
8 Communication Awareness
The ubiquity of connected devices and parallel computing platforms challenges ef-
ficient and reliable execution of machine learning algorithms. If machine learning
workloads are executed merely locally, a system does not always have sufficient re-
sources at its disposal to perform the necessary operations fast enough. Furthermore,
at a smaller scale, multiple hardware components these days are interconnected via
on-chip or off-chip networks to create many-core systems. Communication, synchro-
nization, and offloading have thus become essential in designing embedded systems
under communication and resource constraints.

This chapter presents (1) the timing predictability of embedded systems and (2) the
communication architecture in heterogeneous CPU/GPU environments. Synchroniza-
tion with resource sharing, communication with potential failures, and probabilistic
timing information are presented in Section 8.1. Bandwidth limitations of different exe-
cution models and coprocessor-accelerated optimization are presented in Section 8.2.
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Abstract:With the increasing demand for time-predictable machine learning applica-
tions, e.g., object detection in autonomous driving systems, such a trend poses several
new challenges for resource synchronization in real-time systems, especially when
hardware accelerators like Graphics Processing Units (GPUs) are considered as shared
resources. When the shared resources have relatively high utilization, conventional
synchronization mechanisms might result in performance downgrade.
We thus propose the emerging Dependency Graph Approach (DGA), where the prece-

dence constraints of all the computation segments are pre-proceeded. Such a non-work-
conserving approach can schedule long critical sections, which may be even longer
than the period of another task. This is not the case in all the other work-conserving
protocols typically in use. Throughout numerical experiments, we show that DGA out-
performs all the other conventional protocols in all the evaluated configurations when
shared resources are highly utilized.
Additionally, a system does not always have sufficient resources at its disposal to per-

form the necessary operations fast enough if machine learning workloads are executed
merely locally. One sound approach is to offload heavy workload to powerful remote
servers and expect the inference outcome can be received in time. However, since this
approach highly depends on network connectivity and responsiveness, typically only
non-critical tasks are offloaded, whose timing requirements are less strict than those of
critical tasks. Against such a pessimistic design, we present two novel offloading proto-
cols that offload both critical and non-critical tasks. They handle uncertain connections
while providing certain timing guarantees.
To achieve a timing-predictable design, typical timing analyses always consider the

worst-case execution pattern to derive timing guarantees. But this approach is often
too restrictive for some machine learning applications with soft timing constraints.
To mitigate the pessimism, we develop several timing analyses of the probability of
deadline misses and the deadline miss rate, two important metrics considered in the
literature to quantify timeliness.
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8.1.1 Introduction

Under the von Neumann programming model, shared resources that require mutually
exclusive accesses, e.g., shared files, data structures, etc., have to be protected by apply-
ing synchronization (e.g., binary semaphores) or locking (e.g.,mutex locks)mechanisms.
Protected code segments that have to access shared resource(s) mutually exclusively
are called critical sections. For uni-processor real-time systems, longstanding protocols
developed in the 90s, are the current state of the art. These are namely the Priority
Inheritance Protocol (PIP) and the Priority Ceiling Protocol (PCP) by Sha et al. [623], as
well as the Stack Resource Policy (SRP) by Baker [37].

Along with the development of multiprocessor platforms, multiprocessor resource
synchronization and locking protocols have been proposed and extensively studied.
These include Distributed-PCP (DPCP) [592], Multiprocessor PCP (MPCP) [591], Mul-
tiprocessor SRP (MSRP) [238], Flexible Multiprocessor Locking Protocol (FMLP) [58],
O(m) Locking Protocol (OMLP) [69], and Multiprocessor resource sharing Protocol
(MrsP) [101].

However, the performance of aforementioned protocols highly depends on 1) how
the tasks are partitioned and prioritized, 2) how the resources are shared locally and
globally, and 3) whether a job/task being blocked should spin or suspend itself. In
the literature, conventional synchronization mechanisms might result in performance
downgrade, since most of them are designed for sporadic tasks with relatively low
utilization for critical sections, which are often not able to represent emerging heavy-
loaded machine learning applications. We thus propose a novel concept called DGA,
which can serve high utilization of critical sections well.

Moreover, when the workload of a critical section, e.g., a machine learning work-
load on GPU, is extremely high, a system does not always have sufficient resources at
its disposal to perform the necessary operations fast enough. A sound solution is to
offload heavy workload to powerful remote servers and wait for the outcome of the
inference processes. However, the performance and stability of this approach highly de-
pends on the quality of the network. To improve flexibility, we propose several adaptive
protocols to ensure that the timing requirements of safety- and mission-critical tasks
are not violated even in the case of connectivity issues while obtaining the benefits of
offloading computation shares.

Last but not least, to achieve a timing-predictable design, conventional timing
analyses always focus on the worst-case execution pattern to derive hard timing guaran-
tees. However, such analyses are sometimes too pessimistic when systems can accept
rare deadline misses, e.g., for soft real-time systems. Limited deadline misses on many
machine learning applications might only lead to performance degradation, e.g., for
image and voice recognition on smart edge devices. Some end users might only feel
inconvenienced without further serious consequences. However, people might still
wonder how resilient the considered system is with respect to deadline misses in a
probabilistic argument. To obtain the probability of deadline misses, we innovate a
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well-known convolution-based approach based onmultinomial distribution, and adopt
several concentration inequalities to derive analytical upper bounds to further improve
the efficiency of calculation.

Overall, the presented contributions in this chapter are as follows:
Dependency Graph Approach (DGA) We propose a novel method for periodic real-

time task systems, which predestines the sequence where tasks can access re-
sources. The conducted numerical simulations show that DGA outperforms all
state-of-the-art approaches in most evaluated configurations, especially when
utilization of critical sections is relatively high.

Offloading protocols for unreliable connection We present two offloading proto-
cols that offload both critical and non-critical tasks. They deal with uncertain
connections while providing certain timing guarantees. A case study on a robotic
system demonstrates the applicability of the proposed protocols under various
configurations.

Deadline-miss analyses A novel approach based on the multinomial distribution is
proposed that calculates the deadlinemiss probability with drastically better analy-
sis runtime without any precision loss. Furthermore, we propose several analytical
bounds based on various concentration inequalities. The evaluation shows that
our approaches are applicable for significantly larger task sets while preserving
the quality of derived results, compared with conventional convolutional-based
approaches.

8.1.2 Related Work

For multiprocessor systems, many resource synchronization and locking protocols are
extensions of these aforementioned well-known uni-processor protocols. For example,
Rajkummar et al. [592] proposed DPCP, where each resource is assigned on a processor
statically, and critical sections are executed on the corresponding processor where the
requested resource is assigned on. The extension MPCP [591] enables tasks to execute
their critical section locally. In order to minimize the usage of stack memory in real-
time systems, Gai et al. [238] proposed MSRP. Block et al. [58] introduced FMLP, where
resources are divided into two groups, i.e., long and short. For short resources, critical
sections are executed in a non-preemptable manner and tasks spin on their processors
while waiting for resources. For long resources, tasks suspend themselves into a First
In First Out (FIFO) queue while waiting. Brandenburg and Anderson [69] proposed
OMLP, which ensures O(m) maximum pi-blocking for any task set. Burns et al. [101]
proposed MrsP, which allows tasks to progress other tasks that have occupied the same
requested resource, in order to reduce the blocking time. A comprehensive survey of
multiprocessor real-time locking protocols can be found in [68].



8.1 Timing-Predictable Learning and Multiprocessor Synchronization | 363

Besides fully relying on local computational power, offloading computation to remote
servers is a reasonable solution to ease the pressure of resource constraints on em-
bedded systems. In 2012, a cloud-assisted system for autonomous driving was firstly
studied by Kumar et al. [406]. In 2015, Esen et al. [203] presented a software architecture
named Control as a Service in which all control functions are completely moved to
the cloud. In 2018, Adiththan et al. [4] proposed an adaptive offloading technique for
control applications that makes all offloading decisions online based on a network
performance monitor. Recently, Al Maruf and Azim [469] proposed a strategy for task of-
floading in multiprocessor mixed-criticality systems with dynamic scheduling policies
under overload conditions. For real-time systems that allow offloading, one concept for
modeling this particular local system view is self-suspension [127]. One of the state-of-
the-art models can be applied such as the dynamic self-suspension model (e.g. [324],
[442]), the segmented self-suspension model (e.g. [611]), or a hybrid model, e.g. [84].
For a detailed overview, see [127, 128].

To safely derive probabilistic timing guarantees, which enable a tradeoff between
system safety and hardware costs, several techniques have been developed in the
literature. Diaz et al. [177] developed a framework for calculating the deadline miss
probability based on convolution for periodic task systems. In addition, Tanasa et
al. [657] used the Weierstrass Approximation to approximate any arbitrary execution
time distributions and applied a customized decomposition procedure to search all the
possible combinations. However, the two approaches can derive only the probability
of deadline misses with 7 and 25 jobs in the hyper-period, respectively. For sporadic
real-time task systems, inwhich two consecutive jobs of a task do not have to be released
periodically, Axer et al. [27] proposed evaluating the response-time distribution and
iterating over the activations of job releases for non-preemptive fixed-priority schedul-
ing. Maxim et al. [476] provided a probabilistic response time analysis by assuming a
probabilistic minimum inter-arrival as well as probabilistic worst-case execution times
(WCETs) for the fixed-priority scheduling policy. Ben-Amor et al. [46] extended the
probabilistic response time analysis in [476] by considering precedence-constrained
tasks. These convolution-based approaches are in general not scalable due to the huge
number of jobs in the interval of interest.

8.1.3 Dependency Graph Approach

In this subsection, the dependency graph approach is presented in detail, including
the primary design of DGA, the extension for supporting periodic task systems, and the
corresponding scheduling algorithms.
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8.1.3.1 Primary Design of DGA
We consider a set of n frame-based real-time tasks T ={τ1, . . . , τn} that is sched-
uled on M identical (homogeneous) processors. Each task is described by τi =
((Ci,1, Ai,1, Ci,2), Ti , Di). The given tasks release their jobs at the same time and have
the same period and relative deadline. Specifically, each task τi releases a job (at time
0 for notational brevity) with the following properties:
– Ci,1 is the execution time of the first non-critical section of the job.
– Ai,1 is the execution time of the (first) non-nested critical section of the job, in

which a binary semaphore or a mutex σ(τi,1) is used to control the access to the
critical section.

– Ci,2 is the execution time of the second non-critical section of the job.

A sub-job is a critical section or a non-critical section. Therefore, each job of task τi
has three sub-jobs. We assume the task set T is given and a constrained deadline is
considered, i.e., Di ≤ Ti. We also make the following assumptions:
– For each task τi in T, Ci,1 ≥ 0, Ci,2 ≥ 0, and Ai,1 ≥ 0.
– The execution of the critical sections guarded by one binary semaphore s must

be sequentially executed under a total order. That is, if two tasks share the same
semaphore, their critical sections must be executed one after another without any
interleaving.

