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Artificial bee colony (ABC) is one of the newest additions to the class of swarm intelligence. ABC algorithm has been shown to be
competitive with some other population-based algorithms. However, there is still an insufficiency that ABC is good at exploration
but poor at exploitation. To make a proper balance between these two conflictive factors, this paper proposed a novel ABC variant
with a time-varying strategy where the ratio between the number of employed bees and the number of onlooker bees varies with
time.The linear and nonlinear time-varying strategies can be incorporated into the basic ABC algorithm, yielding ABC-LTVS and
ABC-NTVS algorithms, respectively. The effects of the added parameters in the two new ABC algorithms are also studied through
solving some representative benchmark functions.The proposed ABC algorithm is a simple and easy modification to the structure
of the basic ABC algorithm. Moreover, the proposed approach is general and can be incorporated in other ABC variants. A set
of 21 benchmark functions in 30 and 50 dimensions are utilized in the experimental studies. The experimental results show the
effectiveness of the proposed time-varying strategy.

1. Introduction

Swarm intelligence concerns the design of intelligent opti-
mization algorithms by taking inspirations from the collec-
tive behavior of social insects [1]. During the past decades,
swarm intelligence has shown great success for solving
complicated problems. The problems to be optimized by
swarm intelligence algorithms do not need to be mathemati-
cally represented as continuous, convex, and/or differentiable
functions; they can be represented in any form [2]. Artificial
bee colony (ABC) algorithm developed by Karaboga in 2005
is a recent addition into this category [3–5].

ABC algorithm is inspired by the intelligent behavior
of honey bees seeking quality food sources [3, 6–8]. In a
short span of less than 10 years, ABC has already been
demonstrated as a promising technique for solving global
optimization problems [9, 10]. Numerical comparisons and

many engineering applications demonstrated that ABC could
obtain good search results [11]. Due to its simplicity, flexibility,
and outstanding performance, ABC has captured increasing
interests of the swarm intelligence research community and
been applied to many real-world areas, such as numerical
optimization [6, 10], neural network training [7, 12], finance
forecasting [13, 14], production scheduling [15–17], data clus-
tering [18, 19], image segmentation [20, 21], service selection
problem [22], and power system optimization [23].

However, like its counterpart population-based stochastic
algorithms, it still has some inherent pitfalls [24–26]. The
convergence speed of ABC is slower than those of the
representative population-based stochastic algorithms, such
as DE and PSO [27]. Moreover, ABC suffers from premature
convergence while dealing with certain complicated prob-
lems [28]. Several ABC variants have been proposed with
the aim of overcoming these pitfalls. These ABC variants
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can be generally categorized into three groups: (1) first,
the parameters of configuration tuning [29–31]; (2) second,
the ABC algorithm hybridizing with other evolutionary
optimization operators to enhance performance [10, 32, 33];
(3) third, the design of new learning strategy by mod-
ifying the search equation of the basic ABC algorithm
[24, 25, 34].

It is recognized that exploration and exploitation are
the two most important factors affecting a population-based
optimization algorithm’s performance [6, 35]. Exploration
refers to the ability of a search algorithm to investigate
the unknown regions in the search space in order to
have high probability to discover good promising solutions.
Exploitation, on the other hand, refers to the ability to
concentrate the search around a promising region in order
to refine a candidate solution [36, 37]. A good population-
based optimization algorithm should properly balance these
two conflictive objectives [38]. It is observed that ABC
has good exploration ability but poor exploitation ability
[24], which may impede ABC algorithm from proceeding
towards a global optimum even though the population has
not converged to a local optimum.

The colony of the ABC algorithm contains three groups
of bees: employed bees, onlookers, and scouts [3]. In the
employed bees phase of ABC algorithm, the algorithm
focuses on the explorative search indicated by the solu-
tion updating scheme, which uses the current solution and
a randomly chosen solution. A fitness-based probabilistic
selection scheme is used in the onlooker phase, which
indicates the exploitation tendency of the algorithm. In the
original ABC algorithm, it is assumed that half of the colony
consists of the employed bees, and the rest half consists of the
onlookers [3]. In other words, the ratio of the employed and
onlooker bees is the same, 1 : 1.

The basic ABC algorithm is easy to tune with few
parameters but lacks effective and efficient ways to control
the exploration ability and exploitation ability. In the present
study, we propose an easy modification to the structure of
the basic ABC algorithms in an attempt to balance their
exploration and exploitation abilities. Compared with the
basic ABC algorithm, we added a new parameter. The core
idea of the modification is to design a proper mechanism,
adjusting the ratio of the employed and onlooker bees
with time. The proposed algorithms are called ABC with
linear versus nonlinear time-varying strategy (ABC-LTVS
and ABC-NTVS, resp.). The objective of this development is
to enhance the global exploration in the early search and to
encourage the solution to converge toward the global optima
at the later search.

The reminder of this paper is organized as follows:
Section 2 briefly introduces the basic ABC algorithm. The
proposed algorithms,ABC-LTVS andABC-NTVS, are elabo-
rated in Section 3. In Section 4, comprehensive experimental
studies are conducted on 21 benchmark functions in 30-
dimension and 50-dimension problems to verify the effec-
tiveness of the proposed algorithms. Finally, conclusions are
presented in Section 5.

2. Basic ABC Algorithm

The ABC algorithm is a recently introduced optimization
algorithmproposed byKaraboga [3, 39, 40], which is inspired
by the intelligent foraging behavior of the honeybee swarm.
In the ABC algorithm, there are two components: the forag-
ing artificial bees and the food source [3, 39].The position of a
food source represents a possible solution.Thenectar amount
of a food source corresponds to the fitness of the associated
solution. In the basic ABC algorithm, the colony of artificial
bees contains three groups of bees: employed bees, onlookers,
and scouts. The employed bees are responsible for searching
available food sources and pass the food information to the
onlooker bees [3, 40]. The onlookers select good sources
from those found by the employed bees to further search the
foods. When the fitness of the food sources is not improved
through a predetermined number of cycles, denoted as limit,
the food source is abandoned by its employed bee, and then,
the employed bee becomes a scout and starts to search for a
new food source in the vicinity of the hive.

