259 research outputs found

    Global gbest guided-artificial bee colony algorithm for numerical function optimization

    Get PDF
    Numerous computational algorithms are used to obtain a high performance in solving mathematics, engineering and statistical complexities. Recently, an attractive bio-inspired method—namely the Artificial Bee Colony (ABC)—has shown outstanding performance with some typical computational algorithms in different complex problems. The modification, hybridization and improvement strategies made ABC more attractive to science and engineering researchers. The two well-known honeybees-based upgraded algorithms, Gbest Guided Artificial Bee Colony (GGABC) and Global Artificial Bee Colony Search (GABCS), use the foraging behavior of the global best and guided best honeybees for solving complex optimization tasks. Here, the hybrid of the above GGABC and GABC methods is called the 3G-ABC algorithm for strong discovery and exploitation processes. The proposed and typical methods were implemented on the basis of maximum fitness values instead of maximum cycle numbers, which has provided an extra strength to the proposed and existing methods. The experimental results were tested with sets of fifteen numerical benchmark functions. The obtained results from the proposed approach are compared with the several existing approaches such as ABC, GABC and GGABC, result and found to be very profitable. Finally, obtained results are verified with some statistical testing

    Genetic learning particle swarm optimization

    Get PDF
    Social learning in particle swarm optimization (PSO) helps collective efficiency, whereas individual reproduction in genetic algorithm (GA) facilitates global effectiveness. This observation recently leads to hybridizing PSO with GA for performance enhancement. However, existing work uses a mechanistic parallel superposition and research has shown that construction of superior exemplars in PSO is more effective. Hence, this paper first develops a new framework so as to organically hybridize PSO with another optimization technique for “learning.” This leads to a generalized “learning PSO” paradigm, the *L-PSO. The paradigm is composed of two cascading layers, the first for exemplar generation and the second for particle updates as per a normal PSO algorithm. Using genetic evolution to breed promising exemplars for PSO, a specific novel *L-PSO algorithm is proposed in the paper, termed genetic learning PSO (GL-PSO). In particular, genetic operators are used to generate exemplars from which particles learn and, in turn, historical search information of particles provides guidance to the evolution of the exemplars. By performing crossover, mutation, and selection on the historical information of particles, the constructed exemplars are not only well diversified, but also high qualified. Under such guidance, the global search ability and search efficiency of PSO are both enhanced. The proposed GL-PSO is tested on 42 benchmark functions widely adopted in the literature. Experimental results verify the effectiveness, efficiency, robustness, and scalability of the GL-PSO

    Evaluation of performance of adaptive and HybridABC (aABC) algorithm in solution of numerical optimization problems

    Get PDF
    Artificial bee colony (ABC) algorithm is a heuristic optimization algorithm that models food search behavior of the honey bees. It is used to solve many real-world problems and has been successful. In the literature, it is seen that different modifications of ABC algorithm are proposed to obtain more effective results. In this study, adaptive and hybrid ABC (aABC) algorithm which is one of the modifications of ABC algorithm is used. Its performance is evaluated in solving numerical test functions. Unlike standard ABC algorithm, aABC algorithm uses arithmetic crossover and adaptive neighborhood radius in the solution generation mechanism. The applications are performed on 6 numerical test functions. The results are evaluated in terms of solution quality and convergence speed. In addition, Wilcoxon signed rank test is used to examine the significance of the results. The results show that aABC algorithm is more effective than ABC algorithm in solving numerical optimization problems

    Gene selection for cancer classification with the help of bees

    Full text link

    Artificial bee colony algorithm with time-varying strategy

    Get PDF
    Artificial bee colony (ABC) is one of the newest additions to the class of swarm intelligence. ABC algorithm has been shown to be competitive with some other population-based algorithms. However, there is still an insufficiency that ABC is good at exploration but poor at exploitation. To make a proper balance between these two conflictive factors, this paper proposed a novel ABC variant with a time-varying strategy where the ratio between the number of employed bees and the number of onlooker bees varies with time. The linear and nonlinear time-varying strategies can be incorporated into the basic ABC algorithm, yielding ABC-LTVS and ABC-NTVS algorithms, respectively. The effects of the added parameters in the two new ABC algorithms are also studied through solving some representative benchmark functions. The proposed ABC algorithm is a simple and easy modification to the structure of the basic ABC algorithm. Moreover, the proposed approach is general and can be incorporated in other ABC variants. A set of 21 benchmark functions in 30 and 50 dimensions are utilized in the experimental studies. The experimental results show the effectiveness of the proposed time-varying strategy

    A novel hybrid algorithm for mean-CVaR portfolio selection with real-world constraints

    Get PDF
    In this paper, we employ the Conditional Value at Risk (CVaR) to measure the portfolio risk, and propose a mean-CVaR portfolio selection model. In addition, some real-world constraints are considered. The constructed model is a non-linear discrete optimization problem and difficult to solve by the classic optimization techniques. A novel hybrid algorithm based particle swarm optimization (PSO) and artificial bee colony (ABC) is designed for this problem. The hybrid algorithm introduces the ABC operator into PSO. A numerical example is given to illustrate the modeling idea of the paper and the effectiveness of the proposed hybrid algorithm
    corecore