– The execution of a job cannot be parallelized, i.e., a job must be sequentially
executed in the order of Ci,1, Ai,1, Ci,2.

– There are in total Z binary semaphores.

The dependency graph approach consists of the following two steps:
– In the first step, a directed graph G = (V , E) is constructed. A subjob (i.e., a critical

or a non-critical section) is a vertex in V and the edges in E describe the precedence
constraints of these jobs. The subjob Ci,1 is a predecessor of the subjob Ai,1, and
Ai,1 is a predecessor of the subjob Ci,2. If two jobs of τi and τj share the same binary
semaphore, i.e., σ(τi,1) = σ(τj,1), then either the subjob Ai,1 is the predecessor of
Aj,1 or the subjob Aj,1 is the predecessor of Ai,1. All the critical sections guarded by
a binary semaphore form a chain in G, i.e., the critical sections of the same binary
semaphore follow a total order. Therefore, we have the following properties in set
E:
– The two directed edges (Ci,1, Ai,1) and (Ai,1, Ci,2) are in E.
– Suppose that Tk is the set of tasks that require the same binary semaphore sk.

Then, the |Tk| tasks in Tk follow a certain total order π such that (Ai,1, Aj,1) is
a directed edge in E when π(τi) = π(τj) − 1.

Figure 8.1 provides an example of a task dependency graph with one binary
semaphore. Since there are Z binary semaphores in the task set, the task depen-
dency graph G has in total Z connected subgraphs, denoted as G1, G2, . . . , Gz. In



8.1 Timing-Predictable Learning and Multiprocessor Synchronization | 365

C1,1

A1,1

C1,2

C2,1

A2,1

C2,2

Ci,1

Ai,1

Ci,2

Fig. 8.1: A task dependency graph for a task set with one binary semaphore.

each connected subgraph Gℓ, the corresponding critical sections of the tasks that
request critical sections guarded by the same semaphore form a chain and have to
be executed sequentially. For example, in Figure 8.1, the dependency graph forces
the scheduler to execute the critical section A1,1 prior to any of the other three
critical sections.

– In the second step, a corresponding schedule of G on M processors is generated.
The schedule can be based on system restrictions or user preferences, i.e., it can
be based on either preemptive or non-preemptive schedules, or on either global,
semi-partitioned, or partitioned schedules.

Algorithms toConstructG The objective of constructing dependency graph, i.e.,G, is
tominimize themakespan, i.e., the latest finishing time of all tasks,with the assumption
that the number of virtual processors is the same as the number of tasks, based on
uni-processor non-preemptive scheduling. For each task, Ci,1 is considered as release
time ri, and Ci,2 is considered as delivery time. There are several existing algorithms to
derive good approximations of G*, where G* is the graph with the optimal makespan:
1) the extended Jackson’s rule [289], which is a polynomial-time algorithm with 2-
approximation [377]; 2) the Potts [583], which is a polynomial-time 1.5-approximation
algorithm [289]; 3) and the improvement of the approximation ratio to 4/3 by Hall and
Shmoys [289].

8.1.3.2 Extension to Periodic Task Systems
To increase the applicability, we extend the DGA to handle multiprocessor synchroniza-
tion for periodic real-time task systems. That is, we unroll the jobs of all the tasks in
one hyper-period and then construct a dependency graph of these jobs. Suppose that
the hyper-period H of a task set is the least common multiple (LCM) of the periods of
all the tasks in this set. For each task τi that requests (at least) one resource, we create
H/Ti jobs of task τi. For the ℓ-th job of task τi, we set its release time to (ℓ − 1)Ti and its
absolute deadline must be no later than (ℓ−1)Ti +Di. Since the jobs for one task should
not have any execution overlap with each other, we only need one virtual processor or
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dedicated shop for them, but the release time constraint is added for each job. The three
methods in Section 8.1.3.1 can still be applied by adding the release time constraint
for each job. Afterward, a dependency graph for all the jobs in one hyper-period is
generated. In the end, the schedules are generated offline. And the generated schedules
will be repeated in the upcoming hyper-periods.

Please note that such an extension can be applied to any periodic real-time task
system but that it comes at the cost of space and computation, due to the increasing
number of jobs in one hyper-period.

8.1.3.3 Scheduling Algorithms
In the following, we show three scheduling algorithms for the same dependency
graph(s) under different system specifications.

List-EDF Here, we show how to schedule the unrolled dependency graphs over the
hyper-period. For the ℓ-th job of τi, Jℓi has three subjobs Jℓi,1, Jℓi,2, Jℓi,3 that represent the
related subjobs Ci,1, Ai,1, Ci,2, respectively. The release time of the first subjob is Jℓi,1 is
(ℓ−1)Ti, and the absolute deadline of the last subjob Jℓi,3 is (ℓ−1)Ti +Di. Regarding the
release times of the second and third subjob, we initially set the earliest possible time
the jobmay be released based on theWCETs of the other subjobs. Meanwhile, regarding
the deadline of the first and second subjob, we initially assign the latest possible time
the subjob can finish while still allowing schedulability. To be precise, the release time
of Jℓi,2 is set to (ℓ − 1)Ti + Ci,1, the release time of Jℓi,3 is set to (ℓ − 1)Ti + Ci,1 + Ai,1, the
absolute deadline of Jℓi,2 is set to (ℓ − 1)Ti + Di − Ci,2, and the absolute time of Jℓi,1 is set
to (ℓ − 1)Ti + Di − Ci,2 − Ai,1.

We assume that each dependency graphGs for a binary semaphore s is constructed
for the corresponding jobs released (strictly) within one hyper-period H. If Hs < H,
then H

Hs copies of Gs are applied in a consecutive order to represent the precedence
constraints of the critical sections. For notational brevity, we denote rℓi,j as the release
time of the subjob Jℓi,j and dℓi,j as the absolute deadline of Jℓi,j. If the absolute deadline of
an immediate predecessor of Jℓi,j, denoted as IPre(Jℓi,j), is larger than dℓi,j, the absolute
deadline of the immediate predecessor should be reassigned to dℓi,j minus the WCET
of Jℓi,j. This is a standard procedure for scheduling jobs subject to release dates and
precedence constraints. Details can be found in [36].

We assume that the absolute deadline assignment is adjusted accordingly so that
dℓi,j for the subjob Jℓi,j is always greater than the absolute deadline of IPre(Jℓi,j). Schedul-
ing G1,G2, . . . ,Gz on M homogeneous (identical) processors is a special case of the
classical scheduling problem P|prec; rj|Lmax, i.e., scheduling a set of jobs with speci-
fied release times and precedence constraints on M identical processors, minimizing
the maximum lateness. One possible scheduling strategy is to use the List scheduling
developed by Graham [269] in combination with Earliest Deadline First scheduling
(EDF). A List schedule works as follows: Whenever a processor idles and there are
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subjobs eligible to be executed (i.e., all of their predecessors in the dependency graph
have finished), one of the eligible subjobs is executed on the processor. If more subjobs
than processors are available, we prioritize the subjobs that have the earlier absolute
deadlines. If two subjobs have the same absolute deadline, the one with the larger
remaining workload has a higher priority. We call this scheduling algorithm List-EDF.

Federated-Based Partitioning Algorithm Federated scheduling was proposed by
Li et al. [430] in order to schedule parallel real-time task systems with internal prece-
dence constraints that can be modeled as a Directed-Acyclic Graph (DAG). The foremost
intention of this scheduling algorithm is to provide provably good approximations
with respect to an optimal scheduling algorithm while considering implementation
constraints, e.g., cache hit-rates and memory accesses during runtime. The idea of
federated scheduling is to assign DAGs (in our case the DAGs resulting from the de-
pendency graph construction) that need to utilize more than one processor (so-called
heavy graphs) to those processors exclusively. Analogously, the graphs that can be
feasibly scheduled on a single processor are denoted as light graphs and are scheduled
jointly on the remaining processors, i.e., non-exclusively allocated processors. After
this initial partition, the actual scheduling is done by a work-conserving scheduler on
the assigned processors. If the graphs in both the heavy group and the light group can
be scheduled feasibly, the corresponding partition is returned. Otherwise, there is no
feasible partition.

Worst Fit-Based Heuristic In addition, a worst-fit heuristic is proposed in which
the tasks are partitioned one by one. The tasks are first sorted according to a sorting
strategy. After that, they are partitioned to the available processors using a worst-fit
strategy, i.e., each task is assigned to the processor with the currently lowest utilization.
Again, Partitioned-EDF (P-EDF) scheduling is applied to verify whether the resulting
partition on M processors is feasible.

We proposed two sorting strategies: 1) sort all the tasks decreasingly with regard
to the tasks’ utilization, no matter which resources they request; 2) sort the graphs
decreasingly with regard to the graph utilization and then sort the tasks inside each
graph decreasingly with regard to the task utilization. In our proposed heuristic, both
sorting strategies are applied. If the partition P generated by the first sorting strategy
is not applicable, i.e., if the task set is not schedulable on M processors based on the
current partition P using P-EDF, the second sorting strategy and the resulting partition
P′ are considered, and P-EDF is applied to verify the new partition P′ once again. The
algorithm only returns infeasible when both aforementioned sorting strategies cannot
generate a schedulable partition. Otherwise, the task set is schedulable and the partition
is returned. Again, if a time-driven schedule is created, the schedule can be returned as
well.
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8.1.3.4 Evaluation
We randomly generated task sets based on the number of processors M, shared re-
sources Z, and relative utilization of the critical sections H as parameters. In our evalu-
ation, we considered M ∈ {4, 8, 16}, Z ∈ {4, 8, 16}, and H ∈ {[5% − 10%], [10% −
40%], [40% − 50%]}.

For a given configuration of M, Z, and H, we generated task sets with 10 × M
tasks for each total utilization value

∑︀
τi∈T Uτi ∈ [0,M] with a step 5%, applying the

RandFixedSummethod [199]. We enforced the total utilization Uτi ≤ 0.5 for each task
τi. To determine the subtask utilization of one task, i.e., UCi,1 , UCi,2 , and UAi,1 , we first
decided the utilization of the critical section UAi,1 by randomly drawing a percentage of
the task’s total utilization Uτi based on the parameter H. Next, the remaining utilization
UCi was split by drawing UCi,1 randomly uniform from [0, UCi ] and setting UCi,2 to
UCi − UCi,1 . The resource that each critical section of a task requests was selected
randomly from all the available resources. In addition, we generated two kinds of task
sets according to their settings of available periods:
Periodic task sets with semi-harmonic periods The task periods Ti are selected

randomly from a set of semi-harmonic periods, i.e., Ti ∈ {1, 2, 5, 10}, which is a
subset of the periods used in automotive systems [86, 290, 392, 606, 662].

Frame-based task sets As a special case of periodic task sets, all the tasks have the
common period 1. Hence, i.e., Ci,1 = UCi,1 , Ai,1 = UAi,1 , and Ci,2 = UCi,2 .

