
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2014-44 

2014 

Capacity Augmentation Bound of Federated Scheduling for Capacity Augmentation Bound of Federated Scheduling for 

Parallel DAG Tasks Parallel DAG Tasks 

Jing Li, Abusayeed Saifullah, Kunal Agrawal, and Christopher Gill 

We present a novel federated scheduling approach for parallel real-time tasks under a general 

directed acyclic graph (DAG) model. We provide a capacity augmentation bound of 2 for hard 

real-time scheduling; here we use the worst-case execution time and critical-path length of 

tasks to determine schedulability. This is the best known capacity augmentation bound for 

parallel tasks. By constructing example task sets, we further show that the lower bound on 

capacity augmentation of federated scheduling is also 2 for any m > 2. Hence, the gap is closed 

and bound 2 is a strict bound for federated scheduling. The... Read complete abstract on page Read complete abstract on page 

2. 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Li, Jing; Saifullah, Abusayeed; Agrawal, Kunal; and Gill, Christopher, "Capacity Augmentation Bound of 
Federated Scheduling for Parallel DAG Tasks" Report Number: WUCSE-2014-44 (2014). All Computer 
Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/107 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233234781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/107?utm_source=openscholarship.wustl.edu%2Fcse_research%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/107 

Capacity Augmentation Bound of Federated Scheduling for Parallel DAG Tasks Capacity Augmentation Bound of Federated Scheduling for Parallel DAG Tasks 

Jing Li, Abusayeed Saifullah, Kunal Agrawal, and Christopher Gill 

Complete Abstract: Complete Abstract: 

We present a novel federated scheduling approach for parallel real-time tasks under a general directed 
acyclic graph (DAG) model. We provide a capacity augmentation bound of 2 for hard real-time scheduling; 
here we use the worst-case execution time and critical-path length of tasks to determine schedulability. 
This is the best known capacity augmentation bound for parallel tasks. By constructing example task 
sets, we further show that the lower bound on capacity augmentation of federated scheduling is also 2 
for any m > 2. Hence, the gap is closed and bound 2 is a strict bound for federated scheduling. The 
federated scheduling algorithm is also a schedulability test that often admits task sets with utilization 
much greater than 50%m. 

https://openscholarship.wustl.edu/cse_research/107?utm_source=openscholarship.wustl.edu%2Fcse_research%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/107?utm_source=openscholarship.wustl.edu%2Fcse_research%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages


Department of Computer Science & Engineering

2014-44

Capacity Augmentation Bound of Federated Scheduling for Parallel DAG
Tasks

Authors: Jing Li, Abusayeed Saifullah,
Kunal Agrawal, Christopher Gill, and Chenyang Lu

Corresponding Author: li.jing@wustl.edu

Abstract: We present a novel federated scheduling approach for parallel real-time tasks under a general directed
acyclic graph (DAG) model. We provide a capacity augmentation bound of 2 for hard real-time scheduling; here
we use the worst-case execution time and critical-path length of tasks to determine schedulability. This is the
best known capacity augmentation bound for parallel tasks. By constructing example task sets, we further show
that the lower bound on capacity augmentation of federated scheduling is also 2 for any m > 2. Hence, the gap
is closed and bound 2 is a strict bound for federated scheduling. The federated scheduling algorithm is also a
schedulability test that often admits task sets with utilization much greater than 50%m.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160



Capacity Augmentation Bound of Federated Scheduling for Parallel DAG Tasks

Jing Li, Abusayeed Saifullah,

Kunal Agrawal, Christopher Gill, and Chenyang Lu

Department of Computer Science and Engineering
Washington University in St. Louis

{li.jing, saifullah}@go.wustl.edu, {kunal, cdgill, lu}@cse.wustl.edu

Abstract

We present a novel federated scheduling approach for
parallel real-time tasks under a general directed acyclic
graph (DAG) model. We provide a capacity augmentation
bound of 2 for hard real-time scheduling; here we use the
worst-case execution time and critical-path length of tasks
to determine schedulability. This is the best known capacity
augmentation bound for parallel tasks. By constructing
example task sets, we also show that the lower bound on
capacity augmentation of federated scheduling is also 2
for any m > 2. Hence, the gap is closed and bound 2
is a strict bound for federated scheduling. The federated
scheduling algorithm is also a schedulability test that often
admits task sets with utilization much greater than 50%m.

Index Terms—real-time scheduling, parallel scheduling,
federated scheduling, capacity augmentation bound

I. Introduction

In the last decade, multicore processors have become

ubiquitous and there has been extensive work on how

to exploit these parallel machines for real-time tasks. In

the real-time systems community, there has been extensive

research on scheduling task sets with inter-task parallelism
— where each task in the task set is a sequential program.