The ABC algorithm consists of four phases: initialization,
employed bees, onlooker bees, and scout bees [3, 39, 40]. In
the initialization phase of the ABC, SN food source positions
are randomly produced in the 𝐷-dimensional search space
using the following equation [3, 6]:

V
𝑖𝑑
= 𝑙
𝑑
+ 𝑟
1
(𝑢
𝑑
− 𝑙
𝑑
) , (1)

where �⃗�
𝑖
= [𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝐷
] is the 𝑖th food source, 𝑑 ∈

{1, 2, . . . , 𝐷}; 𝑖 ∈ {1, 2, . . . , SN}, where SN denotes the number
of food source; 𝑙

𝑑
and 𝑢

𝑑
are the lower and upper bounds for

dimension 𝑑, respectively; 𝑟
1
is a random number uniformly

distributed within range [0, 1].
After producing food sources and assigning them to the

employed bees. There is only one employed bee on each food
source. In the employed bee phase of ABC, each employed
bee tries to find a better quality food source based on �⃗�

𝑖
. A

new trial food source, denoted as �⃗�
𝑖
= [𝑢
𝑖1
, 𝑢
𝑖2
, . . . , 𝑢

𝑖𝐷
], is

calculated from the equation below [3, 6]:

𝑢
𝑖𝑗
= 𝑥
𝑖𝑗
+ 𝜙 (𝑥

𝑖𝑗
− 𝑥
𝑘𝑗
) , (2)

where 𝑗 is a randomly generated whole number in the range
[1, 𝐷]; 𝜙 is a random number uniformly distributed in the
range [−1, 1]; and 𝑘 is the index of a randomly chosen food
source satisfying 𝑘 ̸= 𝑖. After �⃗�

𝑖
is obtained, it will be evaluated

and compared to �⃗�
𝑖
. If the fitness of �⃗�

𝑖
is better than that of

�⃗�
𝑖
, the bee will forget the old food source �⃗�

𝑖
and memorize

the new one. Otherwise, it keeps �⃗�
𝑖
in her memory. After

all employed bees have finished their search, they share the
nectar and position information of their food sources with
the onlookers.

Each onlooker bee selects a food source of an employed
bee to improve it. The roulette selection mechanism is
performed by using (3) [3, 6]

𝑝
𝑖
=

fit (�⃗�
𝑖
)

∑
SN
𝑗=1

fit (�⃗�
𝑗
)

, (3)
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(1) Initialize the set of food sources �⃗�
𝑖
, 𝑖 = 1, 2, . . . , SN;

(2) Evaluate each �⃗�
𝑖
, 𝑖 = 1, 2, . . . , SN;

(3) while have not found “good enough” solution or not reached the predetermined
maximum number of iterations do

(4) for 𝑖 = 1 to SN do /∗ Employed bees phase ∗/

(5) Generate �⃗�
𝑖
with �⃗�

𝑖
using (2);

(6) Evaluate �⃗�
𝑖
;

(7) if fit(�⃗�
𝑖
) ≥ fit(�⃗�

𝑖
) then

(8) �⃗�
𝑖
= �⃗�
𝑖
;

(9) for 𝑖 = 1 to SN do /∗ Onlooker bees phase ∗/

(10) Select an employed bee using (3);
(11) Try to improve food source quality according to Steps (5)–(8);
(12) Generate a new randomly food source for those does not improve with successive 𝑙𝑖𝑚𝑖𝑡

iterations /∗ Scout bees phase ∗/;
(13) Memorize the best food source achieved so far;

Algorithm 1: The pseudocode of artificial bee colony algorithm.

where 𝑝
𝑖
is the probability of food source �⃗�

𝑖
being selected by

an onlooker bee and fit(�⃗�
𝑖
) is the fitness of �⃗�

𝑖
. The fitness of

the food sources are defined as [3, 6]

fit (�⃗�
𝑖
) =

{{

{{

{

1

1 + 𝑓 (�⃗�
𝑖
)
, 𝑓 (�⃗�

𝑖
) ≥ 0,

1 +
𝑓 (�⃗�𝑖)

 , 𝑓 (�⃗�
𝑖
) < 0,

(4)

where 𝑓(�⃗�
𝑖
) is the objective function value of �⃗�

𝑖
. Once the

onlooker has selected a food source, a new candidate food
source can be obtained by (2). As in the employed bees,
the greedy selection between these two food sources was
performed.

If a food source, �⃗�
𝑖
, cannot be improved for a predeter-

mined number of cycles, referred to as limit, this food source
is abandoned. Then, the scout produces a new food source
randomly according to (1) to replace �⃗�

𝑖
.

The detailed pseudocode of the ABC algorithm is shown
in Algorithm 1 [3, 40].

3. The Proposed Algorithm

3.1. Time-Varying Strategy. During the process of the
employed bees, each food source is assigned with one
employed bee. The onlooker bees select the food source
based on the fitness values, which is similar to “route wheel
selection” in genetic algorithm. Due to this selection scheme,
it is assured that the food sources with higher fitness value
have more chance to be selected by the onlooker bees.
It facilitates improving the quality of these food sources.
Thus, the onlooker bees are more concentrated on the
exploitation ability than the employed bees. In general, for
population-based optimization algorithms, the exploration
is typically preferred at the early stages of the search but
is required to gradually give ways to exploitation in order
to find the optimum solution efficiently [41]. In the ABC
algorithm, the population size is fixed. With a large number
of employed bees and relatively a small number of onlookers
at the early search, it is helpful to move around the search
space and enhance the exploration. On the other hand, the

small number of the employed bees and the large number of
the onlookers allow the individuals to converge to the global
optima in the later part of the optimization. In the basic
ABC algorithm, the employed bees and onlooker bees are
equal to each other; that is, the ratio between the number of
the employed bees and the number of the onlookers is 1 : 1.
Considering those concerns, we proposed a time-varying
strategy, in which the ratio between the number of the
employed bees and the number of the onlookers varies with
time in this paper.