For each of these setting of periods, 54 configurations are considered in total. For each
of the utilization step values, 1000 task sets were randomly generated.

Evaluated Approaches To construct the dependency graphs, POTTS [583] is applied.
Other evaluated methods to schedule the tasks sets were: 1) FED-P-EDF: the algorithm
based on federated scheduling; 2) WF-P-EDF: the algorithm based on global worst-
fit partitioning; 3) LIST-EDF: the List schedule based approach; 4) ROP-FP: Resource-
Oriented Partitioned under Fixed-Priority [82]; 5) ROP-EDF: ROP under Dynamic-priority;
6) LP-GFP-FMLP [58]; 7) LP-GFP-PIP [194]; and 8) GS-MSRP [704].

Evaluation Results Only a subset of the results is presented, as the other results
show similar trends. The evaluation results for periodic task systems are shown in
Figure 8.2. If the workload of the critical sections is increased (Figure 8.2-(a) to (c)),
the performance of all methods is reduced, and the difference between methods is
decreased as well. The reason is that, when β = [40% − 50%], the execution time of
the critical section for tasks with period 10 time units can be large, i.e., longer than 2
time units. Therefore, tasks with period 1 time unit directly miss the deadline by default
for all other approaches, no matter what kind of partitioning algorithm is applied. The
performance drops down quickly when the utilization is increased and the critical
section workload is large, as shown in Figure 8.2 (c).
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Fig. 8.2: Schedulability of different approaches for periodic task sets.

The evaluation results for frame-based task systems are shown in Figure 8.3. The pro-
posed worst-fit heuristic WF-P-EDF outperforms ROP-EDF and other partitioned schedul-
ing methods significantly. Furthermore, Figure 8.3 shows that WF-P-EDF has a good
performance compared with LIST-EDF. In most cases, both LIST-EDF and WF-P-EDF can
reach a 100% acceptance ratio even with a 95% utilization per processor.

8.1.4 Offloading Protocols for Unreliable Connection

In this subsection, two offloading protocols are presented in detail, addressing two
system requirements: 1) the service protocol, which provides as much service for non-
critical tasks as possible at any point in time, and 2) the return protocol, which allows
a fast return to normal system behavior in the case of an unsuccessful offloading
operation.

8.1.4.1 System Model
We consider a cyber-physical system comprising a set of tasks T that can be divided
into two subsets with different requirements, namely, the set of critical tasks Tcrit,
and the set of non-critical tasks Tnon, such that T = Tcrit ∪ Tnon and Tcrit ∩ Tnon = ∅.
While for each τk ∈ Tcrit timing constraints must be satisfied at any point in time, for
each τk ∈ Tnon timing violations may be unpleasant but not hazardous. According to
the classification of tasks into two subsets, we specify two different system execution
behaviors, i.e., normal and local execution behavior. When the system exhibits normal
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Fig. 8.3: Schedulability of different approaches for frame-based task sets(1).

execution behavior, all timing requirements of all tasks are satisfied at any point in
time, whereas, if the system exhibits local execution behavior, timing guarantees can
only be given for all critical tasks τk ∈ Tcrit.

Each recurrent real-time task τk ∈ T is assumed to have a sporadic arrival pattern
and is characterized by a tuple

(︀
Ck,1, Ck,s , Ck,2, Sk , pk , qk , Dk , Tk

)︀
:

– Each τk releases an infinite number of task instances denoted as jobs. Tk indicates
the minimum inter-arrival time of τk.

– Dk describes the relative deadline of τk. A constrained-deadline task system is
considered, in which Dk ≤ Tk for each task τk.

– Ck,1 and Ck,2 denote the WCETs of the first and second computation segments,
respectively.

– Ck,s is theWCET of the typically offloaded task share if executed on the local system.
– pk and qk are the WCETs of the pre- and post-processing routines, which are exe-

cuted before and after the offloading operation of a job of task τk, respectively.
– Sk is the offloading or suspension time of τk.

We assume that Tk ≥ Dk > 0 and Ck,1, Ck,s , Ck,2, Sk , pk , qk ≥ 0. Moreover, we assume
that WCET of pre- and post-processing routines are less than or equal to the WCET
of local execution, i.e., pk + qk ≤ Ck,s. Furthermore, the WCET of a job of task τk
under any possible execution scenario is greater than 0, i.e., Ck,1 + Ck,s + Ck,2 > 0 and
Ck,1 + pk + qk + Ck,2 > 0. For notational brevity, we denote C♯k = Ck,1 + Ck,s + Ck,2 and
C♭k = Ck,1 + pk + qk + Ck,2.
In addition, we assume that the local cyber-physical real-time system, termed local
system, is a uniprocessor system, inwhich tasks are scheduled according to apreemptive
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rk rk + Dk

Ck,1 Ck,s Ck,2

Fig. 8.4: A job of task τk is executed locally (local execution behavior).

rk rk + Dk

Ck,1 pk Sk qk Ck,2

Fig. 8.5: An offloading operation of a job of task τk is performed successfully (normal execution
behavior).

fixed-priority policy. More precisely, each task is assigned a unique priority, i.e., all
jobs of task τk have the same priority. If at any point in time multiple jobs are ready,
i.e., eligible for being executed on the local system, the job having the highest priority
is executed. For each task τk, the unique set of the higher-priority tasks is denoted as
hp(τk).

For a job of task τk arriving at time rk the following execution scenarios are possible:
– The job is executed locally (Figure 8.4). In this case, the WCET of the job released at

time rk is Ck,1 + Ck,s + Ck,2, i.e., C♯k.
– The job is offloaded. In this case, the job is first executed locally for up to Ck,1

execution time units and thereon enters the pre-processing routine for up to pk
execution time units. Suppose that the first computation segment as well as the pre-
processing routine are finished at time ρ. Then, the considered job is offloaded to
the remote systemat time ρ. The actual offloading operation can be either successful
or unsuccessful:
– Offloading is successful if the computation result or offloading response is re-

turned to the local system until time ρ+Sk. In this case, the offloading response
is post-processed for up to qk time units and the second computation segment
is executed for up to Ck,2 time units (Figure 8.5). Accordingly, the execution
time of the job of τk on the local system is at most C♭k.

– Offloading is unsuccessful otherwise. In this case, at time ρ + Sk, a local re-
execution of the offloaded task share is performed for up to Ck,s time units
followed by the execution of the second computation segment for up to Ck,2
time units. In this case, the execution time of the job of τk on the local system
is at most C♯k + pk.

8.1.4.2 Recovery Protocols
Cyber-physical systems are applied throughout a broad range of areas, each exhibiting
individual requirements and thus a need for situationally appropriate system behav-
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ior. For safety-critical cyber-physical systems, the timeliness of critical tasks must be
guaranteed under any circumstances - even in the event of an unsuccessful offload-
ing operation. Since in this case a larger amount of local resources is required, less
resources remain to serve the non-critical tasks, as we explained in Section 8.1.4.1. How-
ever, depending on the actual system characteristics, timing constraints for non-critical
tasks tend to be less strict. For instance, it is possible that a non-critical task misses its
deadline, but that the results are still useful up to a certain degree [83, 87]. Nevertheless,
it may be desirable to return to the normal execution behavior and to re-establish timing
guarantees for both critical and non-critical tasks as soon as possible, especially since
a non-critical task is not necessarily unimportant and thus should provide functionally
and temporally correct results most of the time. Further discussion on the relation
between criticality and importance can be found in [204].

Against this backdrop, we propose two recovery protocols allowing the system
to satisfy its requirements under local execution behavior and to return to normal
execution behavior:
– The service protocol aims to provide as much service as possible for non-critical

tasks, even under local execution behavior.
– The return protocol aims to minimize the amount of time, in which the system

exhibits local execution behavior after an unsuccessful offloading operation.

Independent of the actual protocol, we assume that the local system exhibits normal
execution behavior at time 0, such that offloading is enabled for all tasks in T. The
schedule considers the execution of all tasks until the first moment γ1,↘ in which the
offloading operation of a certain task τk is unsuccessful. That is, a job of task τk, which
has offloaded its computation at time γ1,↘−Sk, does not receive the offloading response
until time γ1,↘ (Figure 8.6). Immediately after γ1,↘, the local system exhibits local
execution behavior. Until time γ1,↘, three scenarios are possible for each incomplete
job of all critical tasks τi in Tcrit:
– The job of τi has not been offloaded: In this case, no offloading operation will be

performed for this job, but it is executed locally instead. Since it is possible that
the pre-processing routine for offloading is already active at time γ1,↘, the WCET of
this job is upper-bounded by Ci,1 + pi + Ci,s + Ci,2, i.e., C♯i + pi.

– The job of τi is already offloaded, but no offloading response was received until time
γ1,↘: In this case, the offloading process is aborted and the job is executed locally as
of time γ1,↘. Therefore, theWCETof this job is upper-boundedby Ci,1+pi+Ci,s+Ci,2,
i.e., C♯i + pi.

– The job of τi is already offloaded and the offloading response has been received
prior to time γ1,↘: In this case, the job continues its final processing. Therefore, the
WCET of this job is upper-bounded by Ci,1 + pi + qi + Ci,2, i.e., C♭i .

After γ1,↘, timing guarantees are provided only for Tcrit. Moreover, offloading is in-
hibited for all critical tasks in the near future of γ1,↘ due to the currently unreliable
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rk γ1,↘

Ck,1 pk Sk Ck,s Ck,2

Fig. 8.6: An unsuccessful offloading operation of τk resulting in the transition to the local system
behavior at time γ1,↘.

connection leading to the missing offloading response. The offloading decision for
non-critical tasks, however, depends on the applied recovery protocol:
Service Protocol Under the service protocol, offloading is inhibited for all instances

of all tasks that are active as long as the system exhibits local execution behavior.
The task share of each τi ∈ T that is offloaded under normal execution behavior
is executed locally within Ci,s units of execution time. Since this leads to a higher
workload on the local system, timeliness cannot be guaranteed for any non-critical
task. Nevertheless, no non-critical task is aborted.

Return Protocol The return protocol does not inhibit offloading for all tasks, only for
critical ones under local execution behavior. Non-critical tasks, by contrast, are
offloaded regardless, but neither a re-execution nor a re-transmission is performed
if an offloading response is not received in time. More precisely, the second subtask
of τi is executed only if an offloading response is received, and aborted otherwise.
Moreover, a job of τi in Tnon is aborted whenever it misses its deadline.

As of time γ1,↘, the local system exhibits local execution behavior until the point in time
γ1,↗, in which timing guarantees can be given again for all tasks in T. In the proposed
protocols, two options are considered for the transit from local to normal execution
behavior. They should be chosen based on the actual system requirements:
Abort-Transit This option aims to re-establish the normal system execution behavior

as quickly as possible. Suppose that γ1,↗ is the earliest moment (after γ1,↘) in
which there is no incomplete job from Tcrit at γ1,↗. All released but not yet finished
instances of non-critical tasks are discarded.