In this case, increasing the number of cores allows us to

increase the number of tasks in the task set. However, since

each task can only use one core at a time, the computa-

tional requirement of a single task is still limited by the

capacity of a single core. Recently, there has been some

interest in design and analysis of scheduling strategies

for task sets with intra-task parallelism (in addition to

inter-task parallelism), where individual tasks are parallel

programs and can potentially utilize more than one core in

parallel. These models enable tasks with higher execution

demands and tighter deadlines, such as those used in

autonomous vehicles [28], video surveillance, computer

vision, radar tracking and real-time hybrid testing [25]
In this paper, we consider the general directed acyclic

graph (DAG) model. We analyze three different scheduling

strategies: global EDF, global rate-monotonic scheduling

and a proposed federated scheduling. We prove that all

three strategies provide strong performance guarantees, in

the form of capacity augmentation bounds, for scheduling

parallel DAG tasks with implicit deadlines.
One can generally derive two types of performance

bounds for real-time schedulers. The traditional bound is

called resource augmentation bound (also called proces-
sor speed-up factor). A scheduler S provides a resource

augmentation bound of b ≥ 1 if it can successfully

schedule any task set τ on m cores of speed b as long

as the ideal scheduler can schedule τ on m cores of speed

1. A resource augmentation bound provides a good notion

of how close a scheduler is to the optimal schedule, but

it has a drawback. Note that the ideal scheduler is only

a hypothetical scheduler, meaning that it always finds a

feasible schedule if one exists. Unfortunately, Fisher et

al. [23] proved that optimal online multiprocessor schedu-

ling of sporadic task systems is impossible. Since, since we

often cannot tell whether the ideal scheduler can schedule a

given task set on unit-speed cores, a resource augmentation

bound may not provide a schedulability test.
Another bound that is commonly used for sequential

tasks is a utilization bound. A scheduler S provides a

utilization bound of b if it can successfully schedule any

task set which has total utilization at most m/b on m
cores.1 A utilization bound provides more information than

a resource augmentation bound; any scheduler that guar-

antees a utilization bound of b automatically guarantees a

resource augmentation bound of b as well. In addition, it

acts as a very simple schedulability test in itself, since the

1A utilization bound is often stated in terms of 1/b; we adopt this
notation in order to be consistent.



total utilization of the task set can be calculated in linear

time and compared to m/b. Finally, a utilization bound

gives an indication of how much load a system can handle;

allowing us to estimate how much over-provisioning may

be necessary when designing a platform. Unfortunately, it

is often impossible to prove a utilization bound for parallel

systems due to Dhall’s effect; often, we can construct

pathological task sets with utilization arbitrarily close to

1, but which cannot be scheduled on m cores.

Li et al. [31] defined a concept of capacity augmenta-
tion bound which is similar to the utilization bound, but

adds a new condition. A scheduler S provides a capacity

augmentation bound of b if it can schedule any task set

τ which satisfies the following two conditions: (1) the

total utilization of τ is at most m/b, and (2) the worst-

case critical-path length of each task Li (execution time of

the task on an infinite number of cores)2 is at most 1/bth
fraction of its deadline. A capacity augmentation bound is

quite similar to a utilization bound: It also provides more

information than a resource augmentation bound does; any

scheduler that guarantees a capacity augmentation bound

of b automatically guarantees a resource augmentation

bound of b as well. It also acts as a very simple schedu-

lability test. Finally, it can also provide the estimation of

load a system is expected to handle.

There has been some recent research on proving both

resource augmentation bounds and capacity augmentation

bounds for various scheduling strategies for parallel tasks.

This work falls in two categories. In decomposition-based
strategies, the parallel task is decomposed into a set of

sequential tasks and they are scheduled using existing

strategies for scheduling sequential tasks on multiproces-

sors. In general, decomposition-based strategies require

explicit knowledge of the structure of the DAG off-line in

order to apply decomposition. In non-decomposition based

strategies, the program can unfold dynamically since no

offline knowledge is required.

For decomposed strategy, most prior work considers

synchronous tasks (subcategory of general DAGs) with

implicit deadlines. Lakshmanan et al. [29] proved a ca-

pacity augmentation bound of 3.42 for partitioned fixed-

priority scheduling for a restricted category of synchronous

tasks3 by decomposing tasks and scheduling the decom-

posed tasks using a under decomposed deadline monotonic

scheduling. Saifullah et al. [40] provide a different de-

composition strategy for general parallel synchronous tasks

and prove a capacity augmentation bound of 4 when the

decomposed tasks are scheduled using global EDF and 5
when they are scheduled using partitioned DM. Kim et

al. [28] provide another decomposition strategy and prove

a capacity augmentation bound of 3.73 using global dead-

2critical-path length of a sequential task is equal to its execution time
3Fork-join task model in their terminology

line monotonic scheduling. In the respective papers, these

results are stated as resource augmentation bounds, but

they are in fact the stronger capacity augmentation bounds.

Nelisson et al. [36] proved a resource augmentation bound

of 2 for general synchronous tasks.

For non-decomposition strategies, researchers have

studied primarily global earliest deadline first (G-EDF)

and global rate-monotonic (G-RM). Andersson and Niz [4]

show that G-EDF provides resource augmentation bound

of 2 for synchronous tasks with constrained deadlines.