The total number of the colony size, employed bees, and
onlooker denoted as NP, NP

𝑒
, and NP

𝑜
respectively, and it

holds that NP = NP
𝑒
+ NP

𝑜
. The ratio between NP

𝑒
and

NP
𝑜
is denoted as 𝑟

𝑐
, 𝑟
𝑐
= NP

𝑒
/NP
𝑜
. A large value of 𝑟

𝑐
is

conducive to global exploration. Conversely, it facilitates local
exploitation for fine-tuning a local search. Intuitively, a linear-
decreasing time-varying strategy (LTVS) may contribute to
balance the exploration and exploitation during the entire
search. A LTVS is proposed as the follows:

𝑟
𝑐
= 𝑟max − (𝑟max − 𝑟min) ×

fitc
FEs

, (5)

where 𝑟max and 𝑟min are themaximum andminimum value of
𝑟
𝑐
, respectively; fitc is the current number of function evalua-

tions; and FEs is the total number of function evaluations.The
number of employed bees is set to the round value of 𝑟

𝑐
×NP,

NP
𝑒
= round(𝑟

𝑐
× NP), where round() is the round function

with zero decimal place. If the number of employed bees NP
𝑒

is greater than the number of food source SN, each employed
bee is assigned to one food source randomly in the first SN
employed bees, and each of the rest of employed bees is placed
at a randomly selected food source.WhenNP

𝑒
is smaller than

SN, all employed bees randomly select food sources to search.
To investigate the dynamics of population distribution in

basic ABC and ABC with LVTS, we herein take a typical
multimodal function, Rastrigin function, with 2D dimen-
sion as an example. Figures 1 and 2 show the population
distribution of Rastrigin function observed at various search
phases of basic ABC and ABC with LTVS, respectively. It is
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Figure 1: Population distribution observed at various stages in ABC.

noted that the value of 𝑟max and 𝑟min is set to 0.8 and 0.3 in
ABC with LTVS in this experiment. Figures 1 and 2 show the
population distribution at 5th, 10th, and 20th iteration when
the 2-dimensional Rastrigin function was optimized by the
original ABC and ABC with LTVS, respectively. Compared
with the original ABC, we can obtain that the population in
ABC with LTVS distributed in a wider range of search space
at a relatively small iteration and gradually gathered around
the global optimum. In other words, LVTS can explore in the
search space in the early search stage, while converging to the
global optimum with fast speed in the later search.

It would be interesting to know whether the nonlinear
variation of 𝑟

𝑐
can enhance the performance of the ABC

algorithm. In the preset study, we proposed a nonlinear-
decreasing time-varying strategy (NTVS). This strategy is
given as the following equation:

𝑟
𝑐
= 𝑟max − (𝑟max − 𝑟min) × (

fitc
FEs

)

𝛼

, (6)

where 𝛼 is the nonlinear modulation index. Figure 3 shows
typical variations of 𝑟

𝑐
with function evaluations for different

settings of 𝛼. With 𝛼 = 1, this strategy becomes a special case
of LTVS. With 𝛼 > 1, 𝑟

𝑐
varied in a convex function manner.

Compared with LTVS, it can be seen that 𝑟
𝑐
decreases in a

relative-slow speed in the early search while in a faster speed
in the later search. Conversely, with 𝛼 < 1, 𝑟

𝑐
varied in a

concave function manner.

3.2. Parameters Tuning of Time-Varying Strategy. In order
to investigate the influence of 𝑟max and 𝑟min in LTVS, six
combinations for setting the values of 𝑟max and 𝑟min are
tested on 8 relevant functions including 3 typical unimodal
functions, 𝑓

1
, 𝑓
2
, and 𝑓

3
, and 5 typical multimodal functions,

𝑓
6
, 𝑓
7
, 𝑓
8
, 𝑓
9
, and 𝑓

10
, with 30 dimensions. The colony size

is set to 60, the maximum functions evaluations are 7 × 104,
and the limit is set to 200 [42]. Experimental results of 25
independent trials are presented in Table 1. In Table 1, “Mean”
indicates the mean of function values, “SD” stands for the
standard deviation, and “Rank” refers to the performance
level of the certain function in the six combinations of 𝑟max
and 𝑟min.The best mean function value of six combinations is
marked in boldface. From the rank results given in Table 2,
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Figure 2: Population distribution observed at various stages in ABC with time-varying strategy.
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Table 1: Experimental results of different combination of 𝑟max and 𝑟min in LTVS.

Parameter setting 𝑓
1

𝑓
2

𝑓
3

𝑓
6

𝑓
7

𝑓
8

𝑓
9

𝑓
10

𝑟max = 0.8

𝑟min = 0.2

Mean 2.28e − 015 1.41e − 007 4.04e − 010 1.3601 1.72e − 002 1.33e − 003 2.82e − 007 2.12e + 002
SD 1.57e − 015 8.37e − 008 6.84e − 010 1.4594 8.59e − 002 4.63e − 003 2.04e − 007 8.10e + 001
Rank 1 1 1 2 6 5 2 5

𝑟max = 0.8

𝑟min = 0.3

Mean 3.20e − 015 1.79e − 007 7.54e − 010 1.5393 6.82e − 003 6.85e − 007 3.24e − 007 2.10e + 002
SD 2.59e − 015 7.97e − 008 1.41e − 009 1.7766 3.42e − 002 3.40e − 006 1.83e − 007 1.01e + 002
Rank 2 2 2 5 5 2 4 4