Idle-Transit This option re-establishes the normal system execution behavior at the
earliest moment γ1,↗ (after γ1,↘) in which there is no incomplete job from T at γ1,↗.

We note that the above transitions arewell-defined and the local system exhibits normal
and local execution behavior in an interleaving manner.

8.1.4.3 Evaluation
In this subsection, we perform a case study on a robotic system to compare the accep-
tance ratio of schedulability over different protocols. More comprehensive numerical
simulations can be found in the original paper [612].
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Tab. 8.1: Periodic, implicit-deadline tasks; measurements of a Robotnik RB-1 Base robot platform.
Note that the frequency of task τlaser is 15.5 Hz.

Task WCET [ms] Period [ms]

τlaser 6.732 64.516
τodom 1.046 60.0
τtf 0.333 60.0
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Fig. 8.7: The percentage of time the robot exhibits local execution behavior during the simulation for
different probabilities of unsuccessful offloading operations and different percentages of offloaded
workload under the service and the return protocol with 40% offloaded workload per task.

Case Study on aRobotic System Weadopt a Robotnik RB-1 Base robot platform [598],
which uses the well-known Robot Operating System (ROS) [601]. We simulated the nav-
igation of the robot in a virtual map and measured the timing data of the move_base
node during a time frame of 60 seconds by using the Real-Time Scheduling Framework
for ROS (ROSCH) [607] and RESCH [362]. We obtained three periodic, implicit-deadline
tasks, as shown in Table 8.1, which are transformed into self-suspending tasks anal-
ogously to the tasks in experiment 1), and we considered the cases that 40%, and
60% of the task workload are offloaded. Moreover, we assume that Tcrit = {τodom}
and Tnon =

{︀
τlaser , τtf

}︀
. We simulate the system behavior using the event-based miss

rate simulator from experiments 1) with λ = 0.1 · 1
ms . For each offloading case, the

simulation was repeated 100 times.
Under the return protocol, Figure 8.8 shows that the amount of offloaded workload

has no significant impact on the time that the system exhibits local execution behavior.
Under the service protocol, we can observe that the time that the system exhibits local
executionbehavior is increased alongwith the increasing amount of offloadedworkload.
Overall, the derived results suggest that the amount of offloaded workload per task has
a strong impact on the system execution behavior under the service protocol and thus
should be taken into consideration at system design time.



8.1 Timing-Predictable Learning and Multiprocessor Synchronization | 375

0.01 0.05 0.1 0.5 1
(1/ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ca

l E
xe

cu
tio

n 
Be

ha
vi

or
 (%

)

Service Protocol, 60% offloaded

0.01 0.05 0.1 0.5 1
(1/ms)

0.00

0.01

0.02

0.03

0.04

0.05

Lo
ca

l E
xe

cu
tio

n 
Be

ha
vi

or
 (%

)

Return Protocol, 60% offloaded

Fig. 8.8: The percentage of time the robot exhibits local execution behavior during the simulation for
different probabilities of unsuccessful offloading operations and different percentages of offloaded
workload under the service and the return protocol with 40% and 60% offloaded workload per task.

8.1.5 Probability-Based Timing Analysis

In this subsection, we present a multinomial-based approach to efficiently calculate
the deadline miss probability. Additionally, three analytical approaches are presented,
i.e., Chernoff bound, Hoeffding’s inequality, and Bernstein’s inequality.

8.1.5.1 System Model and Notation
Weconsider a given set of n independent periodic (or sporadic) tasks Γ = {τ1, τ2, · · · , τn}
in a uniprocessor system. Each task τi releases an infinite number of task instances,
called jobs, and is defined by a tuple ((Ci,1, ..., Ci,h), Di , Ti), where Di is the relative
deadline of τi and Ti is its minimum interarrival time. In addition, each task has a set
of h distinct execution modesM and each mode j with j ∈ {1, ..., h} is associated with
a different WCET Ci,j. We assume those execution modes to be ordered increasingly
according to their WCETs, i.e., Ci,m ≤ Ci,m+1 ∀m ∈ {1, ..., h − 1}. Furthermore, we
assume that each job of τi is executed in one of those distinct execution modes. To
fulfill its timing requirements in the jth execution mode, a job of τi that is released at
time ta must be able to execute Ci,j units of time before ta + Di. The next job of τi must
be released at ta + Ti for a periodic task and for a sporadic task the next job is released
at or after ta + Ti. In this work, we focus on implicit-deadline task sets, i.e., Di = Ti for
all tasks, and constrained-deadline task sets, i.e., Di ≤ Ti for all tasks. We assume that a
job execution is aborted as soon as the absolute deadline is reached, to ensure that
there is no ’domino effect’ to jeopardize the execution of the other jobs.

We assume a preemptive fixed-priority scheduling policy is used in the considered
system. The tasks are indexed according to their priority, i.e., τ1 has the highest and τn
has the lowest priority. In addition, hp(τk) denotes the set of tasks with higher priority
than τk and hep(τk) is hp(τk) ∪ {τk}. Pi(j) denotes the probability that a job of task τi
is executed in mode j with related WCET Ci,j and we assume that each job is executed



376 | 8 Communication Awareness

in exactly one of these distinct execution modes, i.e.,
∑︀h

j=1 Pi(j) = 1. In addition, we
assume that these probabilities are independent from each other according to the
following definition:

Definition 27 (Independent Random Variables). Two random variables are (proba-
bilistically) independent if the realization of one does not have any impact on the
probability of the other.

Particularly, for a newly arriving job the probability of the execution modes is indepen-
dent from the execution mode of the jobs of previous jobs.

8.1.5.2 Definition of Deadline Miss Probability
To derive the probability of deadline misses, we look for the probability that the accu-
mulated workload St over an interval of length t is at most t, where St can be calculated
by the sum of random variables, i.e., the sum of probabilistic WCETs from all tasks
τi ∈ hep(τk) over. That is, the situation where St is larger than t for an interval of
length t and hence P(St > t) is the overload probability at time t. To upper bound the
probability that this test fails, the minimum probability among all time points at which
the test could fail should be derived. Hence, the probability of a deadline miss Φk can
be upper bounded by

Φk = min
0<t≤Dk

P(St > t) (8.1)

When analytical bounds are in use, we seek P(St ≥ t) instead of P(St > t). By definition
P(St ≥ t) ≥ P(St > t), so these values can be used directly when looking for an upper
bound of P(St > t).

8.1.5.3 A Multinomial-Based Approach
Conventionally, the probability of deadline misses can be derived from convolution-
based approaches [476]. In such approaches, the underlying randomvariable represents
the execution mode of each single job. This state space in fact can be transformed
into an equivalent space that describes the states on a task-based level by proving the
invariancewhen considering equivalence classes for each task. As a result, we introduce
a novel approach that is based on the multinomial distribution. For the simplicity of
presentation, we only highlight the insight of the aforementioned transformation.
The traditional convolution-based approach determines the overload probability by
successively calculating the probability for all other points of interest in the analysis
interval. However, the probability for t is evaluated based on the resulting states after all
jobs in the analysis interval are convoluted.With respect to t, the intermediate states are
not considered. By utilizing this insight, we can merge the states to efficiently calculate
the vector representing the possible states at time t. If the number of jobs for a task
is known, all possible combinations and the related probabilities can be calculated
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directly using the multinomial distribution. The rationale is to construct a tree based
on the tasks, which means that the number of children on each level depends on the
number of jobs the related task releases.

8.1.5.4 Analytical Upper Bounds
In the following, we demonstrate how common concentration inequalities used in
machine learning, statistics, and discrete-mathematics can be used to derive analytical
bounds on P(St ≥ t).

Chernoff Bound can be exploited to over-approximate the probability that a random
variable exceeds a given value. This statement is summarized in the following lemma:

Lemma 28 (Lemma 1 from Chen and Chen [131]). Suppose that St is the sum of the ex-
ecution times of the ρk,t +

∑︀
τi∈hp(τk) ρi,t jobs in hep(τk) at time t. In this case

P(St ≥ t) ≤ mins>0

(︃∏︀
τi∈hep(τk)(mgfi(s))

ρi,t

exp(s · t)

)︃
(8.2)

It is in general pessimistic and there is no guarantee for the quality of the approximation.
To find the optimal value of s to minimize the right-hand side in Equation 8.2, it has
been proven as a log-convex optimization problem [129].

Hoeffding’s Inequality derives the targeted probability that the sum of independent
random variables exceeds a given value. For completeness, we present the original
theorem here:

Theorem 29 (Theorem 2 from [319]). Suppose that we are given M independent random
variables, i.e., X1, X2, . . . , XM . Let S =

∑︀M
i=1 Xi, X̄ = S/M and μ = E[X̄] = E[S/M]. If

ai ≤ Xi ≤ bi , i = 1, 2, . . . ,M, then for s > 0,

P(X̄ − μ ≥ s) ≤ exp
(︃
− 2M2s2
∑︀M

i=1 (bi − ai)
2

)︃
(8.3)

Let s′ = sM, i.e, s = s′/M. Hoeffding’s Inequality can also be stated with respect to S:

P(S − E[S] ≥ s′) ≤ exp
(︃
− 2s′2
∑︀M

i=1 (bi − ai)
2

)︃
(8.4)

By adopting Theorem 29, we can derive the probability that the sum of the execution
times of the jobs in hep(τk) from time 0 to time t is no less than t. The detailed proof
can be found in [85].

Bernstein’s Inequality generalizes the Chernoff bound and the related inequality by
Hoeffding and Azuma. The original corollary is also stated here:
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Theorem 30 (Corollary 7.31 from [232]). Suppose that we are given L independent ran-
dom variables, i.e., X1, X2, . . . , XL, each with zero mean, such that |Xi| ≤ K almost surely
for
i = 1, 2, . . . , L and some constant K > 0. Let S =

∑︀L
i=1 Xi. Furthermore, assume that

E[X2i ] ≤ θ2i for a constant θi > 0. Then for s > 0,

P(S ≥ s) ≤ exp
(︃
− s2/2∑︀L

i=1 θ2i + Ks/3

)︃
(8.5)

The proof can be found in [232]. Note, however, that the result in [232] is stated for the
two-sided inequality, i.e., as upper bound on P(|S| ≥ s). Here, the one-sided result,
which is a direct consequence of the proof in [232] (page 198), is tighter. Similarly, it
can also be used to derive the probability of deadline misses. The detailed proof can
also be found in [85].

Final Remark Considering the required runtime and the accuracy of different ap-
proaches,whenagiven task set needs to be analyzed,we suggest first runningChernoff’s,
Hoeffding’s, and Bernstein’s bounds. If a sufficiently low deadline miss probability can-
not be guaranteed from these analytical bounds, we propose running the multinomial-
based approach with equivalence class union in parallel on multiple machines by
partitioning the time points equally.