Both Li et. al [31] and Bonifaci et. al [13] concurrently

showed that G-EDF provides a resource augmentation

bound of 2 for general DAG tasks with arbitrary deadlines.

In their paper, Bonifaci et al. also proved that G-RM

provides a resource augmentation bound of 3 for parallel

DAG tasks with arbitrary deadlines; Li et. al also provide

a capacity augmentation bound of 4 for G-EDF for task

sets with implicit deadlines.

In summary, the best known capacity augmentation

bound for implicit deadlines tasks are 4 for DAG tasks

using global EDF, and 3.73 for parallel synchronous tasks

using decomposition combined with global DM. The con-

tributions of this paper are as follows:

1) We propose a novel federated scheduling strategy.

Each high-utilization task (utilization > 1) is allo-

cated a dedicated cluster (set) of cores. A multiproces-

sor scheduling algorithm is used to schedule all low-
utilization tasks, each of which is run sequentially,

on a shared cluster composed of the remaining cores.

Federated scheduling can be seem as an extension of

partitioned scheduling for parallel tasks.
2) We prove that federated scheduling has the best

known capacity augmentation bound 2 for any sched-
uler for parallel DAGs. By constructing example task

sets, we further show that the lower bound on capacity

augmentation of federated scheduling is also 2 for any

m > 2. Hence, the gap is closed and bound 2 is strict.
3) The federated scheduling algorithm is also a schedu-

lability test that often admits task sets with utilization

much greater than 50%m. If the algorithm admits a

task set — returns a valid core allocation for all tasks,

then the task set is schedulable, otherwise it is not.

The paper is organized as follows. Section II defines

the DAG model for parallel tasks and provides some

definitions. Section III presents our federated scheduling

algorithm and proves the augmentation bound. Section IV

discusses related work and Section V concludes this paper.

II. System Model

We now present the details of the DAG task model for

parallel tasks and some additional definitions.

Task Model This paper considers a given set τ of n
independent sporadic real-time tasks {τ1, τ2, . . . , τn}. A

2



task τi represents an infinite sequence of arrivals and

executions of task instances (or also called jobs). We

consider the sporadic task model [9, 35] where, for a task

τi, the minimum inter-arrival time or period Ti represents

the time between consecutive arrivals of task instances, and

the relative deadline Di represents the temporal constraint

for executing the job. If a task instance of τi arrives at

time t, the execution of this instance must be finished no

later than the absolute deadline t+Di and the release of

the next instance of task τi must be no earlier than t plus

the minimum inter-arrival time, i..e, t+ Ti. In this paper,

we consider implicit deadline tasks where each task τi’s
relative deadline Di is equal to its minimum inter-arrival

time Ti; that is, Ti = Di.

Each task τi ∈ τ is a parallel task; we consider a general

model for parallel tasks, namely the DAG model. Each

task is characterized by its execution pattern, defined by a

directed acyclic graph (DAG). Each node (subtask) in the

DAG represents a sequence of instructions (a thread) and

each edge represents dependency between nodes. A node

(subtask) is ready to be executed when all its predecessors

have been executed. Throughout this paper, as it is not

necessary to build the analysis based on specific structures

of the execution pattern, only two parameters related to

the execution pattern of task τi are defined:

• total execution time (or work) Ci of task τi: This is

the summation of the worst-case execution times of all

the subtasks of task τi.
• critical-path length Li of task τi: This is the length

of the critical-path in the given DAG, in which each

node is characterized by the worst-case execution time

of the corresponding subtask of task τi; critical-path

length is the worst-case execution time of the task on

an infinite number of cores.

Given a DAG, obtaining work Ci and critical-path length

Li [41, pages 661-666] can both be done in linear time.

For brevity, the utilization Ci

Ti
= Ci

Di
of task τi is denoted

by ui for implicit deadlines. The total utilization of the

task set is U∑ =
∑

τi∈τ ui. Moreover, let the critical-
path utilization of task τi, denoted as Δi, be Li

Ti
= Li

Di
.

Also, let Δmax be the maximum critical-path utilization

of task set τ , i.e., Δmax = maxτi∈τ Δi. Finally, we also

define Vi as Δmax ·Di.

This paper considers scheduling a task set on a uniform

multicore system consisting of m identical cores.

Utilization-Based Schedulability Test In this paper, we

analyze schedulers in terms of their capacity augmentation

bounds. The formal definition is presented here:

Definition 1. Given a task set τ with total utilization of
U∑, a scheduling algorithm S with capacity augmenta-
tion bound b can always schedule this task set on m cores
of speed b as long as τ satisfies the following conditions

on unit speed cores.

