

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

Modelling and Analyses of Embedded Systems Design

Brekling, Aske Wiid; Hansen, Michael Reichhardt; Madsen, Jan

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Brekling, A. W., Hansen, M. R., & Madsen, J. (2010). Modelling and Analyses of Embedded Systems Design.
Kgs. Lyngby, Denmark: Technical University of Denmark (DTU). (IMM-PHD-2011-236).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13783732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/modelling-and-analyses-of-embedded-systems-design(b7f7d044-fd97-4b03-8336-9327519b5a36).html

Modelling and Analyses of
Embedded Systems Design

Aske Brekling

Kongens Lyngby 2010

IMM-PHD-2010-236

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

Designing embedded systems that are guaranteed to act correctly in any given
situation is an extremely hard task. Modern embedded systems consist of appli-
cations that are typically executed on multi-core execution platforms. Analyzing
timing aspects of such multi-core platforms is particularly difficult, as they may
exhibit counter-intuitive behavior - so-called timing anomalies - where e.g. faster
execution time of an individual part of a system may cause increased execution
time for the system as a whole. In the work described here, we focus on the
timely aspects and show examples of systems containing such timing anomalies.

The ARTS framework is an abstract simulation framework for embedded sys-
tems that is used where an application meets an execution platform. The ap-
plication is described by a task graph and the execution platform through its
processing elements and interconnects. A mapping of tasks onto the processing
elements concludes a system described in ARTS. In this simulation framework,
designers can - early in the design process - conduct design space exploration
and analyze different configurations and setups of systems in terms of their
timely behavior and resource usage. As analysis is based on simulation, only
indications of the system behavior can be identified, but no guarantees can be
given.

In the work presented in this dissertation, we aim at capturing this scenario:
an application, an execution platform and the mapping, in a formal model. On
the basis of this formal model, we conduct verification of real-time constraints
and guarantee that the system acts correctly in terms of meeting all its timely
requirements.

ii Summary

We present the MoVES languages: a language with which embedded systems
can be specified at a stage in the development process where an application is
identified and should be mapped to an execution platform (potentially multi-
core).

We give a formal model for MoVES that captures and gives semantics to the
elements of specifications in the MoVES language. We show that even for seem-
ingly simple systems, the complexity of verifying real-time constraints can be
overwhelming - but we give an upper limit to the size of the search-space that
needs examining. Furthermore, the formal model exposes important scheduling
situations that become central in establishing timed-automata models that can
be used for analysis of MoVES specifications effectively.

Finally we present the MoVES tool, which can conduct automatic verification
of interesting properties of MoVES specifications. In several examples, we use
the MoVES tool to conduct analysis that identifies timing anomalies. We also
conduct design space exploration in an example using the MoVES tool. And
we show that it can be used for analysis of systems that, in size, resemble
industrially-interesting systems.

We find that semantically-based verification is a promising approach for assisting
developers of embedded systems. We provide examples of system verifications
that, in size and complexity, point in the direction of industrially-interesting
systems.

Resumé

At designe indlejrede systemer der kan garanteres at virke korrekt i enhver sit-
uation, er vanskeligt. Moderne indlejrede systemer er anvendelser, som typisk
afvikles p̊a platforme med flere processorer - s̊akaldte kerner - og at analysere tid-
slige aspekter af s̊adanne multi-kerne platforme er især svært, da de kan udvise
kontraintuitiv adfærd - s̊akaldte tidslige anomalier - hvor for eksempel hurtigere
eksekveringstid for en enkelt del af systemet kan resultere i en langsommere
eksekveringstid for hele systemet. Med dette arbejde fokuserer vi p̊a tidslige
aspekter og vi viser eksempler p̊a systemer med s̊adanne tidslige anomalier.

Framework’et ARTS er et abstrakt simuleringsframework for indlejrede syste-
mer, der benyttes til analyse, hvor anvendelser møder eksekveringsplatforme.
Anvendelser er beskrevet ved task-grafer og eksekveringsplatforme i form af
processeringselementer og deres forbindelser. Efter mapning af de individuelle
tasks til processeringselementer er et fuldt system beskrevet i ARTS. I dette
simuleringsframework kan designere tidligt i design processen afprøve forskel-
lige design af systemer i form af tidslige aspekter og aspekter vedrørende brug
af resourcer. Eftersom analysen er baseret p̊a simulering, kan den kun bruges
som indikation p̊a, hvordan systemet opfører sig, men der kan p̊a ingen måde
gives garantier i forhold til systemets tidslige krav.

I denne afhandling g̊ar vi efter at indfange netop dette scenarie; anvendelser,
eksekveringsplatforme og mapning i en formel model. P̊a basis af denne model
kan verifikation af realtidskrav af tasks eksekveret p̊a kerner udføres, og der kan
gives garantier om alle systemets tidslige krav.

Vi præsenterer sproget MoVES, et sprog med hvilket indlejrede systemer kan
specificeres p̊a et tidspunkt i designprocessen, hvor anvendelser er identificeret,

iv Resumé

og disse skal mappes p̊a eksekveringsplatforme potentielt med flere kerner.

Vi giver en formel model, der indfanger og giver semantik til specifikationer
beskrevet i sproget MoVES. Vi viser, at det at verificere realtidskrav for selv
tilsyneladende simple systemer kan have stor kompleksitet, men vi giver en
øvre grænse for den del af søgerummet, der skal undersøges. Den formelle
model viser derudover, hvordan vigtige skeduleringssituationer er centrale n̊ar
man skal udvikle tidsautomatimplementeringer der kan bruges til at analysere
MoVES specificationer effektivt.

Sidst men ikke mindst præsenterer vi værktøjet MoVES, som kan udføre au-
tomatisk verifikation af interessante egenskaber p̊a baggrund af MoVES speci-
fikationer. Vi benytter værktøjet p̊a en række eksempler, hvor tidslige anomalier
identificeres. Vi giver ogs̊a eksempler p̊a, hvorledes man kan afprøve forskellige
design af systemer (design space exploration) med værktøjet, og vi viser, at
det kan benyttes til analyse af systemer, som i størrelse kunne have industriel
interesse.

Vi fastsl̊ar, at semantisk baseret verifikation er en lovende mulighed for ud-
viklere af indlejrede systemer, og vi viser eksempler p̊a systemverifikationer,
som i størrelse og kompleksitet peger i retning af for industrien interessante
systemer.

Preface

This dissertation was prepared at DTU Informatics, the Technical University of
Denmark, in partial fulfillment of the requirements for acquiring the degree of
Doctor of Philosophy.

The dissertation deals with analysis and verification of embedded systems. The
main focus is to develop languages, methods and tools that assist developers in
early stages of the process of designing embedded systems.

The dissertation is self contained and relies on the work done in a number of
research papers written during the period 2006–2010.

The PhD project has been funded by MoDES (Danish Research Council 2106-
05-002).

The collaboration on the MoDES and DaNES projects has inspired most of this
work, with input and examples from the academic partners: Technical Univer-
sity of Denmark, Aalborg University and University of Southern Denmark, as
well as industrial partners: Hardi International A/S, Skov A/S, Danfoss A/S,
Reactive Systems inc, CSI Center for Software Innovation, PAJ Systemteknik,
ICEpower, Novo Nordisk, Terma and Prevas.

Lyngby, 2010

Aske Brekling

vi

Acknowledgements

First and foremost I would like to thank my main supervisor, Michael R. Hansen,
for his support and encouragement over the years. He has been available for
discussion and comments at all times, and has been a source for both inspira-
tion and guidance in all aspects of the project. He has been the most perfect
supervisor anyone could ever ask for. Without him, this work would not have
been possible at all.

Also thanks to my other supervisor, Jan Madsen. He has provided great insight
in the area of embedded systems and the current state of the art research. Jan
has an incredible way of looking at issues from different angles. This has made
it possible to think out-of-the-box and come up with very interesting solutions
and ideas.

Part of the work was carried out while visiting Virginia Tech University and
Aalborg University. I would like to thank Patrick Schaumont for inviting me
and for welcoming me at Virginia Tech. My stay gave great insight into how
hardware descriptions can be done at higher abstraction levels, and how the
Gezel language can be used as part of development. I also got to see how
he uses Gezel in the courses given on Introduction to Hardware/Software Co-
design. Also thanks to Kim G. Larsen for inviting me and giving me a chance
to take part of the inspiring research community at Aalborg University. While
visiting, I got the chance to meet developers of the Uppaal system and see
presentations of some of the newest developments. I also got a chance to discuss
issues of modelling with timed-automata with some of the researchers.

Thanks to all of the fellow PhD students in the Embedded Systems Engineering

viii Acknowledgements

section at DTU Informatics. Together we have created a great atmosphere that
supports both the social sides and generates room for the exchange of opinions
that can lead to great synergies in our work. I especially would like to thank Per
Larsen, Peter V. B. Sørensen, Stavros Passas and Pascal Schleuniger for sharing
office space with me. We have had some great times, and inspiring talks.

Thanks to everyone I have met throughout the past years. People that I have
discussed and turned an amazing amount of interesting stones with. Kristian
S. Knudsen and Jens Ellebæk were during their Master’s work a great driving
factor for the development of MoVES. My fellow university students... special
thanks to Anders Høeg Dohn, Pavel Kozin and Søren G. Christensen for keeping
me sane, and to all the great people I met and had great moments with at the
Marktoberdorf summer school 2008.

Finally, the greatest thanks goes to my family; my mother and father, my
siblings and their families - you are the strong base that every inspiring thought
and all development in my thoughts comes from. My daughter Adia, who can
make me continue that extra mile, and who makes me realize why I do the things
I do. The love of my life, my wife Jeanifer! Always supportive, understanding
and helpful. You make it possible for me to succeed.