8.1.6 Summary

In this section,we showedanovel resource-sharingprotocol formultiprocessors, named
DGA, that can serve a high utilization of critical sections while guaranteeing the given
hard real-time constraints. In addition, we presented adaptive protocols for compu-
tation offloading that are able to countermeasure the unreliable connection. Unlike
conventional analyses for hard real-time systems, our innovated convolution-based
approach is able to efficiently derive safe upper bounds for the probability of deadline
misses under soft real-time constraints.
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8.2 Communication Architecture for Heterogeneous Hardware

Henning Funke
Jens Teubner

Abstract: In this section, we look at distributed processing on a smaller scale. Even a
single-machine system today internally looks—and behaves—like a distributed system:
multiple processing modules of different flavors (e.g., CPUs, GPUs, FPGAs) interact with
memory modules, which are scattered over the system, through an interconnect that is
comprised of, say, QPI, PCIe, or “real” network links. In such environments, communi-
cation quickly becomes the limiting factor—not only for observable performance, but
also for other system aspects, such as energy consumption.
We specifically look at communication patterns in heterogeneous CPU/GPU environ-

ments, and we illustrate how novel processing models can minimize communication
overhead in such systems, which in turn results in significant performance improve-
ments for real-world settings.
In GPU-accelerated, data-intensive systems, the PCIe link is often perceived as the

limiting factor. Oftentimes, successions of fine-granular GPU kernel invocations amplify
the problem, since they tend to cause multiple round-trips over the bandwidth-limited
link. As we see in this section, unnecessary round-trips can be avoided by fusing fine-
granular kernels into larger work units that can hide costly PCIe transfer times (query
compilation can be a device to implement kernel fusion).
Eliminating the PCIe bottleneck, however, only exposes the GPU’s on-chip communi-

cation as the new bottleneck to GPU-assisted data processing. Here, the data-parallel
processing modes of graphics processors and the synchronization between parallel
units are the cause for redundant round-trips over the precious on-chip communication
interfaces. These bottlenecks can be avoided when processing models are deliberately
designed to be communication aware. A specific example is a novel combination of
pipelining/streaming processing models with the data-parallel nature of GPUs, which
aligns particularly well with the semantics of database query execution. For real-world
settings, this results in a reduction of memory access volumes by factors of up to 7.5×
and shorter GPU kernel execution times by factors of up to 9.5×.

8.2.1 Introduction

Graphics Processing Units (GPUs) are frequently used as powerful accelerators for
database query processing. As the arithmetic throughput of the coprocessor peaks in
the teraflop range, it becomes a challenge to provision enough data. For this reason,
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Fig. 8.9: The path of a tuple through the memory levels of a coprocessor environment.

hardware vendors equip graphics cards with high-bandwidth memory that has read
and write rates of hundreds of GB/s. Still, memory intensive applications such as
query processing fall behind regarding the cost of data movement for different reasons.
Figure 8.9 shows the path of relational data through the hierarchical memory levels in a
typical coprocessor system. Along the path, several bandwidth and capacity constraints
need to be considered to achieve scalability and performance:

PCIe /OpenCAPI /NVLink A widely-acknowledged problem is the data transfer
bottleneck between the host system and the coprocessor [270], typically via PCIe. Due
to the coprocessor’s limited memory capacity, data transfers are necessary during
computations. With an order of magnitude between internal and external memory
bandwidth, database developers are challenged with data locality-aware algorithms
that efficiently use inter-processor communication. Recent technologies, i.e., OpenCAPI
and NVLink, increase the bandwidth over PCIe, shifting the bottleneck toward GPU
global memory.

GPU Global Memory The fine-grained data parallelism of a GPU typically requires
that kernels perform additional passes over the data. Performing multiple passes,
however, can significantly inflate memory loads and can cause a bandwidth bottleneck
especially for randommemory accesses.

MainMemory IntegratedGPU-style coprocessors are a recent development to directly
access the memory of the host CPU. Such an Accelerated Processing Unit (APU) allows
the use of massively parallel processing without additional data transfers. However,
the available memory bandwidth is lower than that of a dedicated GPU (30GB/s vs.
hundreds of GB/s).
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Scratchpad Memory¹ Scratchpad memory is located on-chip and placed next to
each compute unit of a GPU. It can be controlled as an explicit cache for low-level
computations and offers a very high bandwidth. However, the capacity is limited to
16 kB–96 kB per core, which makes it challenging to use it for large-scale computations.

8.2.2 Contributions

With HorseQC, we developed a database query compiler that accounts for the hierar-
chical memory structure of modern coprocessor environments and for their inherent
bandwidth limitations. In this section, we elaborate on the key building blocks of
HorseQC, which can serve as a poster child in bandwidth-aware systems for other
application contexts as well.

Specifically, we (a) analyze the bandwidth limitations in different database execu-
tion models; (b) demonstrate a query compiler for a coprocessor-accelerated database
engine; (c) show how database sub-tasks can be realized in a single pass over the data
(thus avoiding expensive memory round-trips); and (d) integrate these contributions
in a fully working system that we use to evaluate our work.

Coprocessor-enabled database engines are typically classified by themacro exe-
cution model that they use to orchestrate the processing of query plans. Orthogonally,
we devise a micro execution model that can be paired with different existing macro
execution models, enhancing their communication- and resource-awareness.

8.2.3 Macro Execution Model

We begin by looking at macro execution models that have been employed in the past.
To evaluate a relational query operator, state-of-the-art systems will select a number
of primitives and execute the corresponding kernel sequence on the GPU. To feed
the kernels with data, the macro execution model defines how data transfers will be
interleaved with kernel executions. Here, the data movement from kernel to kernel
may result in additional bandwidth demand compared with conventional systems. To
understand the effect, we study the implications that existing macro execution models
have on the use of bandwidth at multiple levels (PCIe, GPU global memory, etc.). We
profiled the execution of Query 3.1 as a poster child from the star schema benchmark
(SSB) [543]. The query was executed at scale factor 10 with CoGaDB [74] on a NVIDIA

1 We use the term scratchpad memory to disambiguate shared memory for CUDA and local memory for
OpenCL.
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GTX970 GPU.² In the following, we discuss three macro execution models: run-to-finish,
kernel-at-a-time, and batch processing.
Algorithm 8: Run-to-finish execution of two successive kernels.
1 Run-to-finish – input: R, output: P
2 move R Host→ GPU

3 tmp← op1(R) /* invoke first GPU kernel */

4 P ← op2(tmp) /* invoke second GPU kernel */

5 move P GPU→ Host

8.2.3.1 Run-To-Finish (Not Scalable)
A straightforward way to execute a sequence of kernels is to first transfer all input,
execute the kernels, and finally transfer all output. The approach, illustrated in Al-
gorithm 8, has the advantage that intermediate data remains in GPU global memory
in-between kernel executions and no significant PCIe transfers are necessary. However,
run-to-finish has the disadvantage that it works only if all input, output, and interme-
diate data is small enough to fit in GPU memory. Run-to-finish macro execution models
are used, e.g., by Ocelot [302], CoGaDB [74], and others. The lack of scalability leads us
to evaluate the following execution models.
Algorithm 9: Kernel-at-a-time achieves scalability by transferring I/O for
each kernel through PCIe.
1 Kernel-at-a-time – input: R, output: P
2 foreach ri in R=r1 ∪ · · · ∪ rm do

3 move ri Host→ GPU

4 mi ← op1(ri) /* invoke first GPU kernel */

5 move mi GPU→ Host (assemble into M)

6 foreach mj in M=m1 ∪ · · · ∪mn do

7 move mj Host→ GPU

8 pj ← op2(mj) /* invoke second GPU kernel */

9 move pj GPU→ Host (assemble into P)

8.2.3.2 Kernel-At-A-Time
To process large data on coprocessors, we can execute each kernel on blocks of data.
The pseudocode of this approach is shown in Algorithm 9. Processing blocks of data
requires algorithm choices that can deal with partitioned inputs. Joins or aggregations,
for instance, can be processed in this mode only if their internal state (e.g. a hash table)
can fit in GPU global memory.

2 Wemeasured 146.1 GB/s GPU global memory bandwidth in a host system with 16GB/s bidirectional
PCIe bandwidth.
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Fig. 8.10: Data movement for processing SSB Query 3.1. While the throughput of a is limited by PCIe
transfers, b exposes GPU global memory access as the next bottleneck.

We analyze the data movement of kernel-at-a-time for SSB Query 3.1. Blocks are first
moved via PCIe from the host to the coprocessor and then read by the kernel from GPU
global memory (output passes both levels vice-versa). In this way, the data volumes for
GPU global memory accesses equal the data volume transferred via PCIe, plus the cost
to build up the hash tables in GPU global memory (0.4 GB here). Figure 8.10a shows
the resulting data movement.

In the figure, the arrows annotated with data volumes represent PCIe transfers and
GPU global memory accesses. We aggregated the data volumes by kernel types (e.g.
scan, gather) and show only the most important kernels responsible for 88.2% of the
memory traffic. Given a PCIe bandwidth of 16 GB/s, all PCIe transfers together require
at least 350ms to complete. This exceeds the aggregate time for GPU global memory
access by a factor of 5.8×. For kernel-at-a-time processing the PCIe link is clearly the
bottleneck.
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Kernel-at-a-time processing is used to scale out individual operators [358]. Unified
Virtual Addressing (UVA) produces the same low-level access pattern, though it is
transparent to the system developer.

8.2.3.3 Batch Processing
We can alleviate PCIe bandwidth limitations by rearranging the operations of kernel-at-
a-time. Instead of running kernels until a column is processed, we can short-circuit the
transfer of intermediate results to the host. Batch processing achieves this by reusing
the output of the previous operation (op1) as input for the next operation (op2) instead
of transferring to the host. This is applicable whenever intermediate batch results
can be kept within GPU global memory. The corresponding pseudocode is shown in
Algorithm 10.
Algorithm 10: Batch processing executes multiple kernels for each block that
is transferred via PCIe.
1 Batch Processing – input: R, output: P
2 foreach ri in R=r1 ∪ · · · ∪ rm do

3 move ri Host→ GPU

4 tmpi ← op1(ri) /* invoke first GPU kernel */

5 pi ← op2(tmpi) /* invoke second GPU kernel */

6 move pi GPU→ Host (assemble into P)

We analyze the data movement cost with the example of SSB Query 3.1. The GPU global
memory load is the same as for kernel-at-a-time processing, because each kernel reads
andwrites I/O to GPU globalmemory.We obtain the PCIe transfer cost using the transfer
volumes of the input columns of the query and the output of the final result. Figure 8.10b
shows the resulting data movement cost. Batch processing reduces the amount of PCIe
transfers by a factor of 8.8×. This shows that transferring data in blocks and performing
multiple operators per block allows scalability and increases the efficiency compared
to kernel-at-a-time.