Utilization does not exceed total cores,
∑
τi∈τ

ui ≤ m (1)

For each task τi ∈ τ, the critical path Li ≤ Di (2)

Since no scheduler can schedule a task set τ on m unit

speed cores unless Conditions (1) and (2) are met, capacity

augmentation bound automatically leads to a resource

augmentation bound. This definition can be equivalently

stated (without reference to the speedup factor) as follows:

Condition (1) says that the total utilization U∑ is at most

m/b and Condition (2) says that the critical-path length

of each task is at most 1/b of its relative deadline, that

is, Δmax ≤ 1/b. Therefore, in order to check if a task

set is schedulable we only need to know the total task set

utilization, and the maximum critical-path utilization. Note

that a scheduler with a smaller b is better than another with

a larger b, since when b = 1 S is an optimal scheduler.

III. Federated Scheduling

In this section, we present the federated scheduling

algorithm that provide hard real-time guarantees to parallel

task sets with implicit deadlines and prove that it provides

a capacity augmentation bound of 2 on a machine with

m uniform cores. Federated scheduling can be seem as an

extension of partitioned scheduling for parallel tasks.

A. Federated Scheduling Algorithm

Given a task set τ , the federated scheduling algorithm
works as follows: First, tasks are divided into two disjoint

sets: τhigh contains all high-utilization tasks — tasks with

worst-case utilization at least one (ui ≥ 1), and τlow

contains all the remaining low-utilization tasks. Consider a

high-utilization task τi with worst-case execution time Ci,

worst-case critical-path length Li, and deadline Di (which

is equal to its period Ti). We assign ni dedicated cores to

τi, where ni is

ni =

⌈
Ci − Li

Di − Li

⌉
(3)

We use nhigh =
∑

τi∈τhigh
ni to denote the total num-

ber of cores assigned to high-utilization tasks τhigh. We

assign the remaining cores to all low-utilization tasks τlow,

denoted as nlow = m − nhigh. The federated scheduling

algorithm admits the task set τ , if nlow is non-negative

and nlow ≥ 2
∑

τi∈τlow
ui.

After a valid core allocation, the runtime scheduling
proceeds as follows: (1) Any greedy (work-conserving)

parallel scheduler can be used to schedule a high-

utilization task τi on its assigned ni cores. Informally, a

greedy scheduler is one that never keeps a core idle if

some node is ready to execute. (2) Low-utilization tasks

are treated and executed as though they are sequential

3



tasks and any multiprocessor scheduling algorithm with

a capacity augmentation bound of at most 2 can be used

to schedule all the low-utilization tasks on the allocated

nlow cores.

Since most existing partitioned multiprocessor schedu-

lability tests have a utilization bound of 50% and hence

a capacity augmentation bound of 2. Therefore, in princi-

ple, we can use these partitioned multiprocessor schedu-

ling algorithm to schedule them on the nlow processors,

such as partitioned EDF [33], or various rate-monotonic

schedulers [3]. The important observation is that we can

safely treat low-tilization tasks as sequential tasks since

Ci ≤ Di and parallel execution is not required to meet

their deadlines.4

B. Capacity Augmentation Bound 2 of Fed-
erated Scheduling

Theorem 1. The federated scheduling algorithm has a
capacity augmentation bound of 2.

To prove Theorem 1, we consider a task set τ that

satisfies Conditions (1) and (2) from Definition 1 for b =2.

Then, we (1) state the relatively obvious Lemma 1; (2)

prove that a high utilization task τi meets its deadline

when assigned ni cores; and (3) show that nlow is non-

negative and satisfies nlow ≥ b
∑

τi∈τlow
ui and therefore

all low utilization tasks in τ will meet deadlines when

scheduled using any multiprocessor scheduling strategy

with utilization bound no less than b (i.e. can afford total

task set utilization of m/b = 50%m). These three steps

complete the proof.

Lemma 1. A task set τ is classified into disjoint subsets
s1, s2, ..., sk, and each subset is assigned a dedicated
cluster of cores with size n1, n2, ..., nk respectively, such
that

∑
i ni ≤ m. If each subset sj is schedulable on its

nj cores using some scheduling algorithm Sj (possibly
different for each subset), then the whole task set is
guaranteed to be schedulable on m cores.

High-Utilization Tasks Are Schedulable Assume that a

machine’s execution time is divided into discrete quanta

called steps. During each step a core can be either idle or

performing one unit of work. We say a step is complete
if no core is idle during that step, and otherwise we say

it is incomplete. A greedy scheduler never keeps a cores

idle if there is ready work available. Then, for a greedy

scheduler on ni cores, the following two straightforward

lemmas are derived in [31].

Lemma 2. [Li13] Consider a greedy scheduler running on
ni cores for t time steps. If the total number of incomplete

4Even if these tasks are expressed as parallel programs, it is easy to
enforce correct sequential execution of parallel tasks — any topological
ordered execution of the nodes of the dag is a valid sequential execution.

steps during this period is t∗, the total work F t done
during these time steps is at least F t ≥ nit− (ni − 1)t∗.

Lemma 3. [Li13] If a job of task τi is executed by a
greedy scheduler, then every incomplete step reduces the
remaining critical-path length of the job by 1.

From Lemmas 2 and 3, we can establish Theorem 2.