Contents

Summary i

Resumé iii

Preface v

Acknowledgements vii

1 Introduction 1

1.1 Different Approaches for Analysis of Embedded Systems 4
1.2 Motivation . 12
1.3 Purpose of this Project . 16
1.4 The Structure of the Dissertation 16

2 ARTS Concepts and Informal Model 19

2.1 Application . 20
2.2 Execution Platform . 22
2.3 Mapping . 24
2.4 Schedulability . 25
2.5 Simulation . 26
2.6 Summary . 26

3 The MoVES Language 29

3.1 Concrete Syntax for the MoVES Language 30
3.2 Summary . 37

4 Semantics for MoVES 39

4.1 Semantical Concepts Explained Informally 39
4.2 Application Model . 43

x CONTENTS

4.3 Model of the Execution Platform 43

4.4 Mapping (System Model) . 44

4.5 Scheduling of Tasks . 44

4.6 Model of Computation . 45

4.7 Decidability . 49

4.8 Summary . 53

5 MoVES Analyses using Timed Automata 55

5.1 Modelling MoVES Using Timed Automata 56

5.2 Non-Determinism in MoVES vs. Timed-Automata Models 71

5.3 Analyses using Timed-Automata Models and Uppaal 72

5.4 Summary . 74

6 The MoVES Tool 75

6.1 A User’s Perspective of the MoVES Tool 76

6.2 The MoVES Framework . 80

6.3 Integrating the Pieces . 89

6.4 The MoVES Tool Available Online 90

6.5 Summary . 91

7 Examples 93

7.1 The Windmill Control System . 94

7.2 MP3 Decoder . 98

7.3 Multiprocessor Anomalies . 101

7.4 Very Late Deadline Miss . 103

7.5 Systems with Large Hyper-Periods 104

7.6 Summary . 106

8 Perspective 109

8.1 Verification Structures and Backends 110

8.2 Purely Deterministic Systems . 110

8.3 Analysis of Resource Usage . 111

8.4 Hardware Specifications and Tasks in MoVES 112

8.5 Ideal Assumptions . 115

8.6 MoVES in the Context of Networked Embedded Control Systems 115

8.7 MoVES in a Greater Development Process 116

9 Conclusion 119

9.1 Final Remarks . 120

Appendix 122

CONTENTS xi

A Timed-Automata Templates for Verification Structures 123

A.1 Stop-watch automata model . 123
A.2 Alternative stop-watch automata model 132
A.3 Model with discretization of the running time 142
A.4 Genuine discrete model . 151

B Source Code for the MoVES Tool 161

B.1 Frontend . 161
B.2 Model generator . 168
B.3 Trace generator . 183

C Batch Scripts for MoVES 191

C.1 For Windows Users . 191
C.2 For Linux Users . 193

xii CONTENTS

Chapter 1

Introduction

Embedded systems are computer systems that are integrated into any kind of
system - physical, mechanical, etc, and which are not easily accessible. They
are characterized as being able to conduct one or more dedicated tasks for that
specific system. There are increasing uses of embedded systems within many
industries: avionics, automotive, medical equipment and consumer electronics,
just to name a few.

Let us take an example from the automotive industry. A modern car can have
embedded systems consisting of about 100 electronic control units. These units
can execute tasks in anything from the climate control system to entertainment
systems such as radio, navigation, video, etc, to the anti-lock braking system.
This allows for capabilities that are much more advanced than could otherwise
be included in the car. In this way, the user can enjoy these added features. It
also offers more safety because it can use complex computation to adjust the
behavior of the car in critical situations.

Within the area of consumer electronics, embedded systems practically are the
products. Handheld gadgets such as multimedia players, GPS navigation equip-
ment and smart phones are systems that can be viewed as a complete embed-
ded system with just a simple interface to the user in terms of keypad, screen,
loudspeakers, headphones, etc. For example, when handheld CD-players were
popular, they comprised mechanical components that turned the disk, read it,

2 Introduction

etc., together with the electronics. But today’s MP3 players have no mechani-
cal components. They are basically embedded systems that contain processing
elements, storage, interconnections and simple user interfaces.

Dangers of faulty embedded systems

Some embedded systems are extremely safety critical. Consider, for example,
the airbag safety system in a car. In the case of an accident, if the airbag
does not deploy (or deploys milliseconds too early or too late), it can have
fatal consequences. Within avionics, practically every component is considered
safety critical; even a small error here can be life threatening. In 1996, Ariane
5’s (Figure 1.1) first test flight, resulting in self destruction 37 seconds after
launch, is one of the best-known faulty embedded systems. A data conversion
from a 64-bit floating point value to a 16-bit signed integer value was the cause
of the rocket’s total destruction.

Figure 1.1: Ariane 5

The area of medical electronics is obviously safety critical as well: The case of
Therac-25 (Figure 1.2) resulted in six incidents between 1985 and 1987, where
patients were given massive radiation overdose caused by a faulty embedded
system in the radiation accelerator.

The Mars Pathfinder mission (see the Mars Pathfinder on Figure 1.3) is an
example where timing properties and resource usage resulted in system failure.
After a few days on Mars, the space craft began experiencing total resets, result-
ing in loss of data. It turned out to be a case of priority inversion in a concurrent
execution context. If the problem had not been fixed, the whole mission would
have been a total failure. Fortunately, the onboard software could be modified
and the mission resumed with complete success.

3

Figure 1.2: Typical Therac-25 facility

Figure 1.3: Mars Pathfinder

For many embedded systems, especially within consumer electronics, flawed
systems can have a detrimental effect on the image of the producing company.
If a manufacturer of cell phones releases a model that has a tendency to freeze
up and needs to be reset often, users quickly communicate this to each other,
and many people would come to prefer a different manufacturer for their next
product. In the case of severe manufacturing defects, the product may need
to be recalled. This both tarnishes the brand’s reputation and is an extremely
lengthy and expensive process. A flawed system like this can result in a decrease
in market shares.

4 Introduction

Whether the consequences of erroneous systems are dangerous or financially
disastrous, a way to avoid such errors is much needed. The earlier in the design
process these errors can be detected the better. However, these systems are
growing in numbers; they are being used in a wider range of industries and are
becoming more and more complex. It therefore becomes more difficult to detect
system flaws. This is why it is crucial to use a systematic approach of analysis
and constructive development. This approach should allow designers to make
decisions when some details of the system are still undetermined, in order to
detect possible flaws early in the design process.

1.1 Different Approaches for Analysis of Em-
bedded Systems

Model-based development of embedded systems [53] has become an important
discipline. This development start with abstract specifications of the system
in terms of functional- and non-functional requirements. Functional require-
ments specify what the system is supposed to do, whereas non-functional re-
quirements specify issues such as timing and other resource constraints on the
system. Through a number of refinement steps, the development may end at
a stage where the tasks of the systems have been identified together with their
interdependencies, and a platform for executing the system is identified together
with a mapping of the tasks onto the platform.

In order to avoid development of faulty systems, analyses of designs are needed
at every stage of the development process. A key goal for such analyses is to
determine whether the system is able to run without faults. If a system is
defined as a number of tasks being executed and each task (or the system as
a whole) having deadlines, this analysis will determine if any deadline of the
system is missed, i.e. the system is not schedulable.
Analyses of systems that execute several tasks or processes have been studied
extensively the last decades [7, 43]. This section will attempt to provide an
overview of different approaches starting with the very general topic addressed
by classic schedulability theory and ending with approaches specifically aimed
at embedded systems.

1.1.1 Classic schedulability analysis

Liu and Layland [42] analytically studied schedulability of systems consisting of
multiple tasks sharing processing elements as early as 1973. Classic schedula-

1.1 Different Approaches for Analysis of Embedded Systems 5

bility theory originated in scheduling of multiple tasks on a single processor but
has developed into the area of distributed systems.

1.1.1.1 Single processor

In [42], Liu and Layland studied the problem of multiple task scheduling on a
single processor. The results in this paper include an upper bound to proces-
sor utilization for an optimum fixed-priority scheduler (i.e. a rate-monotonic
scheduler). It is optimal in the sense that if a system is schedulable using any
fixed-priority scheduler, it is schedulable using rate-monotonic scheduling. This
upper bound can be calculated as follows:

m
∑

i=1

(Ci/Ti) ≤ m(21/m − 1)

where m is the number of tasks in the system, Ci and Ti are the execution time
and the period of task i, respectively.

Also, it is shown that full processor utilization can be achieved by dynamically
assigning priorities based on their current deadlines (i.e. earliest-deadline-first
scheduling), provided that

m
∑

i=1

(Ci/Ti) ≤ 1

Much of the later research in the area of schedulability analysis is based on these
results. See e.g. [13, 14] for an overview of some of the later research results.

In [64, 63], Tindell extends these results to a more general approach for analyzing
fixed priority hard real-time tasks. This approach captures aspects such as static
priority preemptive systems, arbitrary deadlines and release jitter. This analysis
uses a window approach to find worst-case response times. The window-based
approach is based on the general concept of a busy period. The busy period is
the maximum time that a task has to wait for higher prioritized tasks before it
can execute. This busy period is divided up into a sequence of windows that
correspond to each invocation of tasks with higher priority. When tasks of a
system have different periods and if some tasks’ deadlines are greater than their
periods, a number of windows need to be examined to find the worst-case re-
sponse time. In general the system’s worst case response time could correspond
to the response time in any one of the windows.

6 Introduction

In a simple case where deadlines for all tasks are smaller than or equal to their
periods, the worst-case response time ri for task i can be computed by the
following recursive function:

ri = Ci +
∑

j∈hp(i)

d
ri
Tj

e

where Ci is the execution time for task i, hp(i) is the set of tasks with higher
priority than task i and Tj is the period of task j.

For cases where some deadlines for tasks are greater than their periods, this
equation becomes more complex as it has to take into account the response
time in any one of the windows. Schedulability analysis in this context is to
calculate the worst-case execution times for all tasks, and to ensure that they
are all less than their deadlines.

1.1.1.2 Distributed systems

When analyzing distributed systems, much more complex issues arise compared
with analyzing single processor systems. In distributed systems, several tasks
can execute concurrently, however, the issue of communication between pro-
cessors must be addressed. If dependencies among tasks executing on different
processors are taken into account, some timing anomalies can arise, i.e. local
worst-case behavior does not give global worst-case behavior (when the whole
system is addressed).

In [65], Tindell and Clark extend the analysis approach associated with static
priority preemptive based scheduling with a so-called ”holistic” approach. It
is holistic in the sense that it takes the results from single processor schedul-
ing theory and combines it with communication analysis to get a holistic view
of the system. It addresses schedulability of distributed hard real-time sys-
tems. Specifically analysis of tasks with arbitrary deadlines, message parsing
and shared data is derived. In all communication a simple TDMA protocol
is assumed. The same window-based analysis technique as described for sin-
gle processor analysis is used to find worst-case response times of distributed
task sets. This approach introduces more complexity to the equations from the
single-processor case. In the holistic approach, message parsing is included as
tasks that need their response times calculated. Also, the time it takes to deliver
a message at a receiving processor is taken into account.