Batch processing macro execution models have been used for coprocessing by
GPUDB [728] and Hetero-DB [735]. Wu et al. [711] described the concept as kernel fission
and identify opportunities to omit PCIe transfers automatically.

Limitations The lower amount of PCIe traffic can expose GPU global memory band-
width as the next limitation. Batch processing reduces the PCIe transfer cost, but the
amount of GPU global memory accesses remains unaffected. The memory access vol-
ume inside the device is now an order of magnitude larger. Despite the high bandwidth,
this takes longer to process than the PCIe bus transfers (Figure 8.10b). For this reason,
batch processing SSB Query 3.1 is not limited by PCIe transfers, but by accesses to the
(high-speed) GPU global memory. Since in typical query plans, I/O and hashing opera-
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tions both address the same GPU global memory, the situation may arise frequently in
real-world workloads.

Tab. 8.2: Number of passes over the input data for benchmark queries. Out of 25 queries, 9 are
definitely limited by GPU global memory.

Query Passes Query Passes Query Passes

ssb11 7.5 ssb34 2.2 tpch5 7.2
ssb12 6.9 ssb41 7.4 tpch6 6.2
ssb13 6.7 ssb42 3.9 tpch7 9.0
ssb21 9.6 ssb43 3.5 tpch9 9.0
ssb22 9.2 tpch1 15.5 tpch10 5.8
ssb23 9.1 tpch2 14.5 tpch15 6.3
ssb31 11.0 tpch3 5.2 tpch18 38.5
ssb32 7.9 tpch4 6.6 tpch20 10.5
ssb33 7.5

8.2.4 Micro Execution Model

Tuning the macro level helps to remove the main bottleneck for scalability: data trans-
fers over PCIe. However, the macro level change exposes a new bottleneck: the memory
bandwidth of GPU global memory. To utilize the GPU global memory bandwidth more
efficiently, we need to apply additional micro-level optimizations usingmicro execu-
tion models and combine them with the macro execution model (batch processing) to
achieve scalability and performance.

Existing micro-level optimizations such as vector-at-a-time processing [749] and
query compilation [529] utilizememory bandwidthmore efficiently by leveraging pipelin-
ing in on-chip processor caches. Therefore, both techniques are promising candidates
for opening up the bottleneck of limited GPU global memory bandwidth. However,
vector-at-a-time processing and query compilation are designed in the context of CPUs.
While it is highly desirable to apply both techniques in the context of GPUs, mapping
the techniques from CPU to GPU is challenging, as we discuss below.

Vector-At-A-Time To mediate the interpretation overhead of Volcano and the materi-
alization overhead of operator-at-a-time, vector-at-a-time uses batches that fit in the
processor caches. First, this reduces the number of getNext() calls from one per tuple
to one per batch. Second, this makes materialization cheap because operators pick up
the cached results of previous operators. On CPUs, vector-at-a-time benefits from batch
sizes that are large enough to limit the function call overhead and small enough to fit
in the CPU caches.



386 | 8 Communication Awareness

On GPUs, the compromise between tuple-at-a-time and full materialization strategies is
not a sweet spot, however. Kernel invocations are an order ofmagnitudemore expensive
than CPU function calls. Furthermore, GPUs need much larger batch sizes to facilitate
over-subscription and out-of-order execution. This leads to the problem that batches,
which fit in the GPU caches, are too small to be processed efficiently. Alternatively, more
recent GPUs support pipes to move a local execution context from one kernel to another.
This has been used by GPL [557] for query processing. However, this technique still
introduces an overhead for switching the execution context. In addition, it is limited to
a depth of 2–32 kernels depending on the microarchitecture.

Query Compilation Query compilation is a common tool for avoiding excessive mem-
ory transfers during query processing. Compiling code for incoming queries becomes
feasible with low-level code generation and achieves performance close to hand-written
code. The compilation strategy of Neumann [529] keeps intermediate results in CPU
registers and passes data between operators without accessing memory at all. The
generated code processes full relations or blocks of tuples using a sequential tight loop.

To use query compilation on GPUs, wemust integrate fine-grained data parallelism
into compiled queries. The parallelization strategy of HyPer [425], however, uses a
coarse-grained approach, so that it does not breakwith the concept of tight loops. In fact,
HyPer does not use SIMD instructions [529] and thus omits fine-grained data parallelism.
Even on CPUs with a moderate degree of parallelism in SIMD instructions, database
researches are challenged by integrating query compilation and SIMD instructions
[487, 639].

In summary, using a micro-level technique for efficient on-chip pipelining on GPUs
remains a challenge. Applying any of the commonplace techniques makes it necessary
to combine at least three things that are hardly compatible: fine-grained data-parallel
processing, extensive out-of-order execution, and deep operator pipelines. To achieve
our goal of mitigating the GPU global memory bottleneck, we need to develop a new
micro execution model.

8.2.5 Data-Parallel Query Compilation

In the following, we show a micro-level execution strategy that reduces GPU global
memory access volumes by means of pipelining in on-chip memory. To this end, we
show the approach of our query compilerHorseQC and its integration with the operator-
at-a-time execution engine of CoGaDB [74].

8.2.5.1 Fusion Operators
HorseQC extends the operator-at-a-time approach with the concept of fusion operators,
operators that embrace multiple relational operations. A fusion operator replaces a
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Fig. 8.11: Operator-at-a-time.

sequence of conventional operators in the physical execution plan with a micro-level-
optimized pipeline. The data movement within a fusion operator can be improved by
applying different micro level execution models.

8.2.5.2 Micro-Level Pipeline Layout
To keep matters simple, we first apply query compilation with the operator-at-a-time
primitives described by He et al. [300]. This choice is not limiting as other data-parallel
primitives may be used instead. However, a commonality of different primitive sets is
that they use relational primitiveswith relational functionality (e.g. select) and threading
primitives with thread coordination functionality (e.g., map, prefix sum, gather).

State Of The Art We look at a query with two input tables and a total of four rela-
tional operators op1, · · · , op4. Operator-at-a-time runs three primitives per operator
(cf. Figure 8.11 on the right): The first pass executes the relational primitive (e.g., select,
project) and counts the number of outputs of each thread. The second pass computes
a prefix sum to obtain unique per-thread write positions. The third pass performs an
aligned write. This means that the output values are written into a dense array and
may include executing the relational primitive for a second time to produce the output
values. Thus, the query is processed in twelve operations with separate GPU global
memory I/O.
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Multi-Pass Query Compilation By grouping operations that are applied to the same
input table, the query may be processed with two fusion operators. Within each fusion
operator, we apply the following query compilation strategy (cf. Figure 8.12): We extract
the prefix sum from the operators and execute it only once between all relational
primitives and all aligned writes. The relational primitives are then compiled into one
kernel called count, which is executed before the prefix sum. The aligned writes are
compiled into one kernel called write, which is executed after the prefix sum. In this
way, we apply kernel fusion [689] to the four relational primitives and to the four aligned
writes. The same query is processed with six operations and the operations in compiled
kernels communicate through on-chip memory instead of GPU global memory.

8.2.6 Memory Access and Limitations

In Figure 8.13, we illustrate the bandwidth characteristics of our example querywhenus-
ing code generation with three phases. The figure shows the behavior of the three-phase
micro execution model described above with the batch processing macro execution
model. To analyze the implications of forwarding intermediate results in the generated
kernels through registers and scratchpad memory, we extended the illustration with an
additional GPU-internal layer of memory.

GPU global memory access has previously been the bottleneck for query execution.
Here the count kernel accesses 1.7 GB in GPU global memory, the prefix sum compu-
tation accesses 0.8 GB in GPU global memory, and the write kernel accesses 1.9 GB
in GPU global memory. This is a reduction by a factor of 1.9× compared with batch
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Fig. 8.13: Data movement for data-parallel query compilation with three phases.

processing. In the generated kernels, a substantial amount of memory traffic hasmoved
to on-chip memory. In on-chip memory, the access volume of 14.4 GB is not a limiting
factor due to the extremely high bandwidth of 1.2 TB/s of scratchpad memory.

Although the reduced GPU global memory traffic may suggest that the approach
eliminates the bottleneck, real-world queries still experience limitations. In fact, Sec-
tion 8.2.10.6 shows that compilation with three phases can still not saturate PCIe for 9
out of 12 SSB queries. This is because the query complexity prevents the strategy from
utilizing the full GPU global memory bandwidth. Therefore, we investigate ways to
further increase the processing efficiency in the next section.

8.2.7 Processing Pipelines in One Pass

The previous execution model relied on a typical programming concept of GPUs that
executes operations with multiple kernels. The kernels that execute the actual work for
the operations are interleaved with kernels that execute prefix sum computations. To
further improve the processing efficiency, we have to break with this concept. With a
new micro execution model, we avoid round trips to GPU global memory, which are
caused by multi-pass implementations. This enables us to radically reduce GPU global
memory traffic and lift the bandwidth bottleneck.
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Compound Kernel Kernel fusion brought reduction operations (e.g. prefix sum)
as boundaries into the spotlight. Previously, we computed the prefix sum between
two generated kernels to obtain write positions. Instead of two separate kernels, we
now generate only one compound kernel that integrates the prefix sum computation
(cf. Figure 8.14), which eliminates multiple passes. Computing write positions within a
generated kernelmakes it possible to process pipelines in one passwithout intermediate
materialization. In this way, each fusion operator is executed by a single compound
kernel. In the following, we look at implementation strategies for reduction operations
that enable fully pipelined processing.

Atomic Prefix Sum The separation into multiple reduction kernels with intermediate
materialization impedes pipelining. To introduce a pipelined implementation, let us
first look at a very simple sequential prefix sum:

for(i=0; i<n; i++)

if(flags[i]) prefix_sum[i] = sum++;

The sequential prefix sum loops through the array flagswhilewriting and incrementing
sum for every valid entry. Figure 8.15a illustrates the use of the prefix sum for a dense
write of selected input elements. When parallelizing the for-loop, this implementation
runs into the issue of many threads trying to increment sum at the same time. To resolve
this parallel dependency, atomic operations canbeused to isolate parallelmodifications
of the same memory address. Atomic operations ensure a consistent state, yet are
executed in an undefined order. The following code executes an atomic prefix sum to
compute unordered, dense write positions:
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if(is_selected) wp = atom_add(&sum, 1);

Threads contribute an offset of 1 to the sum at address &sum by executing the expression
conditionally. Each atomic_add(..) returns the previous state of sum. Thus, threads
immediately obtain a unique global write offset as wp in register. This is illustrated in
Figure 8.15b.

The use of atomic operations causes a break with the semantic of the prefix sum
because the result has no defined order. For the relational semantic, however, only the
uniqueness of output positions is critical. Output permutations lead to non-aligned
GPU global memory access where adjacent threads do not write to adjacent memory
addresses. The impact on write throughput, however, is limited, because the filter
semantics lead to non-aligned access for separate prefix sums as well.