𝑟max = 0.7

𝑟min = 0.2

Mean 1.34e − 014 3.38e − 007 7.28e − 009 1.3620 1.73e − 006 6.48e − 010 2.62e − 007 1.80e + 002
SD 1.81e − 014 1.60e − 007 1.47e − 008 2.0555 5.34e − 006 1.72e − 009 1.39e − 007 7.84e + 001
Rank 4 4 3 3 1 1 1 2

𝑟max = 0.7

𝑟min = 0.3

Mean 6.12e − 015 3.41e − 007 1.49e − 008 1.2644 1.93e − 003 3.02e − 004 3.35e − 007 2.19e + 002
SD 4.41e − 015 1.64e − 007 4.59e − 008 1.1504 9.44e − 003 1.52e − 003 1.26e − 007 1.27e + 002
Rank 3 3 4 1 4 3 5 6

𝑟max = 0.6

𝑟min = 0.2

Mean 4.86e − 014 6.36e − 007 8.76e − 008 1.4883 8.55e − 006 9.79e − 004 2.85e − 007 1.67e + 002
SD 5.41e − 014 2.57e − 007 1.76e − 007 1.7028 3.02e − 005 2.77e − 003 1.51e − 007 1.02e + 002
Rank 6 5 6 4 2 4 3 1

𝑟max = 0.6

𝑟min = 0.3

Mean 4.59e − 014 8.45e − 007 2.66e − 008 1.6454 1.33e − 003 1.43e − 003 4.17e − 007 1.83e + 002
SD 3.49e − 015 4.49e − 007 5.57e − 008 1.6193 6.75e − 003 3.97e − 003 2.17e − 007 8.42e + 001
Rank 5 6 5 6 3 6 6 3

Table 2: Rank results of the different combinations of 𝑟max and 𝑟min in LTVS.

𝑟max = 0.8 𝑟max = 0.8 𝑟max = 0.7 𝑟max = 0.7 𝑟max = 0.6 𝑟max = 0.6

𝑟min = 0.2 𝑟min = 0.3 𝑟min = 0.2 𝑟min = 0.3 𝑟min = 0.2 𝑟min = 0.3

Average rank 2.875 3.25 2.375 3.625 3.875 5
Final rank 2 3 1 4 5 6

it shows that the settings of 𝑟max = 0.7 and 𝑟min = 0.2

are the best choice. Therefore, the parameters of 𝑟max = 0.7

and 𝑟min = 0.2 are used in LTVS. We try to obtain better
performance with the NTVS of 𝛼 ̸= 1 having 𝑟max and 𝑟min
kept fixed to their values obtained for the linear case. Table 3
shows the performance evaluation of the resultant system
with different values of 𝛼, keeping FEs = 7 × 10

4. From
Tables 3 and 4, we can observe that the best result is obtained
with 𝛼 = 1.2.

4. Experimental Study

4.1. Benchmark Functions and Parameters Settings. In order
to test the proposed algorithm, a diverse set of 21 benchmark
functions are used to conduct the experiments. These bench-
mark functions can be classified into three groups: Group
1, Group 2, and Group 3. The first five functions 𝑓

1
–𝑓
5
are

unimodal functions in Group 1. The next group includes ten
multimodal functionswithmany local optimawhich are used
to test the global search capability in avoiding premature con-
vergence. Note that 𝑓

6
(Rosenbrock) is a unimodal problem

in 2D or 3D search space but is a multimodal problem in

higher dimensions. Rotated and/or shifted functions belong
to Group 3. 𝑓

16
and 𝑓

17
are rotated functions, in which

the original variable �⃗� is rotated by left multiplying the
orthogonal matrix 𝑀 [43], ⃗𝑦 = 𝑀 × �⃗�. 𝑀 is used to
increase the complexity of the function by changing separable
functions to nonseparable functions without affecting the
shape of the functions. The global optima of 𝑓

18
and 𝑓

19
are

shifted to different numerical values for different dimensions
(�⃗� = �⃗� − ⃗𝑜), where ⃗𝑜 is employed to shift the global optimal
solution of the original function from the center of the search
space to a new location.𝑓

20
and𝑓
21
are complicatedwhich are

shifted and rotated.We used �⃗�∗ to represent global optimum.
In each benchmark function, �⃗�∗ and 𝑓(�⃗�∗) represent global
optimum and the corresponding function value, respectively.
The function value of the best solution found by an algorithm
in a run is denoted by𝑓(�⃗�best).The error of this run is denoted
as error = 𝑓(�⃗�best) − 𝑓(�⃗�

∗
). The parameters of all benchmark

functions are described in Appendix.
To validate the effectiveness of the proposed time-varying

strategy, experiments were conducted to compare ABC with
ABC-LTVS and ABC-NTVS on 21 benchmark functions.
In order to make a fair comparison, the colony size for all
algorithms was set to 60. FEs are used as the stop criteria
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Table 3: Experimental results of different setting of 𝛼 in NTVS.

Parameter setting 𝑓
1

𝑓
2

𝑓
3

𝑓
6

𝑓
7

𝑓
8

𝑓
9

𝑓
10

𝛼 = 1.6

Mean 2.16e − 017 1.82e − 007 8.41e − 010 1.3859 1.49e − 006 1.73e − 003 3.10e − 007 2.03e + 002
SD 2.83e − 017 7.58e − 008 1.27e − 009 1.1617 6.63e − 006 4.82e − 003 1.15e − 007 1.06e + 002
Rank 3 2 4 3 5 6 5 5

𝛼 = 1.4

Mean 7.04e − 018 2.36e − 007 1.59e − 012 1.6515 8.40e − 010 6.48e − 004 4.78e − 009 1.41e + 002
SD 6.61e − 018 1.36e − 007 3.38e − 012 1.6594 2.33e − 009 2.35e − 003 2.83e − 009 1.05e + 002
Rank 2 3 1 5 2 5 1 2