1.1 Different Approaches for Analysis of Embedded Systems 7

The approaches presented in [63, 64, 65] were refined and extended by Palen-
cia et al. in [24, 25]. This was done by completing the proof of validity of
the schedulability analysis technique as well as including offset information into
the analysis. Thereby, an increase of the maximum schedulable utilization was
achieved. In [29], González Harbour et al. describe the MAST [16] toolset. It
contains several schedulability analysis tools capable of analyzing single proces-
sor and distributed systems. The tools are based on different scheduling analysis
techniques, including the aforementioned approaches by Tindell and Clark as
well as Palencia et al.

In [58], Pop et al. propose an optimization strategy for bus accesses in dis-
tributed embedded systems based on classic schedulability analysis, in particu-
lar the approach by Tindel and Clark [65]. The communication model is based
on a time-triggered protocol and analysis for communication delays is presented.

The classic scheduling theory addresses issues regarding shared resources and
blocking, however, the concept of dependencies among tasks is not directly
addressed. Therefore, the aforementioned timing anomalies cannot be analyzed
through classic scheduling theory. This model is coarse in the sense that for
concrete systems with data dependencies it is non-trivial to give approximations
of the communication overhead.

1.1.2 Event stream analysis

The classic schedulability theory is not easily adapted to include analysis of
heterogeneous systems. Furthermore, the complexity of the equations in the
underlying analysis increases dramatically with size of systems. In [61], Thiele
et al. propose a real-time calculus for schedulability analysis. In this analysis,
a link between three areas is established: Max-Plus Linear System Theory [18],
Network Calculus [17] and real-time scheduling [42]. In particular, the notions
of request curves as a model for task behavior and delivery curves modelling
hardware components’ service of tasks are introduced. This provides a com-
positional approach, where each task executing on a hardware component is
analyzed individually and given request- and service curves, which are then
propagated through the distributed system. By the use and operations on these
curves, an over-approximation is used. Thus, the results of these analyses do
not provide exact results, and some results may be overly pessimistic. This
work has resulted in the Real-Time Calculus (RTC) toolbox [67], which is a free
Matlab toolbox for system-level performance analysis of distributed real-time
and embedded systems.

8 Introduction

In [32], Henia et al. present the SymTA/S approach. This work is based on
the same compositional idea as in the work of Thiele et al., but instead of
using generic request- and delivery curves and therefore having to introduce
new complex stream representations, the notion of standard event models is
presented (e.g. periodic-, sporadic-, periodic with jitter event models). These
event models are described by sets of parameters. An example of an event
model is a periodic with jitter event model, which has parameters for the period
(i.e. time between periodic occurrence) and the jitter (i.e. the interval in which
the exact occurrence takes place). Also, in the SymTA/S approach an over-
approximation is used in the analysis, like with the Real-Time Calculus.

1.1.3 Timed-automata analysis

In [5], Alur and Dill propose timed (finite) automata to model the behavior of
real-time systems over time. Timed-automata theory is shown to be adequate for
automatic verification of real-time requirements of finite-state systems. Real-
time properties of such systems can be expressed as reachability problems of
their timed automata models, e.g. in timed temporal logics. Several model
checkers such as Kronos [68, 20] and Uppaal [40, 8, 66] are available for auto-
matic verification of such requirements.

There have been several examples of using timed-automata theory to model
scheduling problems and in analyzing embedded systems: Abededdäım and
Maler show in [2] how the classic job-shop scheduling problem can be modelled
as timed automata. In [1], this strategy is extended and includes problems with
uncertainty in task durations. In [3], Altisen and Tripakis propose an imple-
mentation methodology for transformation of a timed automaton into a program
with a check of whether the execution of this program on a given platform sat-
isfies a desired property. The platform is modelled through its digital clock.
In [26], Halkjaer et al. use timed-automata modelling to identify that a partic-
ular scheduler (i.e. the legOS scheduler) suffers from starvation and shows that
a revised design of the scheduler does not. In [31], Hendriks and Verhoef show
that timed automata can be used to model and analyze timeliness properties
of embedded systems architectures, by systematically modelling and analyzing
a case study. However, this is done by constructing the timed-automata mod-
els manually. In [54], Ovatman et al. provide experiments using priced timed
automata for schedulability analysis as well as analysis of resource consumption.

In [23, 22], Fersman et al. present decidability results for schedulability anal-
ysis using timed automata. The overall conclusion of this work is that the

1.1 Different Approaches for Analysis of Embedded Systems 9

schedulability-checking problem is undecidable if the following three conditions
hold: 1) execution times are intervals; 2) the precise finishing time of a task
instance influences other task releases; and 3) preemption is allowed. In [39],
Krcál and Yi show that if one of the three conditions is dropped, the problem is
decidable. Based on these results and the work on the Uppaal model checker,
Uppsala University has released the Times Tool [6, 21], which is a tool set for
modelling, schedulability analysis and synthesis of schedulers and executable
code. The version of Times Tool available at the current time is directly appli-
cable for single-processor systems only.

In [19], David et al. provide alternative timed-automata implementations based
on the models provided in [9]. The implementations generalize in certain areas,
e.g. to include notion of jitter in task releases. The authors claim to provide
an ”...alternative account on how to model multiprocessor-scheduling scenarios
most efficiently, by making full use of the modeling formalism of Uppaal”. It is
unclear how this is most efficient and there are no examples verified that could
substantiate this claim. The models provided in [9] are similar to the ones given
in this dissertation in Section 5.1.6. The authors of [19] do not relate to stop-
watch models like the ones in Sections 5.1.4 and 5.1.5 or to genuine discrete
models like the one in Section 5.1.7. It turns out that most types of analysis
are verified more efficiently on the basis of such models.

1.1.4 Simulation-based analysis

Simulation-based methodologies are still the predominant technique for perfor-
mance evaluation of embedded systems. In simulation-based approaches Sys-
temC [41] is a de-facto language for system modelling. SystemC is a C++ library
that supports modelling, which is true to the underlying hardware and provides
an executable model that can be used for simulation. These SystemC-based
simulation approaches can target either a specific area (e.g. communication or
the real-time operating system) or provide system-level analysis. In system-level
analysis, the full embedded system is modelled from application to execution
platform, also modelled is the mapping of the application onto the platform as
well as the communication.

1.1.4.1 Specific-area analysis

In [44], Loghi et al. present MPARM, a cycle-accurate and signal-accurate anal-
ysis of on-chip communication in a MPSoC environment. The interconnects are

10 Introduction

simulated and different architectures are compared. The processors in the sys-
tem are modelled by instruction-set simulators and all hardware is coded in
SystemC.

There have been several examples of using simulation-based SystemC models for
analysis specifically of the real-time operating system (RTOS). In [33], Hessel
et al. provide an abstract RTOS model for embedded systems. The model
includes a task model, a scheduler and synchronization. The goal of this work
is to minimize the number of context switches. In [52], Moigne et al. present
a generic RTOS model. The model includes synchronization, message parsing
and global data sharing. The work focuses on durations of scheduling, context
loads and context saves.

1.1.4.2 System-level analysis

Within simulation-based system-level analysis much work has been conducted.
Most of the modelling done at system level is based on the Y-chart of system
design [57]. In the Y-chart there is a clear distinction between the application
and the execution platform, and there is an explicit mapping of elements of the
application onto the different parts of the platform.

In [38], Kempf et al. propose a SystemC-based simulation framework that allows
evaluation of different mappings of the application onto the execution platform.
The evaluation is conducted on an executable model of the system with anno-
tated timing characteristics. The key element of this approach is a configurable
event-driven virtual processing unit, which captures timing behaviors of the
platform.

In [30], Haubelt et al. present a SystemC-based design methodology for mixed
hardware/software solutions mapped to FPGA-based platforms. The approach
supports automatic design space exploration, automatic performance evaluation
and automatic system generation. The core result of this work is SysteMoC,
a SystemC-based library that permits execution of well-known models of com-
putation, which have been applied in the design of digital signal processing
algorithms.

In [56], Pimentel et al. present the Sesame framework, which provides high-level
modelling and simulation methods as well as tools for system-level performance

1.1 Different Approaches for Analysis of Embedded Systems 11

evaluation and exploration of heterogeneous embedded systems. Models of both
the application and the platform are represented by graphs annotated with per-
formance characteristics, e.g. computation requirements for each node in the
application graph and processing capacity and power consumption for each node
in the platform. In the exploration, the authors use the Strength Pareto Evo-
lutionary Algorithm to find sets of approximated Pareto-optimal mapping so-
lutions, i.e. solutions that are not dominated in terms of quality (performance,
power and cost) by any other solution in the feasible set. SystemC simulation
is used to provide performance estimates for the candidate solutions.

In [48, 47, 50], Madsen et al. present the SystemC-based framework ARTS.
ARTS allows designers of multiprocessor system-on-chips to explore and ana-
lyze network performance, consequences of different mappings including memory
and power usage and effects of RTOS selections including scheduling, synchro-
nization and resource allocation policies. We will base our work on ARTS and
will elaborate on this approach in Chapter 2.

1.1.5 Summary of different analysis approaches

Classic scheduling theory works well for single processor systems under rather
ideal assumptions. However, for larger multiprocessor systems, the classic ap-
proach lacks structure and compositionality, which dramatically increases the
complexity of the equations in the underlying analysis. Although some ap-
proaches for including properties of the platform (e.g. communication strate-
gies as in [58]) have been examined, actual system-level analysis - where all
levels of the system are analyzed - is not. Also, the classic scheduling theory is
based on pretty idealized models, e.g. although issues regarding allocation of
shared resources are addressed, there is no concept of dependencies among tasks.

The event-stream analysis approaches introduces structure and compositional-
ity. It does this through an over-approximation. Although this approach yields
results for systems of very large size, the over-approximation can also in some
cases lead to very pessimistic analyses.

The timed-automata approaches generally has two down falls. Many timed-
automata-based analyses are very case oriented. This means that a very specific
system is analyzed, but there is little (if any) automation and no clear under-
lying formal model. If any other system is to be analyzed, it must be manually
modelled from scratch. Other timed-automata approaches such as Times Tool

12 Introduction

become very general. The analysis becomes mostly an analysis of the applica-
tion as very little of the platform is modelled.