8.2.7.1 Memory Access and Limitations
The compound kernel micro execution model further reduces GPU global memory
access by a factor of 2.4× to 1.8 GB (see Figures 8.13 and 8.16). Compared with operator-
at-a-time, this is a reduction by a factor of 4.7×. Pipelining the prefix sum avoids round
trips to GPU global memory that are necessary in the three-phase micro execution
model. The compound kernel has only a minimal GPU global memory access volume
for input, output, and hash-table access. Now the on-chip traffic is balanced with
the GPU global memory traffic when relating each memory volume to the available
bandwidth.

The described approach heavily relies on atomic operations. This has the disadvan-
tage of causing limitations for parallelism. Although the execution order is undefined,
the operations are sequentialized and reducing n values takes O(n) parallel steps. How-
ever, Egielski et al. [195] showed that recent hardware support makes atomic operations
competitive with parallel algorithms. Still, the integrated prefix sum puts significant
pressure on the atomic functional units, which prevents pipeline kernels from utilizing
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full GPU global memory bandwidth. In the following, we address this issue and show
how the efficiency of parallel reductions in compound kernels can be increased.

8.2.8 Efficient Pipelined Reductions

We have showed a way to pipeline reductions in generated kernels using atomic opera-
tions. This benefits the memory efficiency, but also reveals the atomic functional units
of a GPU to be a bottleneck. This is especially critical because several operations that
are combined in the compound kernel rely on atomic isolation as well. Specifically, the
state-of-the-art implementations of hash joins and hash aggregations [358] use atomic
operations to isolate hash table inserts.

This section addresses performance bottlenecks that occur when utilizing atomic
reductions to pipeline relational operators. We show a new technique called local
resolution, global propagation, that is used by HorseQC to pipeline prefix sums, single
tuple aggregation, and grouped aggregation efficiently. The approach reduces the
pressure on atomic functional units and offers tunability regarding hardware and
thread-group granularity. We describe the approach in the following.
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8.2.8.1 Local Resolution, Global Propagation
Like other efficient GPU implementations such as in CUB [489], local resolution with
global propagation consists of two levels of reductions. In contrast to other techniques,
however, it always uses pipelined techniques on both levels. Local resolution is an
additional pre-reduction step, computed by a local thread group, whereas global prop-
agation is the same atomic reduction as described in Section 8.2.7. We use the term
Collaborative Thread Array (CTA) for the thread groups in local resolution. CTAs can
either match the workgroup (AMD) or thread-block (NVIDIA) size of the GPU kernel or
work on a finer granularity.

The following code, illustrated in Figure 8.17, executes an atomic prefix sum using
local resolution, global propagation:

l_os = cta_prfx,(flags, &cta_total); //local res.

if,(cta_thread_idx == 0)

g_os = atom_add,(&sum, cta_total); //global prop.

wp = l_os + g_os;

First, each CTA executes cta_prfx to compute a local prefix sum on flags. This is the
local resolution step. We implement cta_prfx with SIMD reductions (cf. Intra-Warp
Scan Algorithm by Sengupta et al. [622]). The function returns the local offset l_os and
the sum of all flags assigned to the CTA cta_total. Second, one thread of each CTA
adds cta_total atomically to a global counter sum. This is the global propagation step.
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The call to atom_add returns the global offsets g_os. Finally, the write position wp is the
sum of l_os and g_os.

Comparedwith the simple atomic prefix sum,we now add pre-aggregates instead of
1/0 flags to sum. Accordingly, each atomic add obtains ranges of output indices instead
of a single index. The process is analogous to allocating segments of output memory
to CTAs. The order of the allocations is undefined, however. (See the execution order
in Figure 8.17.) This leads to an output that is ordered within segments and permuted
between segments. Further investigation reveals that, due to the GPUs streamprocessing
engine, the permutations exhibit locality, leading to semi-ordered output data.

Local Resolution Mechanisms The mechanisms used for local resolution are in-
terchangeable. This makes it possible to tune pipelined reductions and to apply them
in different operations. Figure 8.18a and 8.18b show the integration of work-efficient
reductions [56] and SIMD reductions [622]. Both techniques have different thread group
granularities and we can choose between them to adapt to the hardware parallelism of
different processors. Figure 8.18c shows the use of pipelined segmented reductions for
grouping. First, segmented reductions compute pre-aggregates in scratchpad memory.
Second, global propagation inserts the pre-aggregates into a hash table with an atomic
operation. The ability to control scratchpad memory opens up a new design space
for grouping algorithms in pipelined computations (e.g. handling frequent items). A
similar approach PLAT [722] aggregates frequent grouping keys in a table local to each
CPU core.

8.2.9 DBMS Integration

We integrated our query compiler HorseQC into the open source DBMS CoGaDB, lever-
aging the built-in code generator Hawk [75]. The DBMS uses a columnar data layout
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and processes full columns operator-at-a-time on GPUs and CPUs. We use the front-end
and the storage layer of CoGaDB; HorseQC adds a compiler-based execution engine.

We added two components to the DBMS: 1. a query compiler that compiles fusion
operators to GPU code (cf. Section 8.2.4); and 2. a translation layer that identifies fusion
operators and drives the query compiler. Currently, there are two different workflows
for the translation layer:
1. CoGaDBparses the SQL code for a query and generates a query plan. The translation

layer applies the produce/consume model [529] to the query plan to determine
fusion operators. We use this approach for the SSB queries and TPC-H Q6.

2. The translation layer parses a JSON file that describes the query plan including the
fusion operators. This enables us to process queries when (1) cannot handle the
queries via SQL (e.g. correlated subqueries or automatic unnesting). This is used
for the other TPC-H queries.

When the fusion operators are defined, the translation layer drives the query compiler
to compile and execute. Finally, the decompression of dictionary compressed columns
and sorting are executed by CoGaDB’s original execution engine.

8.2.10 Evaluation

Section 8.2.3.1 showed that query coprocessing in existing macro execution models is
sensitive tomemory bandwidth bottlenecks on various hierarchical levels. We proposed
several micro execution models that allow to remove memory indirections to achieve
a more efficient use of bandwidth. In this section, we evaluate our approaches and
carefully assess bandwidth and throughput in identifying several benefits.

The experimental study is structured as follows. First, we evaluate themicro exe-
cution models and we execute specific queries to analyze the reduction performance
of the proposed techniques in Experiments 1 and 2. Then, we evaluate the micro exe-
cution models for the SSB and TPC-H benchmarks in Experiments 3 and 4. Next, we
analyze the integration of our micro execution model with the batch processingmacro
execution model. In doing so, we analyze the real-world benefits of our approach with a
comparison of end-to-end performance in Experiment 5 and a scalability analysis in
Experiment 6. Note that all experiments, except for Experiment 6, were executed with
scale factor 10.

8.2.10.1 Processing Techniques
This section describes three micro execution models built into HorseQC. The goal is
to use them within macro execution models to improve performance. Therefore, it is
crucial to achieve a higher throughput than PCIe when executing queries. We show
the benefit of our approaches by comparing them with an operator-at-a-time micro
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Tab. 8.3: Coprocessors used in the evaluation.

Model Type Archi- Cores Scratch B/W
tecture pad (KB) (GB/s)

GTX970 (NV) GPU Maxwell 13 96 146.1
GTX770 (NV) GPU Kepler 8 48 167.6
RX480 (AMD) GPU Ellesmere 32 32 104.9
A10 (AMD) APU Godavari 8 32 18.7

execution model. In this way, we analyze the benefit of moving data transfers between
relational operators to the on-chip level.
Multi-pass The first approach separates reductions from the generated kernels, which

leads to an execution in multiple passes (Section 8.2.5). Each reduction is executed
on materialized data using the boost::compute library.

Pipelined The second approach integrates reductions into a fully pipelined kernel
using atomic operations (Section 8.2.7). By using atomic operations for each reduc-
tion input, the approach is an instance of local resolution, global propagation that
has no local resolution step.

Resolution The third approach increases the efficiency of pipelined reductions with
local resolution methods such as pre-aggregation (Section 8.2.8). We differenti-
ate between local resolution implementations using Resolution:SIMD for SIMD
reductions and Resolution:WE for work-efficient reductions.

Operator-at-a-time We use CoGaDB 0.4.1, which processes full columns of data in
each operator with CUDA kernels. It features a run-to-finishmacro executionmodel
and an operator-at-a-time micro execution model.

8.2.10.2 Baselines
PCIE transfer The PCIe transfer time is the time it takes to transfer input and output

data between the host’s main-memory and GPU global memory. It is the target time
used by micro execution models for balancing throughput and PCIe bandwidth.
The PCIe transfer time is shown in each graph with a dashed line ( ).

Memory bound The GPU global memory bound execution time is the time it takes to
access the data. As each approach has to read the input columns and write the
output columns, the baseline is a lower bound on the kernel execution time. We
indicate it with a solid line ( ) in each graph.

Listing 8.1: Query 1 is a simple selection and projection query inspired by the star schema bench-
mark.

SELECT lo_extprice * lo_discount + lo_tax AS revenue

FROM lineorder

WHERE lo_quantity BETWEEN 25 - x AND 25 + x
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8.2.10.3 System Configuration
For the experiments, we use three dedicated GPUs with PCIe gen 3.0 links and one APU
that accesses main-memory directly. Table 8.3 specifies the GPU models and shows
hardware properties. The amount of scratchpad is available per core. The reported
bandwidth refers to GPU global memory for the GPUs and to main-memory for the APU.
It was measured using on-GPU memcpy of 1 GB data. We measured bidirectional PCIe
transfers between CPU and GPU as 12.1 GB/s.
Both NVIDIA GPUs GTX770 and GTX970 run in a system with an Intel Xeon E5-1607
CPU. We use the NVIDIA 364.19 driver and CUDA Toolkit 7.5 with OpenCL drivers. The
AMD RX480 GPU is placed in a separate system with the A10-7890K APU. We use the
AMDGPU-Pro 16.40 driver for the GPU and the fglrx 15.201 driver for the APU. Each
system is running Ubuntu 14.04 and uses the boost library 1.61.

We used the profiling tools nvprof 2.0.28 for NVIDIA hardware and CodeXLGpu-

Profiler V4.0.511 for AMD hardware to measure kernel execution times, PCIe trans-
fers, and GPU global memory access. For the measurements of kernel execution times,
we used both tools to profile individual kernels and sum up the kernel execution times
when multiple kernels were involved.

8.2.10.4 Experiment 1: Pipelined Prefix Sum
We compare several pipelined prefix sum techniques with one non-pipelined technique
for a query that filters and projects one table. This allows us to analyze the benefit
of integrating prefix sum computations into single-pass kernels. We execute Query 1,
shown in Listing 8.1, and vary the selectivity in the range [0, 1] using x. By running the
experiment on four GPUs, we aim to assess the best local resolution mechanisms for a
given hardware. Figure 8.19 shows the results.

