1,263 research outputs found

    k2U: A General Framework from k-Point Effective Schedulability Analysis to Utilization-Based Tests

    Full text link
    To deal with a large variety of workloads in different application domains in real-time embedded systems, a number of expressive task models have been developed. For each individual task model, researchers tend to develop different types of techniques for deriving schedulability tests with different computation complexity and performance. In this paper, we present a general schedulability analysis framework, namely the k2U framework, that can be potentially applied to analyze a large set of real-time task models under any fixed-priority scheduling algorithm, on both uniprocessor and multiprocessor scheduling. The key to k2U is a k-point effective schedulability test, which can be viewed as a "blackbox" interface. For any task model, if a corresponding k-point effective schedulability test can be constructed, then a sufficient utilization-based test can be automatically derived. We show the generality of k2U by applying it to different task models, which results in new and improved tests compared to the state-of-the-art. Analogously, a similar concept by testing only k points with a different formulation has been studied by us in another framework, called k2Q, which provides quadratic bounds or utilization bounds based on a different formulation of schedulability test. With the quadratic and hyperbolic forms, k2Q and k2U frameworks can be used to provide many quantitive features to be measured, like the total utilization bounds, speed-up factors, etc., not only for uniprocessor scheduling but also for multiprocessor scheduling. These frameworks can be viewed as a "blackbox" interface for schedulability tests and response-time analysis

    Analyses and optimizations of timing-constrained embedded systems considering resource synchronization and machine learning approaches

    Get PDF
    Nowadays, embedded systems have become ubiquitous, powering a vast array of applications from consumer electronics to industrial automation. Concurrently, statistical and machine learning algorithms are being increasingly adopted across various application domains, such as medical diagnosis, autonomous driving, and environmental analysis, offering sophisticated data analysis and decision-making capabilities. As the demand for intelligent and time-sensitive applications continues to surge, accompanied by growing concerns regarding data privacy, the deployment of machine learning models on embedded devices has emerged as an indispensable requirement. However, this integration introduces both significant opportunities for performance enhancement and complex challenges in deployment optimization. On the one hand, deploying machine learning models on embedded systems with limited computational capacity, power budgets, and stringent timing requirements necessitates additional adjustments to ensure optimal performance and meet the imposed timing constraints. On the other hand, the inherent capabilities of machine learning, such as self-adaptation during runtime, prove invaluable in addressing challenges encountered in embedded systems, aiding in optimization and decision-making processes. This dissertation introduces two primary modifications for the analyses and optimizations of timing-constrained embedded systems. For one thing, it addresses the relatively long access times required for shared resources of machine learning tasks. For another, it considers the limited communication resources and data privacy concerns in distributed embedded systems when deploying machine learning models. Additionally, this work provides a use case that employs a machine learning method to tackle challenges specific to embedded systems. By addressing these key aspects, this dissertation contributes to the analysis and optimization of timing-constrained embedded systems, considering resource synchronization and machine learning models to enable improved performance and efficiency in real-time applications with stringent constraints

    Capacity Augmentation Bound of Federated Scheduling for Parallel DAG Tasks

    Get PDF
    We present a novel federated scheduling approach for parallel real-time tasks under a general directed acyclic graph (DAG) model. We provide a capacity augmentation bound of 2 for hard real-time scheduling; here we use the worst-case execution time and critical-path length of tasks to determine schedulability. This is the best known capacity augmentation bound for parallel tasks. By constructing example task sets, we further show that the lower bound on capacity augmentation of federated scheduling is also 2 for any m \u3e 2. Hence, the gap is closed and bound 2 is a strict bound for federated scheduling. The federated scheduling algorithm is also a schedulability test that often admits task sets with utilization much greater than 50%m

    Communication Awareness

    Get PDF

    Modelling and Analyses of Embedded Systems Design

    Get PDF

    Model-driven timing analysis of embedded software

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    GraphLab: A New Framework for Parallel Machine Learning

    Full text link
    Designing and implementing efficient, provably correct parallel machine learning (ML) algorithms is challenging. Existing high-level parallel abstractions like MapReduce are insufficiently expressive while low-level tools like MPI and Pthreads leave ML experts repeatedly solving the same design challenges. By targeting common patterns in ML, we developed GraphLab, which improves upon abstractions like MapReduce by compactly expressing asynchronous iterative algorithms with sparse computational dependencies while ensuring data consistency and achieving a high degree of parallel performance. We demonstrate the expressiveness of the GraphLab framework by designing and implementing parallel versions of belief propagation, Gibbs sampling, Co-EM, Lasso and Compressed Sensing. We show that using GraphLab we can achieve excellent parallel performance on large scale real-world problems
    corecore