The simulation-based approaches give valuable input to designers early in the
design process. However, as these approaches only examine some of the state
space of the system, these approaches cannot provide guarantees. On the other
hand, some of these simulation-based approaches, in particular ARTS, capture
the generic structures and provide a modelling terminology that is very useful
in embedded systems analysis. This terminology just lacks a clear formal model
as a basis. In Chapter 4, we will formalize this terminology.

1.2 Motivation

The work described in this dissertation is intended to help designers of embed-
ded systems. The aim is to provide designers with tools, models, languages,
methodologies, etc., that in early stages of the design process can help the de-
signer analyze different configurations and setups of systems.

Embedded systems today are getting more complex. It is difficult to use tra-
ditional methods to design, verify, validate and test them to make sure they
are correct, reliable and not over-dimensioned. Over-dimensioning is when a
designer would use larger, faster, more expensive, etc. components in systems
in order to be ”on the safe side”. Results of over-dimensioning are usually waste
of energy, space, money, etc.

Designs can also be oversimplified due to the complexity and lack of analysis
methods. Oversimplification could be when a system is divided up into sev-
eral individual parts that do not interact (e.g. an automotive embedded system
where the airbag system is isolated from the rest of the embedded system). This
oversimplification could result in limited functionality (e.g. lack of communica-
tion between systems) or in redundant subcomponents such as several identical
sensors one for each individual part of the system in order to avoid interaction.

Since embedded systems are growing dramatically in complexity, they can do
more and have more internal actions between very different components. This
makes it hard to have an overview and to know what areas are critical and then
test them. Many embedded systems are safety critical, and faulty systems could
have fatal consequences.

When able to verify complex systems, one can:

1.2 Motivation 13

1. Make bigger, life-critical systems that have more functionality, correctness
and reliability. This can result in being able to solve bigger and more
interesting problems while guaranteeing certain properties of the system.

2. Avoid over-dimensioning by creating less wasteful systems that are cheaper,
smaller and more energy efficient.

3. Employ a systematic approach based on formal methods. This allows
for a systematic design process in which one can easily re-verify system
properties when making small alterations early in the design phases.

1.2.1 An embedded system - windmill control

Consider an embedded control application for a windmill - this has deliberately
been chosen as an academic example (not as a realistic real-life control system),
in order to provide a more intuitive understanding of concepts. The windmill
has an anemometer that measures wind speeds and a windvane that measures
wind direction. The purpose of the embedded control application is a) to point
the windmill as close as possible to the current wind direction and b) for safety
reasons, to deploy a brake to stop the motion of the windmill when wind speeds
exceed some threshold (e.g. 30 m/s). In order to meet these purposes, four
individual tasks (τ1, τ2, τ3 and τ4) of the application can be identified:

τ1 Take a reading from the anemometer and add it to a list of the 10 latest
wind speed readings - every 4 milliseconds

τ2 Take a reading from the windvane and compare that direction to the direction
that the windmill is currently pointing. The result of this comparison is
a message, which can be represented in 2 bits - every 6 milliseconds

τ3 Based on the current comparison (conducted by τ2), turn the windmill toward
the direction of the wind. In order for τ3 to begin execution, τ2 must have
finished its execution. We say that there is a dependency from τ2 to τ3. -
every 6 milliseconds

14 Introduction

τ4 While the windmill is running, if three or more of the 10 latest wind speed
readings exceed the threshold, employ the brake to stop the windmill.
While the windmill is not running (i.e. the brake is employed), if all of the
10 latest wind speed readings are below the threshold, release the brake to
start the windmill. This task should not be executed before 10 readings
are available (i.e. 40 milliseconds after the system starts). These checks
are to be conducted every 6 milliseconds

These four tasks are to be executed on an execution platform. Consider an exe-
cution platform made up of two processing elements (pe1 and pe2). The operat-
ing systems on both of these, os1 and os2, can schedule tasks mapped to them
based on a scheduling principle, either rate-monotonic or earliest-deadline-first.
Initially rate-monotonic scheduling is chosen on both. In order to communicate
messages from one to the other processing element resulting from inter-processor
dependencies - i.e. when tasks in a dependency are mapped to different pro-
cessing elements - the processing elements are connected via a bus (b1). This
bus can transfer 2 bits/millisecond and uses a first-in first-out (FIFO) arbiter.

The mapping of the application onto the execution platform is as follows: τ1 and
τ2 are mapped to pe1, whereas τ3 and τ4 are mapped to pe2. Note that since τ2
and τ3 are mapped to different processing elements, their dependency require
the data (2 bits) to be transferred on b1 (at speed 2 bits/millisecond) - obviously
this transfer takes 1 millisecond. In Figure 1.4, a graphical presentation of this
system is given.

MappingDependency

Execution Platform

Application

pe1

os1

τ2τ1

b1

pe2

os2

τ4τ3

Figure 1.4: A windmill control system

The best-case execution time (bcet) and worst-case execution time (wcet) in mil-
liseconds of executing the individual tasks of the application on the processing
elements are given as (bcet, wcet) here:

1.2 Motivation 15

τ1 τ2 τ3 τ4
pe1 (2, 2) (1, 1) (5, 5)
pe2 (2, 2) (2, 3)

Note that τ3 can be executed by both processing elements, but execution on pe2
is much faster. Note also that for all tasks other than τ4, bcet and wcet are the
same - i.e. execution of these tasks takes the same amount of time each time
they are executed. However, τ4 can be executed in 2 milliseconds in best case,
that is, if no action is needed (i.e. the brake need not be deployed or released),
whereas execution takes 3 milliseconds in worst case, if action is needed.

It is worth noting here, that in other approaches such as RTC [61] and SymTA [32]
the notion of jitter is used to analyze and explain the issues that occur when de-
pendent tasks mapped to different processing elements have a difference between
best-case execution time and worst-case execution time. In analysis using jitter,
the individual parts of the system are analyzed separately, and jitter propagates
the uncertainty of tasks finishing times. In the analysis explored here, we will
not use the notion of jitter. Instead, we consider all possible traces of the system
in question, beginning from the initial start of the system.

The general question we would like an answer to, is whether or not the system
will be able to autonomously execute the tasks forever (or at least infinitely
long). In other words, will the chosen settings and properties make the overall
system schedulable? If the answer is no, it would be desirable to have evidence
of a situation where the system is not able to execute some task, i.e. where the
system deadlocks.

Actual schedulability analysis of this system will reveal that the system can miss
deadlines. If the platform is modified slightly, by choosing earliest-deadline-
first as scheduling principle for the operating system os2, the system will pass
schedulability analysis without revealing deadline misses.

The windmill control system shown here is deliberately chosen as an academic
example. We do not conclude that a windmill control system should be ex-
ecuted on a platform consisting of two processing elements as described here
or that the exact timing properties are realistic. The example only highlights
the terminology used and provides more intuitive understanding of some of the
concepts involved when specifying embedded systems.

16 Introduction

1.3 Purpose of this Project

In this project we aim at a concrete syntax and semantics that are based on
ARTS models. These models are suitable for specification and analysis of sys-
tems early in the design process, at a stage where application and execution
platform can be identified, but where neither are implemented or fully produced.

The application is characterized by only a task graph and timing requirements
but without any detailed implementation details. The execution platform is
defined simply in terms of number of processing elements, their general oper-
ating system properties and the interconnects, again without specific details on
concrete implementation or synthesis.

Analysis at this stage gives the designer opportunity to make important design
decisions without paying for decisions being made at later stages, when more
implementation detail has been decided on, or when parts of the system have
been developed or synthesized.

The thesis of our work is two fold:

1. That semantically-based verification of embedded systems can be suitable
for problems that resemble industrially interesting examples of systems in
size and complexity.

2. That models of timed automata, together with tools (specifically Uppaal),
are valuable as implementation platforms and verification backends for
verifying properties of systems modelled.

1.4 The Structure of the Dissertation

The structure of the dissertation is as follows:

Chapter 2: We elaborate on the approach used in ARTS. The different com-
ponents of ARTS specifications are explained and the underlying model used
when simulating is discussed.

Chapter 3: We provide a language for specification of systems at an early point
in the design process. This point is when the following three parts have been
identified: 1) an application consisting of a number of interacting tasks , 2) an

1.4 The Structure of the Dissertation 17

execution platform made up of a number of interconnected processing elements
and 3) a mapping of the tasks onto the processing elements.

Chapter 4: We derive a formal model that captures the different aspects of
embedded systems and, in particular, formalizes the schedulability problem for
embedded systems.

Chapter 5: We provide examples of how this formal model can be used as
a basis for analysis and, in particular, how model checking of timed automata
models implementing the formal model can be used to verify the schedulability
problem.

Chapter 6: The tool MoVES is presented. MoVES can analyze systems spec-
ified in the language and, using an implementation of the formal model, make
automatic verification of the schedulability problem possible.

Chapter 7: We give a range of different examples of systems, their specifica-
tions, their interesting properties and explanations of analysis using MoVES.

Chapter 8: We give indications to how this work can be further developed and
what some of the consequences of early phase modelling have. We also show
how the abstract models relate to models and implementations much closer to
a final product.

18 Introduction

Chapter 2

ARTS Concepts and Informal

Model

This chapter will introduce the concepts used in ARTS, a multi-processor system-
on-chip (MPSoC) simulation framework developed at the Technical University
of Denmark. There will also be explanations of the underlying informal model.
ARTS is a SystemC-based framework that is constructed to make it easy for
developers to try out different setups early on in the design process. It provides
a simulation engine that can assist in evaluating crosslayer causality between
the application, the operating system and the platform architecture. ARTS is a
system-level framework, which can be identified as a framework for the overall
system comprising the application, real-time operating system and the execu-
tion platform. It has been a conscious design decision that the simulation engine
is clearly separated from the model.

The ARTS framework models the application (described as task graphs cap-
turing dependencies among tasks), the execution platform, i.e. the processing
elements, their interconnects and the overall architecture and finally the map-
ping of the tasks onto the processing elements. In Figure 2.1 these components
are depicted.

A SystemC implementation of the models is then instantiated and can simulate
the system for a given amount of time. The result of the simulation is a runtime
profile that allows the designer to evaluate the modelled system. The runtime

20 ARTS Concepts and Informal Model

Dependencies

Element
Processing
Element

Processing
Element

Application

Execution Platform

...