𝛼 = 1.2

Mean 1.46e − 018 4.76e − 009 4.21e − 012 1.5987 6.25e − 010 1.01e − 005 5.58e − 009 9.60e + 001
SD 2.66e − 018 3.43e − 009 9.92e − 012 1.4570 1.61e − 009 4.69e − 005 2.94e − 009 8.84e + 001
Rank 1 1 2 4 1 2 2 1

𝛼 = 1

Mean 1.34e − 014 3.38e − 007 7.28e − 009 1.3620 1.73e − 006 6.48e − 010 2.62e − 007 1.80e + 002
SD 1.81e − 014 1.60e − 007 1.47e − 008 2.0555 5.34e − 006 1.72e − 009 1.39e − 007 7.84e + 001
Rank 4 4 6 2 6 1 3 4

𝛼 = 0.8

Mean 1.77e − 014 3.93e − 007 9.21e − 011 1.0221 1.75e − 007 3.633e − 004 2.68e − 007 2.09e + 002
SD 2.04e − 014 1.74e − 007 2.49e − 010 1.0185 4.57e − 007 1.82e − 003 1.47e − 007 9.24e + 001
Rank 5 5 3 1 4 4 4 6

𝛼 = 0.6

Mean 6.06e − 014 8.31e − 007 1.35e − 009 1.9156 1.90e − 008 3.14e − 004 3.63e − 007 1.45e + 002
SD 7.52e − 014 3.58e − 007 2.45e − 009 2.0691 7.87e − 007 1.64e − 003 2.17e − 007 9.87e + 001
Rank 6 6 5 6 3 3 6 3

Table 4: Rank results of different setting of 𝛼 in NTVS.

𝛼 = 1.6 𝛼 = 1.4 𝛼 = 1.2 𝛼 = 1.0 𝛼 = 0.8 𝛼 = 0.6

Average rank 4.125 2.625 1.75 3.75 4 4.75
Final rank 5 2 1 3 4 6

for all algorithms and it is set to be 7 × 104 for solving 30D
problems and 1.2×105 for solving 50Dproblems, respectively.
The parameter, limit, is set to 200 [42]. All experiments on
each benchmark function were run 25 times independently.

4.2. Experimental Results for 30D Problems. The comparative
results obtained by ABC, ABC-LTVS, and ABC-NTVS are
presented in Table 5. The best mean results on each problem
among all algorithms are given in bold. In order to determine
whether the results obtained by ABC-LTVS and ABC-NTVS
are statistically different from the results generated by ABC
algorithms, a two-tailed 𝑡-test with 48 degrees of freedom
is used at a significant level of 0.05. Values of “1,” “0,” and
“−1” in columns “ℎ

1
” and “ℎ

2
” in Table 5, respectively, denote

that ABC-LTVS andABC-NTVS perform significantly better
than, almost the same as, and significantly worse than ABC
algorithm. In order to give visualized comparisons of the
involved algorithms, the convergence graphs of the best and
mean function values for each ABC algorithm regarding all

benchmark functions are shown in Figures 4, 5, and 6. In
these figures, each curve represents the variation of mean
value of error over the FEs for a specific ABC algorithm.

For solving unimodal functions, ABC-NTVS achieves the
highest solution accuracy on 𝑓

1
, 𝑓
2
, 𝑓
3
, and 𝑓

5
, and ABC-

LTVS obtains the best solution on 𝑓
4
. ABC-LTVS and ABC-

NTVS perform significantly better than ABC algorithm on
𝑓
1
,𝑓
2
, and𝑓

3
. Onmultimodal problems, there aremany local

minima and it is not easy to find the global optima. ABC-
LTVS and ABC-NTVS are shown to offer better performance
than ABC algorithm on these problems. ABC-LTVS can
find the best solution on 𝑓

6
, 𝑓
8
, and 𝑓

13
and ABC-NTVS

performs the best on 𝑓
7
, 𝑓
9
, 𝑓
10
, 𝑓
11
, and 𝑓

12
. ABC, ABC-

LTVS, and ABC-NTVS obtain the similar performance on
𝑓
14
. The performance of ABC-LTVS and ABC-NTVS are

significantly better than that of ABC algorithm on these
multimodal problems except ABC-NTVS for solving 𝑓

8
.

For most of optimization algorithms, their performance
will sharply decrease when solving the shifted and/or rotated
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Table 5: Experimental results for 30-dimension problem.