Theorem 2. If an implicit-deadline deterministic parallel
task τi is assigned ni =

⌈
Ci−Li

Di−Li

⌉
dedicated cores, then

all its jobs can meet their deadline when using a greedy
scheduler.

Proof: For contradiction, assume that some job of a high-

utilization task τi misses its deadline when scheduled on

ni cores by a greedy scheduler. Therefore, during the Di

time steps between the release of this job and its deadline,

there are fewer than Li incomplete steps; otherwise, by

Lemma 3, the job would have completed. Therefore, by

Lemma 2, the scheduler must have finished at least niDi−
(ni − 1)Li work.

niDi − (ni − 1)Li = ni(Di − Li) + Li

=

⌈
Ci − Li

Di − Li

⌉
(Di − Li) + Li

≥ Ci − Li

Di − Li
(Di − Li) + Li = Ci

Since the job has at most Ci, it must have finished in Di

steps, leading to a contradiction.

Low-Utilization Tasks are schedulable We first calculate

a lower bound on nlow, the number of total cores assigned

to low-utilization tasks, when a task set τ that satisfies

Conditions (1) and (2) of Definition 1 for b = 2 is

scheduled using federated scheduling strategy.

Lemma 4. The number of cores assigned to low-utilization
tasks is at least nlow ≥ 2

∑
low ui.

Proof: As defined in Section II, the critical path utilization

δi = Li

Di
. Here, for the brevity of the proof, we denote

σi = 1
δi

= Di

Li
. It is obvious that Di = σiLi and hence

Ci = Diui = σiuiLi. Therefore,

ni =

⌈
Ci − Li

Di − Li

⌉
=

⌈
σiuiLi − Li

σiLi − Li

⌉
=

⌈
σiui − 1

σi − 1

⌉

Since each task τi in task set τ satisfies the Condi-

tion (2) of Definition 1 for b = 2; therefore, the critical-

path length of each task is at most 1/b of its relative

deadline, that is, Δi ≤ 1/b =⇒ σi ≥ b = 2.

By the definition of high-utilization task τi, we have

1 ≤ ui. Together with σi ≥ 2, the following formula is

always non-negative:

0 ≤ (ui − 1)(σi − 2)

σi − 1

4



From the definition of ceiling, we can derive

ni =

⌈
σiui − 1

σi − 1

⌉

<
σiui − 1

σi − 1
+ 1 =

σiui + σi − 2

σi − 1

≤ σiui + σi − 2

σi − 1
+

(ui − 1)(σi − 2)

σi − 1

=
σiui + σi − 2 + σiui − 2ui − σi + 2

σi − 1

=
2σiui − 2ui

σi − 1
=

2ui(σi − 1)

σi − 1
= 2ui

= bui

In summary, for each high-utilization task, ni < bui.

So their sum τhigh satisfies nhigh =
∑

high ni < b
∑

high ui.

Since the task set also satisfies Condition (1), we have

nlow = m− nhigh > b
∑

all

ui − b
∑
high

ui = b
∑
low

ui

So the number of remaining cores allocated to low-

utilization tasks is at least nlow > 2
∑

low ui.

Corollary 1. For task sets satisfying Conditions (1) and
(2), a multiprocessor scheduler with utilization bound of
at least 50% can schedule all the low-utilization tasks
sequentially on the remaining nlow cores.

Proof: Low-utilization tasks are allocated nlow cores, and

from Lemma 4 we know that the total utilization of the low

utilization tasks is less than nlow/b = 50%nlow. Therefore,

any multiprocessor scheduling algorithm that provides a

utilization bound of 2 (i.e. can schedule any task set with

total worst-case utilization ratio no more than 50%) can

schedule it.

As mentioned in Section IV, many multiprocessor sche-

duling algorithms provide a utilization bound of 2 (i.e.

50%) to sequential tasks. That is, given nlow cores, they can

schedule any task set with a total worst-case utilization up

to 0.5nlow. Therefore, all these multiprocessor schedulers

can be used to schedule low utilization tasks by enforcing

their sequential execution. For example, federated algo-

rithm can use partitioned EDF or partitioned RM for τlow

and τlow will meet all deadlines.

C. Schedulability Analysis

The capacity augmentation bound of 2 for federated

scheduling functions functions as a simple schedulability

test, since we can safely admit task sets that satisfy
∑

ui ≤
m/2 and Li ≤ Di/2 for each task τi, but this test is often

pessimistic, especially for tasks with high parallelism.

More importantly, note that the federated scheduling

algorithm described in Section III-A can also be directly

used as a (polynomial-time) schedulabily test: given a task

set, after assigning cores to each high-utilization task using

our algorithm, if the remaining cores are sufficient for all

low-utilization tasks, then the task set is schedulable and

we can admit it without deadline miss. This schedulability

test admits a strict subset of tasks admitted by the bound,

so in practice it aften admits many task sets with utilization

greater than 50%m.