...... ...

Interconnect

Mapping

Processing

Task Task Task Task TaskTaskTaskTaskTask

Figure 2.1: ARTS components

profile includes processor utilization, task response times and possible deadline
misses, as well as memory-, communication-, and power-usage profiles. In the
following sections the ingredients of ARTS are introduced.

2.1 Application

An application in ARTS is characterized by task graphs with a number of indi-
vidual tasks and their data dependencies. Figure 2.2 shows a task graph for an
example of a real-life application, an MP3 decoder. The tasks in the top row
of the figure (τ1, τ3, τ5, τ9, τ11, τ13 and τ15) operate on the right channel of a
stereo signal, whereas the tasks in the bottom row (τ2, τ4, τ6, τ8, τ10, τ12 and
τ14) operate on the left channel. The tasks τ0 and τ7 are synchronization points
from the MP3 decoder application. This example is examined and analyzed
with ARTS in [48]. Each task is defined by the relative deadline, the period, an
initial offset (or phase) and the execution time. Figure 2.3 gives an idea of what
these terms mean on a timeline and each term is explained further here:

A Task dependency (the arrows in Figure 2.2) indicates that some task needs to
finish its execution before another can start. That the task τ2 is dependent on
the task τ1 (also written τ1 ≺ τ2) means that τ1 must finish executing before τ2
can start. Each arrow in the task graph corresponds to such a dependency. In
the case of dependencies between tasks mapped to different processing elements,
the dependency may be defined with a size. This size indicates how large a mes-

2.1 Application 21

τ7τ0

τ1

τ2 τ4 τ6

τ3 τ5 τ9

τ8 τ10

τ11 τ13

τ12 τ14

τ15

Figure 2.2: Task graph of an MP3 decoder

Execution Time

TimeOffset
System Start Task Release Task Release

Period

Deadline

Figure 2.3: Timeline of a task from system start to its first period

sage is transferred as a result of the dependency. This transfer is done through
the interconnects of the system; see more on interconnects in Section 2.2.2.

The relative deadline indicates how long after the release the task has to finish
executing. If any deadline in any period of any task of the system is not met,
the system is not schedulable.

The period of a task indicates how often the task is released, e.g. a period of 5
milliseconds for a task means that a new instance of the task is released every
5 milliseconds.

The offset (or phase) of a task defines when the first instance of the task is
released relative to the start of the system, e.g. an offset of 3 milliseconds
indicates that the first instance of the task is released 3 milliseconds after the
start of the system.

The execution time of a task indicates how much processor time each instance of
the task needs for execution, e.g. an execution time of 2 milliseconds means that
the task needs 2 milliseconds of execution time each period. The execution time
can be defined as an interval from best-case execution time (bcet) to worst-case
execution time (wcet), meaning that each instance of the task needs an amount
of execution time that is in this interval. Note that the execution time may
depend on which processing element the task is mapped to.

22 ARTS Concepts and Informal Model

The tasks considered within this terminology are cyclic tasks. This means that
for each period a new instance of the task is released, and the task requires
execution time in each period.

2.2 Execution Platform

The execution platform is characterized by the processing elements, their inter-
connects and the overall architecture of the system. Processing elements provide
processing power to execute the tasks of the system. These processing elements
can be either dedicated components that only execute one specific task (e.g. an
application-specific integrated circuit (ASIC)), more general components that
can execute many different tasks (e.g. a general purpose processor (GPP)), or
even components that can do a few specific tasks (e.g. a field-programmable
gate array (FPGA)). Figure 2.4 shows an example of an execution platform con-

os2

pe1

os1

b1

pe2

Figure 2.4: A platform example

sisting of the two processing elements pe1 and pe2, with the real-time operating
systems os1 and os2, respectively. The two processing elements are connected
via the shared bus b1.

2.2.1 Processing elements

A processing element in ARTS is modelled by its real-time operating systems and
has the following functionalities: a scheduler, a synchronizer and an allocator.

Scheduler

The scheduler will grant processing time to the tasks on the processing element.
The scheduler can do this based on a priority-based scheduling principle, which
means that whenever two or more tasks are ready to be executed on that pro-

2.2 Execution Platform 23

cessing element, the task with highest priority is selected for execution.

Scheduling can be either preemptive or non-preemptive.

Preemptive scheduling is when the scheduler can temporarily stop (preempt)
currently executing tasks to allow more important (higher prioritized) tasks
to execute instead. This implies that scheduling can occur whenever a task
becomes ready or when a task finishes and others are waiting for execution.

For non-preemptive scheduling, when a task has started execution, it will con-
tinue its execution until it finishes, regardless of whether tasks with higher prior-
ity are released. The implication of non-preemptive scheduling is that scheduling
can only occur when a task finishes and others are ready for execution or when
a task becomes ready and no other tasks are waiting.

A scheduling principle is either static or dynamic.

Static scheduling principle: A processing element running a static scheduling
principle bases each scheduling decision on a pre-determined prioritized list of
all tasks; this list can be made at compile-time. An example of a static schedul-
ing principle is rate-monotonic (RM) scheduling, for which tasks with shorter
periods have higher priority.

Dynamic scheduling principle: A processing element using a dynamic scheduling
principle bases each scheduling decision on properties of the current situation.
An example of a dynamic scheduling principle is earliest-deadline-first (EDF)
scheduling, where tasks closer to their deadline have higher priority.

Synchronizer

The synchronizer manages task dependencies. When a task τ is released, the
synchronizer determines whether the task τ depends on has already finished.
When a task finishes, the synchronizer notifies any tasks that are dependent on
it. Note that if dependant tasks are located on different processing elements,
this notification must be communicated.

24 ARTS Concepts and Informal Model

Allocator

The allocator manages access to shared resources; this could be shared busses,
memories, i/o devices, etc. The allocator can implement a principle such as pri-
ority ceiling in order to avoid blocking. Blocking occurs when a lower prioritized
task blocks access to a processing element through a shared resource. In the pri-
ority ceiling protocol, a lower prioritized task will inherit the priority of higher
prioritized tasks for which it holds access to a resource shared between the tasks.

Note that certain properties of tasks may depend on which of the processing
elements it is mapped to. For example, a task may run faster or slower on differ-
ent processing elements, and some tasks may not be able to execute on certain
processing elements at all. Also, when including resource usage such as power-
and memory-usage in the analysis, the individual power- and memory-footprints
for each task may differ when executed on different processing elements.

2.2.2 Interconnects

Interconnects are links between different processing elements. These intercon-
nects are defined in terms of their speed, i.e. how fast they can deliver messages.
Dependencies of tasks mapped to different processing elements (inter-processor
dependencies) may need to have a message transferred, and these messages are
given in terms of their size. The time that it takes to deliver the message is
then determined by the speed of the link and the size of the message, e.g. a
message with the size 4 bits delivered on a link with the speed 2 bits/millisecond
will take 2 milliseconds to deliver. An example of such a link is the bus b1 in
Figure 2.4.

2.3 Mapping

Mapping of an application onto an execution platform is valuable to include in
analysis. Through explicit mapping of different parts of the application onto
the specific processing elements, inter-processor dependencies are identified and
task-specific properties, ones that depend on which processing element they are
mapped to, can be revealed. Inter-processor dependencies have the capability
to introduce multiprocessor anomalies. A multiprocessor anomaly is a timing
anomaly that occur when a local worst-case behavior does not give global worst-

2.4 Schedulability 25

case behavior. Including the mapping in analysis allows for identification of such
multiprocessor anomalies.

The mapping defines which tasks are to be executed on which processing ele-
ments. This mapping may have greater implications than one realizes. Some
tasks may be able to be executed on different processing elements, but they may
have different characteristics, e.g. required execution time on different process-
ing elements. Also, mapping dependent tasks to different processing elements
may require transfer of messages over links. Finally, some processing elements
may run different real-time operating systems, and the system performance may
vary extensively when a task is mapped to one processing element as opposed
to another.

Figure 2.5 shows the MP3 decoder from Figure 2.2 mapped onto the platform
on Figure 2.4, where the tasks above the dotted line are mapped to pe1 and the
task below are mapped to pe2. Note that the dependencies crossing the dotted
line, i.e. τ0 ≺ τ1, τ6 ≺ τ7 and τ7 ≺ τ8 are inter-processor dependencies and may
require data transfer over the bus b1 (see Figure 2.4). This is only one possible

τ0

τ1

τ2 τ4 τ6

τ3 τ5 τ9

τ8 τ10

τ11 τ13

τ12 τ14

τ15

τ7

pe1

pe2

Figure 2.5: Mapping of an MP3 decoder onto a platform

mapping, and the system may behave quite differently if even a slightly different
mapping is used.

2.4 Schedulability

Schedulability of a system defined through the ARTS terminology as described
here is to be understood as follows: A system is schedulable if no deadline for
any task in any period is ever missed. For systems where tasks have execution
times as intervals from bcet to wcet, this means that for every period, all ex-
ecution times in that interval should not lead to missed deadlines anywhere in
the system. Note that it is not enough to just examine wcet as systems may

26 ARTS Concepts and Informal Model

contain multi-processor anomalies. In such cases, execution times that are not
wcet can trigger missed deadlines in the system.

2.5 Simulation

Once a system has been modelled through the aforementioned components, the
system can be simulated. A simulation is conducted by letting the modelled
components of the system run according to the properties specified. In the case
of execution time as an interval, for each time the task is released, a random
number between bcet and wcet is chosen. The duration of simulation is specified
beforehand as a number of cycles. After this number of cycles the simulation
is stopped and the results are available. These results can be valuable to a
developer as he can try out setups of a system early in the design process. It
gives an indication of how the system will act in the average case. But the
simulation can give no guarantees about best- or worst-case performance.

The result of simulating a system modelled in ARTS is a runtime profile. This
profile can include processor utilization, task response times and possible dead-
line misses, as well as memory-, communication-, and power-usage profiles of
the modelled system for the simulated duration. In Figure 2.6 examples of sim-
ulation output from ARTS are given with profiles for bus contention (2.6(a))
and memory (2.6(b)). These profiles are part of examples published in [49].
Since this is a simulation examining only certain (random) traces of the sys-
tem’s execution, there is no guarantee that best- or worst-case performance of
the system has been targeted. Therefore, this is a good guide for average case
system performance, but not for giving guarantees on system behavior.