Function ABC ABC-LTVS ABC-NTVS
ℎ
1

ℎ
2Mean SD Mean SD Mean SD

𝑓
1

7.36e − 010 5.41e − 010 1.34e − 014 1.81e − 014 1.46e − 018 2.66e − 018 1 1
𝑓
2

1.26e − 004 7.27e − 005 3.38e − 007 1.60e − 007 4.76e − 009 3.43e − 009 1 1
𝑓
3

4.37e + 000 4.05e + 000 7.28e − 009 1.47e − 009 4.21e − 012 9.92e − 012 1 1
𝑓
4

0.1463 0.0309 0.1385 0.0307 0.1409 0.0412 0 0
𝑓
5

5.32e + 002 7.20e + 001 5.66e + 002 5.30e + 001 5.29e + 002 7.51e + 001 0 0
𝑓
6

3.4901 3.5885 1.3620 2.0555 1.5987 1.4570 1 1
𝑓
7

6.39e − 001 7.12e − 001 1.73e − 006 5.34e − 006 6.25e − 010 1.61e − 009 1 1
𝑓
8

1.23e − 003 3.52e − 003 6.48e − 010 1.72e − 009 1.01e − 005 4.69e − 005 0 0
𝑓
9

5.79e − 005 2.52e − 005 2.62e − 007 1.39e − 007 5.58e − 009 2.94e − 009 1 1
𝑓
10

3.62e + 002 1.01e + 002 1.80e + 002 7.84e + 001 9.60e + 001 8.84e + 001 1 1
𝑓
11

1.3891 0.7813 0.1919 0.3751 0.0421 0.1998 1 1
𝑓
12

5.02e − 005 5.74e − 005 1.54e − 006 3.83e − 006 8.17e − 007 1.81e − 006 1 1
𝑓
13

1.64e − 003 3.33e − 003 6.65e − 005 5.28e − 005 7.51e − 005 1.12e − 004 1 1
𝑓
14

1.42e − 008 6.02e − 010 1.37e − 008 0 1.37e − 008 0 1 1
𝑓
15

1.30e − 010 8.08e − 011 3.96e − 015 3.52e − 015 2.11e − 016 1.59e − 016 1 1
𝑓
16

47.5969 29.6407 45.9323 27.7604 42.1560 23.4833 0 0
𝑓
17

80.7968 12.1854 80.0519 10.6073 77.9708 15.6648 0 0
𝑓
18

6.5476 5.8738 1.7831 1.9028 2.2656 2.2663 1 1
𝑓
19

0.6250 0.6287 0.0399 0.1990 5.24e − 005 2.62e − 004 1 1
𝑓
20

73.2093 16.1789 76.5697 16.2155 73.4801 12.5874 0 0
𝑓
21

8.40e − 005 8.07e − 005 7.74e − 006 1.40e − 005 9.23e − 006 3.07e − 005 1 1

problems. Table 5 shows the results on the rotated and/or
shifted functions. The results appear that these three ABC
algorithms are affected. We can observe that ABC-LTVS and
ABC-NTVS still obtain relatively good performance. ABC-
LTVS and ABC-NTVS performs significantly better than
ABC algorithms on 𝑓

18
, 𝑓
19
, and 𝑓

21
. With respect to the

stability of algorithms, ABC-LTVS and ABC-NTVS show the
good stability as compared to ABC algorithms. The standard
deviations of solutions found by ABC-LTVS and ABC-NTVS
are small for the most functions. On the whole, ABC-LTVS
and ABC-NTVS exhibit the accurate convergence precision
on almost all the benchmark, which indicates the effec-
tiveness of the proposed time-varying strategy. Moreover,
experimental results demonstrate that ABC-NTVS slightly
outperforms ABC-LTVS.

4.3. Experimental Results for 50D Problems. The experiments
conducted on 50D problems and the results for solving
unimodal, multimodal, and shift and/or rotate problems
are presented in Table 6. As the convergence graphs of
50D are similar to the 30D problems and space limitation,
they are not given. Compared with ABC algorithm, ABC-
LTVS and ABC-NTVS can still obtain high-quality solutions
under 50D problems, which can be seen from Table 6. The
meaning of column “ℎ

1
” and “ℎ

2
” in Table 6 is the same

as the Table 5. It is noted that ABC-NTVS, from the mean
of the results, performs worse than ABC on 𝑓

8
, but not

statistically significantly. According the 𝑡-tests results, ABC-
LTVS performs significantly better than ABC algorithm on

all benchmark functions except𝑓
4
,𝑓
16
, and𝑓

17
, so doesABC-

NTVS except 𝑓
4
, 𝑓
8
, and 𝑓

17
.

The experiments conducted on 50D problems and the
results for solving unimodal, multimodal, and shift and/or
rotate problems are presented in Table 6. As the convergence
graphs of 50D are similar to the 30D problems and space
limitation, they are not given. Compared with ABC algo-
rithm, ABC-LTVS and ABC-NTVS can still obtain high-
quality solutions under 50D problems, which can be seen
fromTable 6.Themeaning of column “ℎ

1
” and “ℎ

2
” in Table 6

is the same as the Table 5. According to the 𝑡-tests results,
ABC-LTVSperforms significantly better thanABCalgorithm
on all benchmark functions except 𝑓

5
, 𝑓
16
, and 𝑓

17
, so does

ABC-NTVS except 𝑓
5
, 𝑓
8
, and 𝑓

17
.

4.4. GABC with Time-Varying Strategy. Inspired by parti-
cle swarm optimization (PSO), Zhu and Kwong [24] pro-
posed a popular ABC variant, called Gbest-guided artificial
bee colony (GABC). GABC incorporates the information
of global best (gbest) position into (2). The experimen-
tal results have shown that GABC algorithm outperforms
the basic ABC algorithm. To test the effect of the time-
varying strategy, we applied the proposed LTVS and NTVS
into GABC algorithm, yielding GABC-LTVS and GABC-
NTVS algorithms, respectively. Experiments are conducted
on 30D and 50D benchmark functions to test whether
the proposed time-varying strategy is effective in GABC
algorithm. The parameters setting of GABC algorithm is
in accordance with the original reference except the colony
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Figure 4: Convergence curves of ABC variants solving unimodal functions 𝑓
1
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5
and multimodal function Rosenbrock 𝑓

6
.



10 Discrete Dynamics in Nature and Society

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

0 1 2 3 4 5 6 7

×10
4FEs

Er
ro

r(
lo

g
1
0

)

ABC
ABC-LTVS
ABC-NTVS

(a) Rastrigin 𝑓7

0 1 2 3 4 5 6 7

×10
4FEs

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

Er
ro

r(
lo

g
1
0

)

ABC
ABC-LTVS
ABC-NTVS

(b) Griewank 𝑓8

0 1 2 3 4 5 6 7

×10
4FEs

−7

−6

−5

−4

−3

−2

−1

0

1

Er
ro

r(
lo

g
1
0

)

ABC
ABC-LTVS
ABC-NTVS

(c) Ackley 𝑓9

0 1 2 3 4 5 6 7

×10
4FEs

2

2.5

3

3.5

4

Er
ro

r(
lo

g
1
0

)

ABC
ABC-LTVS
ABC-NTVS

(d) Schwefel 𝑓10

0 1 2 3 4 5 6 7

×10
4FEs

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Er
ro

r(
lo

g
1
0

)

ABC
ABC-LTVS
ABC-NTVS

(e) Noncontinuous Rastrigin 𝑓11

0 1 2 3 4 5 6 7

×10
4FEs

−6

−4

−2

0

2

4

Er
ro

r(
lo

g
1
0

)

ABC
ABC-LTVS
ABC-NTVS

(f) Levy 𝑓12

Figure 5: Continued.
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Figure 5: Convergence curves of ABC variants solving multimodal functions 𝑓
7
–𝑓
15
.

size and FEs, the settings of which is same as the previous
experiment.

