm, we could use 

chromosomes from the previous population (e.g. 3pm Monday), or we could use 

the best chromosomes from 4pm Monday last week, etc. 
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