2.6 Summary

In this chapter we have provided an overview of the underlying model of the
multi-processor system-on-chip simulation framework ARTS. This framework
allows developers to try out different setups of the systems they wish to design
early in the design process. Although informal, the underlying model has a
clear structure with which the different components of a system are modelled
individually and systematically.

An ARTS model of a system consists of an application mapped onto an execu-
tion platform. An application is made up of task graphs, including the tasks’

2.6 Summary 27

(a) Bus contention profile (b) Memory profile

Figure 2.6: Example of ARTS simulation results

dependencies, and an execution platform is modelled through the processing
elements as well as their interconnects.

ARTS also provides a terminology that is useful when we look deeper into the
model and give it semantics. A great advantage of the approach used in devel-
oping ARTS is that there has been a conscious decision to keep the simulation
engine apart from the model. This makes the model much more suitable for es-
tablishing a formal semantics. It also keeps the model generic so there is a clear
structure, which makes it easy to define new systems within the same framework.

28 ARTS Concepts and Informal Model

Chapter 3

The MoVES Language

The exploration in Chapter 1 identified that most of the approaches in the area
of analysis of embedded systems seem to fall into categories, where either a)
analysis is done for only one specific part of the system so global effects on local
choices are not analyzed, or b) analysis is based on informal or sparse models
that make it hard to comprehend the full system and that only allow for spo-
radic analysis (simulation), thereby cannot give guarantees.

This chapter aims at providing a formal model for embedded systems. The
model should contain clear and precise characteristics of all components (such
as tasks, processing elements, operating systems, etc.) of a system as well as the
system’s architecture (how different components communicate and how they are
connected physically). This structure is chosen in order to be able to conduct
cross-layer analysis, i.e. analysis of systems across several layers (e.g. applica-
tion layer, execution-platform layer and mapping layer). Only through this type
of analysis, problems originating at one level that results in issues at another
level, can be thoroughly analyzed. As a basis, this model uses the informal
model and terminology defined by ARTS, which was explained in Chapter 2.
One could say that it is an attempt to give semantics to ARTS models.

The model, which is defined in Chapter 4, captures the characteristics of each

30 The MoVES Language

individual component in the system and their communication. Furthermore,
it keeps a clear structure that reflects the architecture of the system. Before
reaching a formal model in Chapter 3, we will establish a concrete syntax for
a language, the MoVES language, that can be used to specify systems that can
be captured by such a model.

This chapter is based on the work initiated in [12], where a grammar was given.
Here we extend the work and provide examples to help the understanding of
the use and structure of the language.

3.1 Concrete Syntax for the MoVES Language

In order to specify an embedded system and the problem to be analyzed, a
syntax should be established. Although many of the approaches mentioned in
Section 1.1 provide languages or at least a specification structure with which
systems can be expressed, most of these fail to capture each component indi-
vidually and keep a clear structure that reflects the system architecture.

This section serves as the establishment of a syntax for a language, the MoVES
language, which allows designers to express systems, consisting of applications
executing on execution platforms and their mapping, through their individual
components. At the same time the structure reflects the physical architecture of
the system. The terminology used to capture individual components is identified
from ARTS in Chapter 2, and the structure follows that of ARTS models as well.

3.1.1 Grammar

In Figure 3.1(a), the grammar for the MoVES language is given. This language
is intended to be used to specify embedded systems and their analysis problems.
In general, an embedded system is specified through a specification of its appli-
cation (app), the execution platform (plat), a mapping (map) of the application
onto the execution platform, computational requirements (cr) showing effects of
different mappings and finally, the verification/validation property (prop) that
should be examined.

3.1 Concrete Syntax for the MoVES Language 31

system ::= app plat map cr prop

app ::= Application task
+

dep

task ::= taskid per off

taskid ::= Task: tid

per ::= Period: n

off ::= Offset: n

dep ::= Dependencies dp ∗

dp ::= tid -> tid : n

plat ::= Platform proc
+

bus

proc ::= Proc: pid Sch: sch

sch ::= FP | RM | EDF

bus ::= busid arbit speed

busid ::= Bus: bid

arbit ::= Arb: arb

arb ::= FIFO

speed ::= Speed: n

map ::= Mapping mp
+

mp ::= tid : pid

cr ::= Creq tonp+

tonp ::= tid @ pid bcet wcet

bcet ::= Bcet: n

wcet ::= Wcet: n

prop ::= Property p

p ::= Schedule?

n ∈ N, tid, pid and bid are strings,
terminal symbols are in Roman,
non-terminals are in italics

(a) MoVES Grammar

Application

Task: T1

Period: 4

Offset: 0

Task: T2

Period: 6

Offset: 0

Task: T3

Period: 6

Offset: 0

Task: T4

Period: 6

Offset: 40

Dependencies

T2 -> T3 : 2

Platform

Proc: P1

Sch: RM

Proc: P2

Sch: RM

Bus: B1

Arb: FIFO

Speed: 2

Mapping

T1 : P1

T2 : P1

T3 : P2

T4 : P2

Creq

T1 @ P1

Bcet: 2

Wcet: 2

T2 @ P1

Bcet: 1

Wcet: 1

T3 @ P1

Bcet: 5

Wcet: 5

T3 @ P2

Bcet: 2

Wcet: 2

T4 @ P2

Bcet: 2

Wcet: 3

Property

Schedule?

(b) Windmill control specification

Figure 3.1: MoVES grammar and example specification

3.1.2 Example

In Figure 3.1(b), the specification of the windmill control system introduced in
Section 1.2.1 is given using the MoVES language. This specification is given
in two columns. The first column contains the application and platform parts.
The second column contains the mapping, the computational requirements and
the verification property. In the following sections this example will be used to
describe the individual aspects of the MoVES language.

32 The MoVES Language

3.1.3 Application

In the example we see an application made up of four tasks T1, T2, T3 and
T4. The task T1 has a period of 4 and the other tasks’ period is 6. Task T4

has an initial offset of 40, the other tasks do not have an offset. Finally, T3 is
dependant on T2 and a message of size 2 needs to be transferred if these two
tasks are mapped to different processing elements.

3.1.4 Execution platform

The platform consists of two processing elements P1 and P2, both using rate-
monotonic scheduling. They are connected to a bus B1, which has a first-in
first-out arbiter and runs at speed 2 (e.g. a message of size 2 takes one time
unit to transfer on this bus).

3.1.5 Mapping

The tasks T1 and T2 are mapped to P1. T3 and T4 are mapped to P2. Notice
that there is an inter-processor dependency (T2 is mapped to P1 and T3 is
mapped to P2).

3.1.6 Computational requirements

In the computational requirements for the example we see that the tasks T1, T2
and T3 can all be executed on P1, where T1 requires 2 time units of execution
time each period, T2 requires 1 time unit and T3 requires 5 time units, if mapped
to P1. T3 and T4 can be executed on P2, where T3 requires 2 time units of
execution time each period and T4 require 2 time units in best case and 3 time
units in worst case each period.

Note that there should be an entry for each possible pair of tasks and processing
elements, for which the task is executable on the processing element, even if
they are not included in the actual mapping. This allows the designer to easily
remap tasks without having to reformulate the computational requirements. For
example, remapping T3 to P1 can be done without changing the application or
the platform.

3.1 Concrete Syntax for the MoVES Language 33

3.1.7 Verification/validation property

Finally, the verification/validation property is specified as Schedule? i.e. schedu-
lability analysis. This analysis examines the schedulability of the specified sys-
tem. In the event of non-schedulability, a trace resulting in a missed deadline is
produced, i.e. a counter example to the schedulability problem.

3.1.8 On design space exploration

A conscious decision throughout the development of the syntax was that each
component of the system should be specified individually, and that character-
istics of the system that are dependent on the setup (e.g. the mapping of
application onto execution platform) are specified separately of the applica-
tion, execution platform and mapping. This decision allows for much easier and
clearer design space exploration. Design space exploration should be understood
as the process of revisiting the setup of the system in the design phase of devel-
opment. In Figure 3.2, the basic ideas of design space exploration is depicted.
This follows the structure of Y-chart-based design as used in [56]. Design space

Platform

Application Execution
Platform

Mapping

Analysis
Results

Remapping

Rewriting
Application

Reconfiguring

Figure 3.2: Design space exploration

exploration in this context constitutes the tasks of remapping, rewriting the
application and reconfiguring the execution platform based on analysis results.
This can be done in an iterative manner. Remapping occurs when some tasks are
mapped to different processors. Rewriting the application can be e.g. redefining

34 The MoVES Language

the task graph or optimizing tasks to alter the execution times. Reconfiguring
the execution platform can, for example, be connecting the processors differ-
ently or changing the operating system of the individual processing elements,
e.g. changing scheduling principle. In the following, examples will highlight
some of the features of design space exploration.

3.1.9 Testing schedulability

The result of the schedulability analysis of the system specified in Figure 3.1(b)
will result in a missed deadline. A trace depicting the events leading up to this
miss is shown in the diagram on Figure 3.3. In this trace it can be observed

XX

X X X X X X X X

0 20 30 4010

0 20 30 4010

XX XX XX XX XX XX XX XX

0 20 30 4010

X X X X X X X X

Deadline missed

Task release

Task executingX

0 20 30 4010

XX XX XX XX XX XX XX XX XX XX XX XX

0 20 30 4010

τ1

τ2

τ3

τ4

b1

Figure 3.3: Missed deadline trace in schedulability analysis of windmill control
system

that τ4 misses a deadline after 46 milliseconds.

3.1 Concrete Syntax for the MoVES Language 35

3.1.10 Exploring design decisions

In order to avoid the undesired behavior of non-schedulability of the windmill
control system, the designer can explore different design decisions. In this case,
if the designer wishes to change the scheduling principle on pe2 to use earliest-
deadline-first instead of rate-monotonic, this change can be done without making
any other changes to the specification than replacing RM with EDF for pe2. Anal-
ysis of the changed system reveals that the system is schedulable when setup
like this.

Although this is just a small academic example of design space exploration, it
gives an idea of which types of exploration can be done on the basis of the
syntax derived at here. Even in this simple example, it is tedious for a human
to spot the missed deadline.