Tables 7 and 8 give the experimental results on 30D
and 50D problems, respectively. The best results on each
problem among these three GABC algorithms are shown
in bold. In addition, the columns “ℎ

1
” and “ℎ

2
” in Tables

7 and 8 are used to determine the statistical significance
of the difference obtained by GABC with those yielded by
the GABC-LTVS and GABC-NTVS using two-tailed 𝑡-tests,
respectively. According to the results of 𝑡-tests shown in
Tables 7 and 8, GABC-LTVS andGABC-NTVS can findmore
accurate solutions, which are significantly better than those of
GABC on about half of all benchmark functions regardless of
problem dimensions.

5. Conclusions

In order to make a balance between the exploration and
exploitation in ABC algorithm, a time-varying strategy has
been developed. The proposed strategy is implemented
through making the ratio between the number of employed
bees and the numbers of onlooker bees vary with time.
We have developed the two types of time-varying strate-
gies of LTVS and NTVS. Moreover we have examined
and fine-tuned the parameters settings of LTVS and NTVS
for better performance. Comprehensive experiments have
demonstrated the effectiveness of the proposed time-varying
strategy in ABC and GABC algorithms. The modifications
proposed in the present work are general enough to be
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Figure 6: Convergence curves of ABC variants solving rotated and/or shifted functions 𝑓
16
–𝑓
21
.
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Table 6: Experimental results for 50-dimension problem.

Function ABC ABC-LTVS ABC-NTVS
ℎ
1

ℎ
2Mean SD Mean SD Mean SD

𝑓
1

6.88e − 010 3.54e − 010 9.35e − 015 7.24e − 015 5.28e − 016 5.79e − 016 1 1
𝑓
2

1.59e − 004 9.94e − 005 4.22e − 007 2.01e − 007 7.14e − 008 2.67e − 008 1 1
𝑓
3

4.57e − 005 6.75e − 005 8.82e − 008 3.58e − 007 3.51e − 010 4.42e − 010 1 1
𝑓
4

0.3606 0.0579 0.3132 0.0691 0.3214 0.0657 1 1
𝑓
5

1.11e + 003 1.09e + 002 1.09e + 003 9.64e + 001 1.07e + 003 8.08e + 001 0 0
𝑓
6

8.2319 6.6280 1.3564 1.8842 1.3761 1.8716 1 1
𝑓
7

1.0794 0.7609 0.0979 0.2829 0.0865 0.2755 1 1
𝑓
8

2.45e − 008 3.16e − 008 1.42e − 009 5.88e − 009 3.23e − 004 1.54e − 003 1 0
𝑓
9

4.78e − 005 1.49e − 005 2.25e − 007 9.33e − 008 5.01e − 008 2.47e − 008 1 1
𝑓
10

7.83e + 002 1.75e + 002 3.97e + 002 9.89e + 001 3.45e + 002 1.78e + 002 1 1
𝑓
11

2.7273 0.9297 0.3388 0.4789 0.3029 0.4551 1 1
𝑓
12

4.16e − 005 7.77e − 005 9.34e − 007 2.42e − 006 2.55e − 007 6.02e − 007 1 1
𝑓
13

4.52e − 003 4.91e − 003 5.76e − 004 7.16e − 004 4.73e − 004 5.83e − 004 1 1
𝑓
14

2.37e − 008 1.33e − 009 2.29e − 008 1.40e − 012 2.29e − 008 1.07e − 012 1 1
𝑓
15

1.57e − 010 1.41e − 010 4.61e − 015 4.07e − 015 3.53e − 016 4.77e − 016 1 1
𝑓
16

95.9988 40.0144 82.0768 32.2224 72.1410 26.1076 0 1
𝑓
17

142.9558 23.9951 143.1200 18.8582 142.5459 20.4493 0 0
𝑓
18

5.9388 4.7166 1.6944 1.7353 1.9040 1.8484 1 1
𝑓
19

1.5057 0.8212 0.1243 0.3400 0.0400 0.1990 1 1
𝑓
20

152.5097 18.9577 141.0244 20.0979 146.2151 17.2185 1 0
𝑓
21

1.30e − 004 2.39e − 004 6.84e − 006 8.96e − 006 4.41e − 006 5.53e − 006 1 1

Table 7: Experimental results for 30D problem of GABC algorithms.