D. Lower Bound on Capacity Augmenta-
tion of Federated Scheduling

Here, we show that the capacity augmentation bound

of 2 of federated scheduling is tight by constructing

an example to show that the lower bound on capacity

augmentation of federated scheduling is also 2.

Given a system with cores of speed b = 2
1+ε < 2, where

0 < ε < 1 is an arbitrarily small positive number, then the

speed of the cores is arbitrarily close to 2. Consider such a

system with m = 2+ i cores, where i is a positive integer,

we construct a task set τ with a single parallel task τ1 with

high-utilization u1 = 1 + 0.5i. We further assume that its

critical-path length utilization is δ1 = 1/σ1 = (1 + ε)/2.

Therefore, the deadline of task τ1 can be represented as

D1 = σ1L1 = 2L1/(1 + ε) and its total work is C1 =
u1D1 = (1 + 0.5i)2L1/(1 + ε).

We can see that converted from system with speed of

b = 2/(1 + ε), the two conditions from Definition 1 are

both satisfied on unit speed cores:

Condition (1), u1 = 1 + 0.5i ≤ m/b

= (2 + i)(1 + ε)/2 = (1 + 0.5i)(1 + ε)

Condition (2), L1 ≤ D1/b =
2L1/(1 + ε)

2/(1 + ε)
= L1

Hence, by the definition of a capacity augmentation

bound, if federated scheduling could have a capacity

augmentation bound of b = 2/(1 + ε) < 2, then this

constructed task set should be schedulable under federated

scheduling algorithm.

However, as we calculate the number of cores needed

for this single high-utilization task τ1 to be schedulable

using federated scheduling algirthm in Section III-A

n1 =

⌈
Ci − Li

Di − Li

⌉
=

⌈
(1 + 0.5i)2L1/(1 + ε)− Li

2L1/(1 + ε)− Li

⌉

=

⌈
(1 + 0.5i)2− (1 + ε)

2− (1 + ε)

⌉
=

⌈
1 + i− ε

1− ε

⌉

=

⌈
(1 + i)(1− ε) + εi

1− ε

⌉
=

⌈
(1 + i) +

εi

1− ε

⌉

> (1 + i) = m (since 0 < ε < 1)

we can see that the number of cores required for the

schedulability of task τ1 is larger than the total number of

available cores m. Therefore, this task set is unschedulable

under federated scheduling algorithm with the speed-up of

b = 2/(1 + ε) < 2, which contradicts the assumption.

5



As for any speed-up 1 < b < 2 we can construct above

task set on a system with m > 2 cores that is unschedu-

lable using federated scheduling, we can conclude that

the lower bound on capacity augmentation of federated

scheduling is at least 2. Note that this lower bound is

true for all multicore systems with different numbers of

cores (larger than 2). Since we have shown that the upper

bound on capacity augmentation of federated scheduling

is also 2, we have closed the gap between the lower and

upper bound. Therefore, the capacity augmentation bound

of federated scheduling is strictly 2.

IV. Related Work

In this section, we review closely related work on real-

time scheduling, concentrating primarily on scheduling

task sets with parallel tasks.
Real-time multiprocessor scheduling considers schedu-

ling sequential tasks on computers with multiple proces-

sors or cores and has been studied extensively (see [10, 19]

for a survey). In addition, platforms such as LitmusRT [14,

16] have been designed to support these task sets. Here,

we review a few relevant theoretical results. Researchers

have proven both resource augmentation bounds, utiliza-

tion bounds and capacity augmentation bounds. The best

known utilization bound for global EDF for sequential

tasks on a multiprocessor is 2 (traditionally stated as

1/b = 50%)[7]; therefore, global EDF trivially provides a

resource and capacity augmentation bound of 2 as well.

Partitioned EDF and versions partitioned static priority

schedulers also provide a utilization bound of 2 [3, 33].

Global RM provides a capacity augmentation bound of

3 [2] to implicit deadline tasks.
For parallel real-time tasks, most early work considered

intra-task parallelism of limited task models such as mal-
leable tasks [18, 27, 30] and moldable tasks [34]. Kato

et al. [27] studied the Gang EDF scheduling of moldable

parallel task systems.
Researchers have since considered more realistic task

models that represent programs that are typically generated

by commonly used general purpose parallel programming

languages such as Cilk family [12, 26], OpenMP [37],

and Intel’s Thread Building Blocks [39]. These languages

and libraries generally support primitives such as parallel-

for loops and fork/join or spawn/sync in order to expose

parallelism within the programs. Using these constructs in

various combinations generates tasks whose structure can

be represented with different types of DAGs.
Tasks with one particular structure, namely parallel

synchronous tasks, have been studied more than others

in the real-time community. These tasks are generated if

only we use only parallel-for loops to generate parallelism.

Lakshmanan et al. [29] proved a (capacity) augmentation

bound of 3.42 for a restricted synchronous task model

which is generated when we restrict each parallel-for loop

in a task to have the same number of iterations. General

synchronous tasks (with no restriction on the number

of iterations in the parallel-for loops), have also been

studied [4, 28, 36, 40]. (More details on these results were

presented in Section I) Chwa et al. [17] provide a response

time analysis.