It is also worth noting that if all offsets in this original specification were re-
duced to zero, the system would be schedulable. This is an example of a system
where the notion of critical instant from classic scheduling theory does not in-
voke all missed deadlines, and therefore, schedulability analysis based on the
critical instant does not hold. In [42], the notion of a critical instant is defined
as occurring whenever a task is requested simultaneously with requests for all
higher priority tasks. It is then proven that the worst-case response time oc-
curs when task phasing creates a critical instant, i.e. when all offsets are zero.
However, this example shows that multiprocessor systems can have worst-case
response time even when not when all offsets are zero.

3.1.11 Exploring multiprocessor anomalies

In Figure 3.4 a small academic example system is graphically depicted and in
Figure 3.5(a) a specification of this system is provided.

When conducting schedulability analysis of this system, it is encountered that
the system is not schedulable. The trace in Figure 3.5(b) shows how a missed
deadline is triggered.

When altering the specification to let the task T1 execute only in worst case
(i.e. 2) and conducting analysis on that system, an interesting result is found.
It turns out that the system specified as such is schedulable. In other words,
only including worst-case execution times locally for each task does not reveal
the worst-case globally, i.e. the specified system possesses a multiprocessor

36 The MoVES Language

Dependency Mapping

τ1

Execution Platform

Application

pe1

os1

pe2

os2

pe3

os3

b1

τ4 τ5τ3τ2

Figure 3.4: Small academic example system

Application

Task: T1

Period: 3

Offset: 0

Task: T2

Period: 3

Offset: 0

Task: T3

Period: 3

Offset: 0

Task: T4

Period: 3

Offset: 0

Task: T5

Period: 3

Offset: 0

Dependencies

T1 -> T2 : 0

T3 -> T4 : 0

T4 -> T5 : 0

Platform

Proc: P1

Sch: RM

Proc: P2

Sch: RM

Proc: P3

Sch: RM

Bus: B1

Arb: FIFO

Speed: 1

Mapping

T1 : P1

T2 : P2

T3 : P3

T4 : P2

T5 : P3

Creq

T1 @ P1

Bcet: 1

Wcet: 2

T2 @ P2

Bcet: 1

Wcet: 1

T3 @ P3

Bcet: 1

Wcet: 1

T4 @ P2

Bcet: 1

Wcet: 1

T5 @ P3

Bcet: 1

Wcet: 1

Property

Schedule?

(a) Specification
3

Deadline missed

Task release

Task executingX

0

0

0

X

X

X

3

3

3

0

X

3

0

τ1

τ2

τ3

τ4

τ5

(b) Trace

Figure 3.5: MoVES specification and missed deadline trace for system with
multiprocessor anomaly

3.2 Summary 37

anomaly. Even in this small academic example, the anomaly is not easily found.
This provides even more evidence that analysis techniques which can reveal
these are needed.

3.2 Summary

In this section we have defined the MoVES language. This language captures the
relevant aspects of embedded systems and follows the terminology and structure
of ARTS as described in Chapter 2. An example showed that in the language
there is a separation of concerns, i.e. aspects of the application, the platform
and the mapping are all individually specified. This allows for structured design
space exploration since a small chance in one area of the system only require
altering in the specification of that specific area.

Also, the examples show that single-processor scheduling theory does not gen-
eralize to the multiprocessor domain when data dependencies are taken into
account due to the notion of multiprocessor anomalies. The use of the notion of
the critical instant does not always give a valid analysis, as some multiprocessor
systems (e.g. the windmill control system) are schedulable without offsets but
not with. Also, for some systems, what is best case locally can trigger worst
case globally, as was seen in the example in Section 3.1.11.

38 The MoVES Language

Chapter 4

Semantics for MoVES

In this chapter, we will give a model for systems such as the ones described
in the previous chapters. Firstly, the key concepts of the semantics will be
explained informally, after which each of the individual parts of the model will
be given formally: the application, the platform, the mapping and scheduling
of tasks. Then the model of computation is formalized, and finally, decidability
of schedulability analysis problem is determined.

The chapter is based on the work presented in [9] with an informal explanation
of the concepts involved to promote readability.

4.1 Semantical Concepts Explained Informally

As the formalization in this chapter at times can get very detailed, this section
will serve as an informal explanation of some of the concepts and the basic idea
of analysis. We will rely on the example of the windmill control system, which
was explained in Section 1.2.1, in order to provide this informal explanation.
Figure 4.1 serves as a reminder of this example.

A system consists of an application running on an execution platform. The
application can be divided up into a number of tasks. The windmill control

40 Semantics for MoVES

MappingDependency

Execution Platform

Application

pe1

os1

τ2τ1

b1

pe2

os2

τ4τ3

(a) Application and Platform

τ1 τ2 τ3 τ4

pe1 (2, 2) (1, 1) (5, 5)
pe2 (2, 2) (2, 3)

(b) Computational requirements

Figure 4.1: Windmill control system

system consists of four tasks (τ1, τ2, τ3 and τ4), and these might have timing
constraints (τ1 has a period of 4 whereas the other tasks have a period of 6, and
only τ4 has an offset of 40, the other tasks have no offsets) as well as dependencies
with other tasks, exemplified here by τ2 ≺ τ3. The execution platform is made
up of a number of programmable or dedicated processing elements, here pe1 and
pe2. Each task is mapped onto a processing element. We write Tpe

1
denoting

the tasks mapped to pe1, i.e. {τ1, τ2} and Tpe
2
= {τ3, τ4}

Once the mapping is established, the computational requirements (i.e. best-case
execution time (bcet) and worst-case execution time (wcet)) for each task of the
system can be identified; in this case we have the following:

bcetτ1 = wcetτ1 = 2
bcetτ2 = wcetτ2 = 1
bcetτ3 = wcetτ3 = 2

bcetτ4 = 2
wcetτ4 = 3

Processing elements that can execute several different tasks and grant these ex-
ecution time dynamically require a dedicated real-time operating system (os) as
a layer between the application and the execution platform. The real-time oper-
ating system manages scheduling of tasks as well as any dependencies the tasks
have with each other. We formalize the concepts of three specific scheduling
principles: fixed-priority, rate-monotonic and earliest-deadline-first, as relations
among tasks.

4.1 Semantical Concepts Explained Informally 41

The relations for fixed-priority (>FP) and rate-monotonic (>RM) are straight-
forward, as they are static and do not evolve over time. In the windmill control
system, rate-monotonic scheduling is chosen on both pe1 and pe2. This means
that τ1 has the highest priority of all tasks since it has the shortest period. For
the relation to be a total order, we use the numbering used to name the tasks,
e.g. τ2 has number 2, τ3 has number 3, etc. This gives the following total order
for the (>RM) relation: τ1 >RM τ2 >RM τ3 >RM τ4.

The relation for earliest-deadline-first (>EDF), however, requires more detail
since the relation evolves over time to indicate which tasks are closest to their
next deadline (here, the start of their next period). τ >t

EDF τ ′ denotes that
τ has higher earliest-deadline-first priority than τ ′ at time point t. To capture
this ”closeness” to the next deadline, we introduce distτ (t) denoting the distance
from time point t to the nearest deadline of τ .

Basically, the semantics of the computational model for MoVES revolves around
the notion of a state. A state is a snapshot of what is happening on each
processing element. For the processing element pri, the state element (si, εi)
records which task it is currently executing (si) (if any, ⊥ denotes that no tasks
are currently executing) as well the processing element’s current execution vector
(εi). The execution vector εi captures how much execution time is needed by
each task mapped to pei to finish their execution in the current period. If the
task τ is mapped to pei, then εi(τ) captures how much execution time is needed
by τ to finish its execution in the current period. Whenever a new period for
τ starts, a possibly non-deterministic choice of {bcetτ , . . . ,wcetτ} is taken to
choose the execution time for τ in that period. If bcet and wcet for a task is the
same, then the choice of course is deterministic.

A system state is an M -tuple σ = ((s1, ε1), . . . , (sM , εM)) with an element for
each of the M processing elements of the system. The initial system state for
the windmill control system σ1 is the following:

σ1 = ((τ1, 〈2, 1〉), (⊥, 〈2, 0〉))

We see that pe1 is executing τ1 and the two tasks τ1 and τ2 mapped to pe1 require
2 and 1 time units of execution, respectively, to finish in the current period. On
pe2 no task is executing and the two tasks τ3 and τ4 mapped to pe2 require 2
and 0 (zero) time units, respectively to finish in the current period. The zero
time units needed by τ4 indicates that the task has not yet been released for its
first period, i.e. it is in its offset phase.

If we look at the system after 40 time units, i.e. when τ4 is released for the first
time, the current system state is one of the following σ41a or σ41b:

σ41a = ((τ1, 〈2, 1〉), (τ3, 〈2, 2〉)) σ41b = ((τ1, 〈2, 1〉), (τ3, 〈2, 3〉))

42 Semantics for MoVES

Note that since, for τ4, (bcet = 2) 6= (wcet = 3), a non-deterministic choice
between the choices for execution time is taken. This is the case each time a
task with bcet 6= wcet is released.

In Figure 4.2, the intuition of the finitely branching, infinite computation tree
behind the model of the windmill control system is shown.

σ41b = ((τ1, 〈2, 1〉), (τ3, 〈2, 3〉))

.

.

.

.

.

.

.

.

σ5 = ((τ1, 〈2, 1〉), (τ3, 〈2, 0〉))

σ40 = ((⊥, 〈2, 1〉), (⊥, 〈2, 0〉))

σ4 = ((⊥, 〈2, 1〉), (⊥, 〈2, 0〉))

σ3 = ((τ2, 〈2, 1〉), (⊥, 〈2, 0〉))

σ2 = ((τ1, 〈2, 1〉), (⊥, 〈2, 0〉))

σ1 = ((τ1, 〈2, 1〉), (⊥, 〈2, 0〉))

σ42a = ((τ1, 〈2, 1〉), (τ3, 〈2, 2〉))

σ41a = ((τ1, 〈2, 1〉), (τ3, 〈2, 2〉))

σ42b = ((τ1, 〈2, 1〉), (τ3, 〈2, 3〉))

.

Figure 4.2: Computation tree for windmill control system

Although this tree is infinite, from each node in the tree, there is a finite sequence
of states leading back to the initial state σ1. We call such a sequence a trace
(~), e.g. the trace leading up to σ40 consists of the states σ1σ2 . . . σ40. The tree
can be created by using the Next~, which defines the set of possible next system
states by selecting the task to be executed (i.e. the task with highest priority
given a scheduling principle), and determining the possible execution vectors for
the next states, e.g. Next~ of the trace leading up to σ40 are {σ41a, σ41b}.