Function GABC GABC-LTVS GABC-NTVS
ℎ
1

ℎ
2Mean SD Mean SD Mean SD

𝑓
1

7.03e − 016 1.29e − 016 1.16e − 025 9.49e − 026 1.71e − 027 1.21e − 027 1 1
𝑓
2

6.21e − 009 2.30e − 008 5.73e − 013 2.18e − 013 6.69e − 014 3.64e − 014 1 1
𝑓
3

1.34e − 012 1.07e − 012 2.76e − 021 3.38e − 021 1.26e − 023 1.711e − 023 1 1
𝑓
4

0.0692 0.0188 0.0652 0.0144 0.0602 0.0155 0 0
𝑓
5

5.23e + 002 6.31e + 001 5.20e + 002 7.81e + 001 5.08e + 002 6.66e + 001 0 0
𝑓
6

6.4906 10.3348 2.7541 3.9329 2.5028 2.4833 0 0
𝑓
7

8.62e − 011 1.58e − 010 7.11e − 017 3.55e − 016 0 0 1 1
𝑓
8

7.89e − 004 3.87e − 003 4.78e − 012 2.13e − 011 1.03e − 005 5.16e − 005 0 0
𝑓
9

2.07e − 009 7.48e − 010 9.53e − 013 3.34e − 013 2.01e − 013 4.74e − 014 1 1
𝑓
10

59.7836 70.9355 23.8017 59.1745 25.5825 48.3538 0 0
𝑓
11

3.76e − 009 1.02e − 008 6.11e − 015 2.12e − 014 1.42e − 016 4.92e − 016 0 0
𝑓
12

5.71e − 010 1.38e − 009 1.51e − 013 6.85e − 013 4.58e − 016 8.36e − 016 1 1
𝑓
13

2.58e − 005 3.20e − 005 1.11e − 005 1.82e − 005 8.89e − 006 2.03e − 005 0 1
𝑓
14

1.37e − 008 2.23e − 013 1.37e − 008 2.32e − 013 1.37e − 008 2.17e − 013 0 0
𝑓
15

6.39e − 016 1.15e − 016 4.72e − 026 4.33e − 026 6.54e − 028 6.60e − 028 1 1
𝑓
16

38.0229 23.1492 41.9666 26.0778 38.1041 23.7575 0 0
𝑓
17

55.5550 8.2793 53.8867 9.6732 51.0331 9.6130 0 0
𝑓
18

7.4043 14.2994 3.7490 4.2342 2.4815 2.9901 0 1
𝑓
19

3.24e − 008 1.59e − 007 4.26e − 016 1.18e − 015 7.11e − 017 3.55e − 016 1 1
𝑓
20

51.3741 7.0974 50.2909 11.1007 54.0969 10.6401 0 0
𝑓
21

3.97e − 004 2.04e − 003 3.68e − 007 6.51e − 007 1.11e − 006 4.09e − 006 1 1
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Table 8: Experimental results for 50D problem of GABC algorithms.

Function GABC GABC-LTVS GABC-NTVS
ℎ
1

ℎ
2Mean SD Mean SD Mean SD

𝑓
1

1.29e − 015 1.40e − 016 1.67e − 025 1.44e − 025 1.79e − 027 1.64e − 027 1 1
𝑓
2

7.72e − 009 2.30e − 009 6.28e − 013 1.76e − 013 6.54e − 014 2.14e − 014 1 1
𝑓
3

3.09e − 012 2.46e − 012 6.32e − 021 8.53e − 021 1.02e − 023 8.18e − 024 1 1
𝑓
4

0.1694 0.0252 0.1647 0.0294 0.1627 0.0296 0 0
𝑓
5

1.04e + 003 7.26e + 001 1.05e + 003 9.29e + 001 1.02e + 003 1.05e + 002 0 0
𝑓
6

12.3236 23.0585 1.7470 1.9037 3.3437 6.2364 1 0
𝑓
7

3.12e − 008 1.53e − 007 7.11e − 017 3.55e − 016 0 0 0 0
𝑓
8

9.09e − 013 2.77e − 012 8.41e − 015 4.18e − 014 2.68e − 015 1.33e − 014 0 0
𝑓
9

2.52e − 009 9.94e − 010 1.04e − 012 3.32e − 013 2.39e − 013 5.46e − 014 1 1
𝑓
10

162.7082 100.3839 52.5115 90.8550 80.6078 101.0140 1 1
𝑓
11

4.99e − 008 9.96e − 008 1.93e − 014 6.27e − 014 1.99e − 015 8.51e − 015 1 1
𝑓
12

3.61e − 010 5.26e − 010 1.26e − 014 2.24e − 014 3.51e − 016 5.18e − 016 1 1
𝑓
13

1.71e − 004 2.75e − 004 4.09e − 005 5.81e − 005 2.02e − 005 3.10e − 005 1 1
𝑓
14

2.29e − 008 2.07e − 013 2.29e − 008 2.24e − 013 2.29e − 008 1.51e − 013 0 0
𝑓
15

1.17e − 015 1.73e − 016 9.38e − 026 1.05e − 025 7.58e − 028 4.85e − 028 1 1
𝑓
16

79.5737 43.0285 87.9010 38.3788 74.1063 42.5826 0 0
𝑓
17

101.0561 19.2130 97.5846 14.9214 98.3341 12.7543 0 0
𝑓
18

6.7201 10.6406 3.1402 4.8951 4.1251 12.6738 1 0
𝑓
19

2.22e − 010 4.99e − 010 4.89e − 013 2.40e − 012 0 0 1 1
𝑓
20

107.1083 13.3490 106.0348 15.2274 104.4232 13.6487 0 0
𝑓
21

1.32e − 005 4.76e − 005 1.94e − 007 2.30e − 007 1.57e − 006 4.50e − 006 0 0

applied in other state-of-the-art ABC variants to further
improve the search performance.
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A. Benchmark Functions
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A.2. Multimodal Functions
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(8) Griewank function

𝑓
8 (�⃗�) =

1

4000

𝐷

∑

𝑖=1

𝑥
2

𝑖
−

𝐷

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

) + 1,

−600 ≤ 𝑥
𝑖
≤ 600, �⃗�

∗
= {0}
𝐷
.

(A.8)

(9) Ackley function

𝑓
9 (�⃗�) = −20 exp(−0.2√ 1

𝐷

𝐷

∑

𝑖=1

𝑥
2

𝑖
) − exp( 1

𝐷

𝐷

∑

𝑖=1

cos 2𝜋𝑥
𝑖
)

+ 20 + 𝑒, −32 ≤ 𝑥
𝑖
≤ 32, �⃗�

∗
= {0}
𝐷
.

(A.9)

(10) Schwefel function

𝑓
10 (�⃗�) = 418.9829 × 𝐷 −

𝐷

∑

𝑖=1

(𝑥
𝑖
sin(√𝑥𝑖

)) ,

−500 ≤ 𝑥
𝑖
≤ 500, �⃗�

∗
= {420.96}

𝐷
.

(A.10)

(11) Noncontinuous Rastrigin function
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A.3. Shifted and Rotated Functions

(16) Rotated Rosenbrock function
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(20) Shifted Rotated Rastrigin function
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