21 research outputs found

    Global and componentwise extrapolation for accelerating data mining from large incomplete data sets with the EM algorithm

    No full text
    The Expectation-Maximization (EM) algorithm is one of the most popular algorithms for data mining from incomplete data. However, when applied to large data sets with a large proportion of missing data, the EM algorithm may converge slowly. The triple jump extrapolation method can effectively accelerate the EM algorithm by substantially reducing the number of iterations required for EM to converge. There are two options for the triple jump method, global extrapolation (TJEM) and componentwise extrapolation (CTJEM). We tried these two methods for a variety of probabilistic models and found that in general, global extraplolation yields a better performance, but there are cases where componentwise extrapolation yields very high speedup. In this paper, we investigate when componentwise extrapolation should be preferred. We conclude that, when the Jacobian of the EM mapping is diagonal or block diagonal, CTJEM should be preferred. We show how to determine whether a Jacobian is diagonal or block diagonal and experimentally confirm our claim. In particular, we show that CTJEM is especially effective for the semi-supervised Bayesian classifier model given a highly sparse data set. 1

    Seventh Copper Mountain Conference on Multigrid Methods

    Get PDF
    The Seventh Copper Mountain Conference on Multigrid Methods was held on 2-7 Apr. 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection shows its rapid trend to further diversity and depth

    Untangling hotel industry’s inefficiency: An SFA approach applied to a renowned Portuguese hotel chain

    Get PDF
    The present paper explores the technical efficiency of four hotels from Teixeira Duarte Group - a renowned Portuguese hotel chain. An efficiency ranking is established from these four hotel units located in Portugal using Stochastic Frontier Analysis. This methodology allows to discriminate between measurement error and systematic inefficiencies in the estimation process enabling to investigate the main inefficiency causes. Several suggestions concerning efficiency improvement are undertaken for each hotel studied.info:eu-repo/semantics/publishedVersio

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    A machine learning approach to the unsupervised segmentation of mitochondria in subcellular electron microscopy data

    Get PDF
    Recent advances in cellular and subcellular microscopy demonstrated its potential towards unravelling the mechanisms of various diseases at the molecular level. The biggest challenge in both human- and computer-based visual analysis of micrographs is the variety of nanostructures and mitochondrial morphologies. The state-of-the-art is, however, dominated by supervised manual data annotation and early attempts to automate the segmentation process were based on supervised machine learning techniques which require large datasets for training. Given a minimal number of training sequences or none at all, unsupervised machine learning formulations, such as spectral dimensionality reduction, are known to be superior in detecting salient image structures. This thesis presents three major contributions developed around the spectral clustering framework which is proven to capture perceptual organization features. Firstly, we approach the problem of mitochondria localization. We propose a novel grouping method for the extracted line segments which describes the normal mitochondrial morphology. Experimental findings show that the clusters obtained successfully model the inner mitochondrial membrane folding and therefore can be used as markers for the subsequent segmentation approaches. Secondly, we developed an unsupervised mitochondria segmentation framework. This method follows the evolutional ability of human vision to extrapolate salient membrane structures in a micrograph. Furthermore, we designed robust non-parametric similarity models according to Gestaltic laws of visual segregation. Experiments demonstrate that such models automatically adapt to the statistical structure of the biological domain and return optimal performance in pixel classification tasks under the wide variety of distributional assumptions. The last major contribution addresses the computational complexity of spectral clustering. Here, we introduced a new anticorrelation-based spectral clustering formulation with the objective to improve both: speed and quality of segmentation. The experimental findings showed the applicability of our dimensionality reduction algorithm to very large scale problems as well as asymmetric, dense and non-Euclidean datasets

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods
    corecore