If we do not restrict the primitives used to parallel-for

loops, we get a more general task model — most easily

represented by a general directed acyclic graph. A resource

augmentation bound of 2− 1
m for G-EDF was proved for

a single DAG with arbitrary deadlines [8] and for multiple

DAGs [13, 31]. A capacity augmentation bound of 4− 2
m

was proved in [31] for tasks with for implicit deadlines.

Liu and Anderson [32] provide a response time analysis

for G-EDF.

There has been significant work on scheduling parallel

systems in the non-real time context [5, 6, 20–22, 38]. In

this context, the goal is generally to maximize throughput;

tasks have no deadlines or periods. Various provably good

scheduling strategies, such as list scheduling [15, 24] and

work-stealing [11] have been designed. In addition, many

platforms have been built based on these results: examples

include parallel languages and runtime systems, such as

the Cilk family [12, 26], OpenMP [37], and Intel’s Thread

Building Blocks [39]. While multiple tasks on a single

platform have been considered in the context of fairness

in resource allocation [1], none of this work considers real-

time constraints.

V. Conclusion

This paper presents a novel federated approach for

scheduling parallel real-time tasks (for both deterministic

and stochastic task models). For hard-real time tasks,

this strategy provides the best known theoretical capacity

augmentation bound of 2. The federated scheduling strat-

egy is promising due to its simplicity since it separately

schedules high-utilization tasks on dedicated cores and

low-utilization cores on shared cores; therefore, one can

potentially use out-of-the-box schedulers in a prototype

implementation.

References

[1] K. Agrawal, C. E. Leiserson, Y. He, and W. J. Hsu. “Adaptive
work-stealing with parallelism feedback”. In: ACM Trans. Com-
put. Syst. 26 (3 2008), pp. 112–120.

[2] B. Andersson, S. Baruah, and J. Jonsson. “Static-priority schedu-
ling on multiprocessors”. In: Real Time Systems Symposium. 2001,
pp. 193–202.

[3] B. Andersson and J. Jonsson. “The utilization bounds of parti-
tioned and pfair static-priority scheduling on multiprocessors are
50%”. In: Euromicro Conference on Real Time Systems. 2003,
pp. 33–40.

6



[4] B. Andersson and D. de Niz. “Analyzing Global-EDF for Mul-
tiprocessor Scheduling of Parallel Tasks”. In: Principles of Dis-
tributed Systems. 2012, pp. 16–30.

[5] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. “Thread Schedu-
ling for Multiprogrammed Multiprocessors”. In: SPAA ’98.

[6] N. Bansal, K. Dhamdhere, J. Konemann, and A. Sinha. “Non-
clairvoyant Scheduling for Minimizing Mean Slowdown”. In:
Algorithmica 40.4 (2004), pp. 305–318.

[7] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller.
“Improved Multiprocessor Global Schedulability Analysis”. In:
Real-Time Syst. 46.1 (Sept. 2010), pp. 3–24. ISSN: 0922-6443.

[8] S. Baruah, V. Bonifaciy, A. Marchetti-Spaccamelaz, L. Stougiex,
and A. Wiese. “A generalized parallel task model for recurrent
real-time processes”. In: Real Time Systems Symposium. 2012.

[9] S. K. Baruah, A. K. Mok, and L. E. Rosier. “Preemptively
Scheduling Hard-Real-Time Sporadic Tasks on One Processor”.
In: IEEE Real-Time Systems Symposium. 1990, pp. 182–190.

[10] M. Bertogna and S. Baruah. “Tests for global EDF schedulability
analysis”. In: Journal of System Architecture 57.5 (2011), pp. 487–
497.

[11] R. D. Blumofe and C. E. Leiserson. “Scheduling multithreaded
computations by work stealing”. In: Journal of the ACM 46.5
(1999), pp. 720–748.

[12] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. “Cilk: An Efficient Multithreaded
Runtime System”. In: PPoPP. Santa Barbara, California, 1995,
pp. 207–216.

[13] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese.
“Feasibility Analysis in the Sporadic DAG Task Model”. In:
ECRTS. 2013, pp. 225–233.

[14] B. B. Brandenburg, A. D. Block, J. M. Calandrino, U. Devi, H.
Leontyev, and J. H. Anderson. LITMUS RT: A Status Report. 2007.

[15] R. P. Brent. “The Parallel Evaluation of General Arithmetic
Expressions”. In: Journal of the ACM (1974), pp. 201–206.

[16] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson. “LITMUSRT : A Testbed for Empirically Comparing
Real-Time Multiprocessor Schedulers”. In: Proceedings of the
27th IEEE International Real-Time Systems Symposium. RTSS
’06. 2006, pp. 111–126. ISBN: 0-7695-2761-2.

[17] H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin. “Global
EDF Schedulability Analysis for Synchronous Parallel Tasks on
Multicore Platforms”. In: ECRTS ’13.