Observations Pipelined techniques perform better thanMulti-pass in most cases.
Integrating the prefix sum computation into single-pass kernels reduces the kernel
execution times by a factor of up to 6.3×. While processing withMulti-pass takes up
to 328.6% of the PCIe time, Resolution:SIMD uses only 101.3% of the PCIe time in
the worst case (selectivity 1.0, RX480). This shows that the approach can saturate the
bus bandwidth for a variety of configurations. On the A10 there are no PCIe transfers
and Resolution:SIMD increases the overall throughput by factors of up to 1.6× over
Multi-pass.

The results show that the local resolution step reduces the performance impact
of atomic operations. This becomes visible for higher selectivity factors. Pipelined
has higher executions times because the strategy executes one atomic addition per
output. However, Resolution:SIMD and Resolution:WE show good performance across
all selectivities due to local resolution.

Resolution:SIMD achieves the shortest kernel execution times in most cases and
allows memory bound processing on the GTX970. On the GTX770, lowering the output
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Fig. 8.19: Projection query executed with different approaches. Integrating prefix sums into kernels
allows fastest execution.

size down to 0 does not affect the execution time. We conclude that the GTX770 is
compute-bound earlier than the GTX970. The higher memory bandwidth of the GTX770
leads to an increased throughput for atomic operations and Pipelined can outperform
Resolution:SIMD for selectivities below 10%. On the RX480 and on the A10 there is no
definite advantage for one of the reduction techniques. In the following, we use only
Resolution:SIMD and skip the other techniques for a clear presentation.

8.2.10.5 Experiment 2: Pipelined GROUP BY

We evaluate the effect of pipelined GROUP BY aggregations using Operator-at-a-time,
Pipelined, and Resolution. The query groups all tuples of lineorder according to
the computed attribute lo_orderkey%x into sums. We vary the number of groups by
increasing x from 2 to 16384. We show the results of the experiment on a GTX970 GPU
in Figure 8.20.

Observations The execution times of Operator-at-a-time do not depend on the group
size. The main cost factor is sorting the input columns. Pipelined shows up to 11.1×
lower execution times but only for larger group sizes. For group sizes below 64, we
observe high execution times. This is caused by the heavy contention of parallel aggre-
gation hash-table inserts.

The bottleneck is resolved by Resolution which uses pre-aggregations to reduce
the contention. The results show that execution times reduce by a factor of up to 126×.
However, the local pre-aggregations have a limited effect on larger group numbers. This
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Fig. 8.21: Performance of SSB queries.

explains the spike at 128 groups, where both pre-aggregation and contention have an
effect. While the approaches cannot saturate PCIe when aggregating a full table, filters
reduce the cost of grouping for real-world queries.

8.2.10.6 Experiment 3: Star Schema Benchmark
The previous experiments showed that pipelining specific reduction operations helps
to increase the throughput of query processing. In this experiment, we analyze whether
this behavior carries over to real-world situations. To this end, we execute the SSB
Queries³ on the GTX970 GPU.

We use Operator-at-a-time and two variants of our query compiler. HorseQC: Multi-
pass uses pipeline breaking implementations for reductions (A1, B1 and C1). HorseQC:
Fully pipelined integrates all pipeline operations in one kernel (using A3, B3 and C2).
We show the results of the experiment in Figure 8.21.

3 We could not process SSB Query 2.2 as we do not yet support range predicates on dictionary com-
pressed columns.
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Fig. 8.22: Performance of TPC-H queries.

Observations The bandwidth analysis in Section 8.2.3.1 showed that 4 out of 12
queries are limited by GPU global memory access in operator-at-a-time processing.
– The kernel execution times of Operator-at-a-time show that compute and latencies

make the problemworse. While PCIe would allow execution times between 60.6ms
to 90.9ms, the kernel execution times take longer for 10 out 12 queries with up to
295.5%.

– HorseQC: Multi-pass improves over Operator-at-a-time and uses only 50.5% of the
PCIe bandwidth transfer time in the best case and 215.5% in the worst case. This
shows that without efficient pipelining of reduction operations, the benefit of query
compilation is limited.

– HorseQC: Fully pipelined lowers all kernel execution times to a level that is consis-
tently lower than PCIe transfer times. This shows that compiling pipelines into one
kernel with local resolution, global propagation provides an execution approach
with sufficient throughput. Processing takes 9.7% of the PCIe transfer time in the
best case and 78.1% in the worst case. For Queries 1.1, 1.2, and 1.3, kernel execution
is memory bound by GPU global memory access.

8.2.10.7 Experiment 4: TPC-H Queries
We execute and profile queries from the TPC-H benchmark to show the effect when
relaxing the specific assumptions of the star schema benchmark (e.g. using one cen-
tralized table). We select a subset of queries based on the work by Boncz et al. [61] to
capture challenging aspects of the TPC-H benchmark: Q1, Q4, Q13, and Q21 contain
heavy aggregation; Q9 and Q18 contain heavy joins; and Q4, Q19, and Q21 contain
parallelism bottlenecks. We modified 4 queries, because HorseQC currently does not
support all operations, e.g., like expressions. The results of the experiment are shown
in Figure 8.22. For Q1, there is no result for HorseQC: Multi-pass, because the strategy
ran out of GPU memory. The results shown for Operator-at-a-time are for all TPC-H
queries supported by the DBMS.
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Observations The PCIe and memory-bound baselines show larger variations than
for the SSB benchmark. This is mainly caused by the join structure, e.g., Q13 joins three
small tables, while Q17, Q18, and Q21 join multiple instances of the largest lineitem
table.
The kernel execution times show that HorseQC can improve over operator-at-a-time by
factors of up to 8.6×. For Q1, Q4, and Q9, there are cases where Operator-at-a-time has
shorter kernel execution times than compiled strategies. Further investigation showed
that in these cases Operator-at-a-timemoves some operators to the CPU, which means
that the measurements cover a limited amount of operations.

Comparing the variants of the query compiler, we observe that HorseQC: Fully
pipelined consistently improves over HorseQC: Multi-pass by a factor of up to 5.4×.
HorseQC: Fully pipelined achieves lower execution times than PCIe transfer times for 8
out of 11 queries. For Q1, Q13, and Q18, the PCIe bandwidth cannot be fully saturated.
This is because the queries contain grouped aggregations of unfiltered columns (cf.
Experiment 2). The execution times of HorseQC: Fully pipelined take 5.6% of the PCIe
transfer time in the best case and 268.1% in the worst case.

8.2.10.8 Experiment 5: Scalability
Due to the deeply integrated storage layer implementations of the host DBMS CoGaDB,
we were unable to build a fully scalable version ofHorseQC. For this reason, we perform
a separate experiment that integrates the Resolutionmicro execution model with the
batchprocessingmacro executionmodel for the star join fromSSBQuery 3.1. Decoupling
this experiment allows us to apply the rules for coprocessor data management by
Yuan et al. [728] and to measure end-to-end performance for larger datasets.

The star join recombines three dimension tables and one fact table with an overall
selectivity of 3.4%.We build hash tables for the dimension tables in GPU globalmemory.
The fact table resides in pinned hostmemory and each column is partitioned into blocks
of 0.5MB, 2MB, or 8MB. The blocks are transferred asynchronously via PCIe into an
inner kernel that computes the star join by probing each dimension hash table.

Figure 8.23 shows the end-to-end execution times for each block size when exe-
cuting the experiment. We observe that execution times grow linearly with increasing
scale factors and that block sizes larger than 2MB can saturate the PCIe bandwidth. The
computation does not become a bottleneck for the examined scale factors. With a block
size of 4MB and scale factor 300, the size of intermediate data in GPU global memory is
only 473MB. Therefore, we expect the approach to scale to even larger databases with
linear performance.

8.2.10.9 Experiment 6: End-to-End Performance
To make a comparison with other database systems, we execute the TPC-H queries
with different database systems and measure end-to-end performance. We compare
MonetDB5 Dec2016-SP3 executed on CPUs, and CoGaDB 0.41 and HorseQC executed
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Fig. 8.23: End-to-end performance of star join computation for different scale factors.
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Fig. 8.24: End-to-end performance of TPC-H queries.

on GPUs. Both competitors feature an operator-at-a-time approach. We perform the
measurements with warm caches. MonetDB runs on a workstation-class system with
an Intel Xeon E5-1607 CPU and 32GB RAM. CoGaDB and HorseQC run on the GTX970.
The results are shown in Figure 8.24.

Observations For the supported queries, HorseQC is up to 5.8× faster than CoGaDB.
While CoGaDB uses GPU global memory as a cache for frequently used columns,
HorseQC does not cache data between queries. This shows that HorseQC uses memory
and interconnects more efficiently. For Q6 there is no improvement, because query
execution is PCIe bound.

HorseQChas lower execution times thanMonetDBbya factor of up to26.9×.Despite
moving data through the PCIe bottleneck, the additional bandwidth resources of GPU
global memory offer an acceleration. For Q19, MonetDB has a lower execution time
than HorseQC. This shows that for queries with a low complexity, it is more effective to
process data directly than moving it over PCIe.
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8.2.11 Discussion

In the previous experiments, we evaluated our new approaches for querying compi-
lation on coprocessors. Across all experiments, we were able to show improvements
of query compilation over operator-at-a-time processing. Operator-at-a-time has a low
memory efficiency due to largematerialization volumes and repetitive operations. There-
fore, the approach cannot efficiently utilize the memory systems surrounding the co-
processor.

While naive compilation techniques increase the memory efficiency, reductions
and prefix sums split operator pipelines into multiple passes. In this way, the approach
inherits the drawbacks of operator-at-a-time. This becomes visible because kernel
execution times frequently exceed PCIe transfer times.

We demonstrated a query compilation technique that merges the operators of a
pipeline into one compound kernel. When combined with efficient reduction tech-
niques, the compound kernel achieves substantial advantages over other processing
approaches. With upcoming OpenCAPI and NVLink interconnects, these improvements
to GPU-local processing are essential in order to take advantage of the increased band-
width of the new hardware. In the evaluation setting, the PCIe bandwidth can be
saturated for all SSB queries. For the TPC-H benchmark, the approach is an improve-
ment over operator-at-a-time and naive compilation, but saturates PCIe in only 8 out of
11 queries. We conclude that the compound kernel works particularly well with star
join queries.

8.2.12 Summary

In this section, we showed query processing techniques that help to balance the data
movement cost and compute throughput on GPU-style coprocessors. We measure the
data transfer volumes in different scalable processing approaches to assess bandwidth
bottlenecks. While naive scalable execution techniques are limited by PCIe bandwidth,
batch processing is limited by GPU-local throughput. To address the bottleneck, we
propose micro execution models that benefit from on-chip pipelining. Naive query
compilation techniques allow simple code generation but inherit the memory-intensity
of operator-at-a-time. We introduce compound kernels that merge several pipeline
phases into one efficient kernel.