[18] S. Collette, L. Cucu, and J. Goossens. “Integrating job parallelism
in real-time scheduling theory”. In: Information Processing Letters
106.5 (2008), pp. 180–187.

[19] R. I. Davis and A. Burns. “A survey of hard real-time scheduling
for multiprocessor systems”. In: ACM Computing Surveys 43 (4
2011), 35:1–44.

[20] X. Deng, N. Gu, T. Brecht, and K. Lu. “Preemptive Scheduling
of Parallel Jobs on Multiprocessors”. In: SODA ’96.

[21] M. Drozdowski. “Real-time scheduling of linear speedup parallel
tasks”. In: Inf. Process. Lett. 57 (1 1996), pp. 35–40.

[22] J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng. “Non-
clairvoyant Multiprocessor Scheduling of Jobs with Changing
Execution Characteristics”. In: Journal of Scheduling 6.3 (2003),
pp. 231–250.

[23] N. Fisher, J. Goossens, and S. Baruah. “Optimal online multipro-
cessor scheduling of sporadic real-time tasks is impossible”. In:
Real-Time Systems Journal 45.1-2 (2010), pp. 26–71.

[24] R. L. Graham. “Bounds on Multiprocessing Anomalies”. In: SIAM
Journal on Applied Mathematics (1969), 17(2):416–429.

[25] H.-M. Huang, T. Tidwell, C. Gill, C. Lu, X. Gao, and S. Dyke.
“Cyber-physical systems for real-time hybrid structural testing:
a case study”. In: International Conference on Cyber Physical
Systems. 2010.

[26] Intel CilkPlus. http://software.intel.com/en-us/articles/intel-cilk-p
lus.

[27] S. Kato and Y. Ishikawa. “Gang EDF Scheduling of Parallel Task
Systems”. In: Proceedings of the Real Time Systems Symposium.
2009.

[28] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar. “Parallel
scheduling for cyber-physical systems: analysis and case study
on a self-driving car”. In: ICCPS. 2013, pp. 31–40.

[29] K. Lakshmanan, S. Kato, and R. R. Rajkumar. “Scheduling Par-
allel Real-Time Tasks on Multi-core Processors”. In: Proceedings
of the 2010 31st IEEE Real-Time Systems Symposium. RTSS ’10.
2010, pp. 259–268. ISBN: 978-0-7695-4298-0.

[30] W. Y. Lee and H. Lee. “Optimal Scheduling for Real-Time Parallel
Tasks”. In: IEICE Transactions on Information Systems E89-D.6
(2006), pp. 1962–1966.

[31] J. Li, K. Agrawal, C.Lu, and C. Gill. “Analysis of Global EDF for
Parallel Tasks”. In: Euromicro Conference on Real Time Systems.
2013.

[32] C. Liu and J. Anderson. “Supporting Soft Real-Time Parallel
Applications on Multicore Processors”. In: RTCSA. 2012.

[33] J. M. López, J. L. Dı́az, and D. F. Garcı́a. “Utilization Bounds
for EDF Scheduling on Real-Time Multiprocessor Systems”. In:
Real-Time Systems Journal 28.1 (Oct. 2004), pp. 39–68.

[34] G. Manimaran, C. S. R. Murthy, and K. Ramamritham. “A
New Approach for Scheduling of Parallelizable Tasks inReal-
Time Multiprocessor Systems”. In: Real-Time Syst. 15 (1 1998),
pp. 39–60.

[35] A. K. Mok. FUNDAMENTAL DESIGN PROBLEMS OF DIS-
TRIBUTED SYSTEMS FOR THE HARD-REAL-TIME ENVIRON-
MENT. Tech. rep. Cambridge, MA, USA, 1983.

[36] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. “Tech-
niques optimizing the number of processors to schedule multi-
threaded tasks”. In: Euromicro Conference Real Time Systems.
2012.

[37] OpenMP Application Program Interface v3.1. http://www.openm
p.org/mp-documents/OpenMP3.1.pdf. 2011.

[38] C. D. Polychronopoulos and D. J. Kuck. “Guided Self-Scheduling:
A Practical Scheduling Scheme for Parallel Supercomputers”. In:
Computers, IEEE Transactions on C-36.12 (1987), pp. 1425 –
1439.

[39] J. Reinders. Intel threading building blocks: outfitting C++ for
multi-core processor parallelism. O’Reilly Media, 2010.

[40] A. Saifullah, K. Agrawal, C. Lu, and C. Gill. “Multi-core Real-
Time Scheduling for Generalized Parallel Task Models”. In: Real
Time Systems Symposium. 2011.

[41] R. Sedgewick and K. D. Wayne. Algorithms. 4th. Addison-Wesley
Professional, 2011. ISBN: 9780321573513.

7


	Capacity Augmentation Bound of Federated Scheduling for Parallel DAG Tasks
	Recommended Citation
	Capacity Augmentation Bound of Federated Scheduling for Parallel DAG Tasks

	tmp.1415131658.pdf.2czOu