This has been an informal introduction to some of the concepts in the formal-
ization. In the following sections, these concepts are formalized and semantics
for applications executing on platforms is provided.

4.2 Application Model 43

4.2 Application Model

Let a finite set T of tasks be given. Each task τ ∈ T is characterized by a period
πτ ∈ N, a best-case execution time bcetτ ∈ N, and a worst-case execution time
wcetτ ∈ N, where wcetτ ≥ bcetτ > 0. A task τ needs a certain amount, between
bcetτ and wcetτ , of time units of a processor’s time to finish its job in a given
period. We formalize the notion of a processor’s time later in Section 4.3. A
task τ is characterized by an initial offset oτ ∈ N, which means that the first
period of τ starts oτ time units after the system has started. Thus, the n’th
period of task τ is the time interval [oτ + (n − 1) · πτ , oτ + n · πτ [⊂ R≥0, for
n = 1, 2, If the initial offset of a task is 0 (zero), then the task starts at
system start.

An application is modelled by a task graph G = (T ,≺), where ≺⊆ T × T is a
directed, acyclic graph. An edge (τ, τ ′) ∈≺ (also written τ ≺ τ ′) represents a
causal dependency, i.e. τ must finish its job before τ ′ can start.

A sequential component Gs = (Ts,≺s), where Ts ⊆ T and ≺s ⊆ Ts × Ts, is a
connected sub-graph of G, for which

• all tasks have the same period πTs
, i.e. πi = πj = πTs

, for τi, τj ∈ Ts, and

• the offsets of tasks are so close to each other that their first (and hence
the n’th) period overlaps, i.e. |oi − oj | < πTs

, for τi, τj ∈ Ts.

We shall, from now on, assume that G can be partitioned into sequential com-
ponents Gi = (Ti,≺i), for i = 1, . . . , N , where Ti ∩ Tj = ∅, whenever i 6= j,
T = T1 ∪ · · · ∪ TN and ≺=≺1 ∪ · · · ∪ ≺N .

Each sequential component of a task graph constitutes a model of an indepen-
dent stream-processing program. In the case of a smart phone with capabilities
for both GSM encoding and decoding as well as mp3 decoding, the task graph
could for example be two sequential components, one for the GSM en-/decoding
and another for the mp3 decoding. Note that these two components can have
different periods.

4.3 Model of the Execution Platform

A platform consists of M ≥ 1 processing elements (also called processors) PE =
(pe1, pe2, . . . , peM), where each processing element pei is capable of executing

44 Semantics for MoVES

tasks according to a given scheduling principle. We will here consider the follow-
ing preemptive scheduling strategies: rate-monotonic RM, fixed-priority FP and
earliest-deadline-first EDF scheduling. There will be no principal difficulties in
extending the model with more scheduling principles; but this will, of course,
add more details.

4.4 Mapping (System Model)

A system consists of a mapping m : T → {1, . . . ,M} of tasks to processing
elements, and a configuration Sch : PE → {RM,FP,EDF} of the scheduling
principle used by each processing element. We shall often consider the set of
tasks Tpei

mapped to a particular processing element pei, i.e. let

Tpei
= m−1(i) = {τ ∈ T | m(τ) = i}

4.5 Scheduling of Tasks

We assume that each task has a unique number given by an injective function
pr : T → {1, . . . , card(T)}. This numbering is used to define total orderings of
tasks in connection with the various scheduling principles.

A task τ has higher fixed priority than τ ′, written τ >FP τ ′, iff. pr(τ) < pr (τ ′),
i.e. smaller number given by pr means higher priority.

For rate-monotonic scheduling, the priority relation among tasks is primarily
given by their periods (shorter periods mean higher priority) and secondarily
by their numbering according to pr :

A task τ has higher rate-monotonic priority than τ ′, written τ >RM τ ′, iff
πτ < πτ ′ ∨ (πτ = πτ ′ ∧ pr(τ) < pr(τ ′)).

The priority relations >FP and >RM are total orders on the set of tasks due
to the unique numbering given by pr . Therefore, there will never be a non-
deterministic choice when scheduling according to the rate-monotonic and fixed-
priority disciplines in the system.

The relations>FP and>RM are simple since the fixed-priority and rate-monotonic
principles are static scheduling principles, i.e. the ordering relations among tasks
are independent of the current point in time. For earliest deadline first this is

4.6 Model of Computation 45

different as, for a given time point t, the task with the highest priority is that
with the shortest distance to its nearest deadline. Hence, the priority relation
between tasks may change when some new period starts during the execution.

Let t ∈ N and τ ∈ T . By distτ (t) we denote the distance from t to the nearest
deadline (i.e. the start of a new period) of τ :

distτ (t) = p− t where

{

p = oτ + n · πτ

for the smallest n ∈ N+ so that p > t

}

Notice that we have a simple setting where the deadline for a task is the same
as the start point of its next period. The model is easily extended to cope with
deadlines that are earlier than the start of the next period.

A task τ has higher earliest-deadline-first priority than τ ′ at time t ∈ N, written
τ >t

EDF τ ′, iff.

distτ (t) < distτ ′(t) ∨ (distτ (t) = distτ ′(t) ∧ pr (τ) < pr(τ ′))

The priority relation >t
EDF is also a total order, and observe that when no task

has a deadline between two time points t1 and t2, then >t
EDF = >t′

EDF, for every
t, t′ where t1 < t, t′ < t2. Thus, the earliest-deadline-first priorities can change
at time points only when some new period for a task starts.

4.6 Model of Computation

To model the computations of a system, the notion of a state, which is a
snapshot of the state of affairs of the individual processing elements, is in-
troduced. Consider a processing element pei. For that processing element
the state component must record which task in Tpei

is currently executing,
where we denote by ⊥ that no task is currently executing on pei. Furthermore,
for every task τ ∈ Tpei

, the state component also records the execution time
εi(τ) ∈ {bcetτ , bcetτ + 1, . . . ,wcetτ − 1,wcetτ} that is needed by τ to finish its
job in the current period. We call εi an execution vector for pei. Each time
a new period for τ starts, a non-deterministic choice is taken concerning the
execution time for τ in that period. Thus, a state component for pei is a tuple
(si, εi), where si ∈ Tpei

∪ {⊥} and εi is an execution vector for pei.

46 Semantics for MoVES

4.6.1 System state

A system state or just a state is an M -tuple σ = ((s1, ε1), (s2, ε2), . . . , (sM , εM)),
where (si, εi), is a state component for pei, for i ∈ {1, . . . ,M}.

A state describes the system in one time unit, and si = τ means that task τ is
executing on pei for one time unit, while si = ⊥ means that no task is executing
on pei.

4.6.2 Trace

A trace (or history) is a finite sequence of states:

~ = σ1σ2 · · ·σk

where k ≥ 0 is the length of ~, denoted by length(~). A trace with length k
describes a system behavior in the interval [0, k[.

Consider a task τ ∈ T . The completed periods of τ in a trace ~ is the set

Completed
~
(τ) = {n ∈ N+ | oτ + n · πτ ≤ length(~)}

and the current period number of τ in ~ is

cpn
~
(τ) =

0 if length(~) < oτ
1 if oτ ≤ length(~) < oτ + πτ

1 + max Completed
~
(τ) otherwise

The n’th period, n ≥ 1, of τ in ~ = σ1σ2 · · ·σk is the (possibly empty) sub-
sequence of ~:

~(τ, n) = σα+1 · · ·σα+πτ
, where α = oτ + (n− 1) · πτ .

Notice that ~(τ, n) consists of πτ states just when n ∈ Completed
~
(τ) and fewer

(possibly no) states otherwise.

The execution time execσ(τ) of a task τ ∈ Tpei
, in a state σ is

execσ(τ) =

{

1 if si = τ
0 otherwise

where σ = (s1, ε1), . . . , (si, εi) . . . , (sM , εM)).

4.6 Model of Computation 47

This notion extends to a finite sequence of states as follows:

execσ1···σj
(τ) = Σj

m=1execσj
(τ)

We denote by Finished~(τ, n) ∈ Bool whether τ ∈ Tpei
has finished its job in

the n’th period, n ≥ 1, in ~:

Finished~(τ, n) =

{

true if exec~(τ,n)(τ) = εi(τ)
false otherwise

where εi is the execution vector for processing element pei in the last system
state of ~, or the zero-execution vector ε0i , where ε0i (τ) = 0, for τ ∈ Tpei

, if the
trace ~ is empty.

4.6.3 Successor states

We shall now define the set of possible successor components states for a pro-
cessing element pei given a trace ~ with length k. Let εi be the execution vector
for pei in the last state in ~ or the zero-execution vector if the trace is empty.
For each τ ∈ Tpei

, there are the following choices for the execution vector ε′ for
the next state component of pei:

• ε′(τ) = 0, if k < oτ , i.e. the first period for τ has not started yet,

• ε′(τ) ∈ {bcetτ , bcetτ + 1, . . . ,wcetτ − 1,wcetτ}, if πτ | k − oτ (πτ divides
k− oτ), i.e. if a new period for τ starts at time k, then one of the possible
execution times for τ is chosen, and

• ε′(τ) = ε(τ), if k ≥ oτ and πτ 6 | k − oτ .

Let EV ~(i) be the (finite) set of all possible execution vectors for the next state
component of pei given ~.

For a given ε ∈ EV ~(i), a task τ ∈ Tpei
is enabled given ~ and ε, if

• ε(τ) > 0, i.e. n = cpn
~
(τ) > 0,

• Finished~(τ, n) = false, i.e. τ is not yet finished in the current period, and

• Every task τ ′ on which τ depends, i.e. τ ′ ≺ τ , is finished in the n’th period,
i.e. Finished~(τ

′, n) = true.

48 Semantics for MoVES

Let Enable~(ε, i) ⊆ Tpei
be the set of enabled tasks on pei given ~ and ε.

The enabled task (if any) with the highest priority is selected to execute on the
processing element:

Select~(ε, i) =

{

⊥ if Enable~(ε, i) = ∅
τ if τ is the biggest element in Enable~(ε, i) wrt. >

k
Sch(pei)

where k = length(~) and the priority relations >FP and >RM are extended to
the time domain in the trivial way: >t

FP = >FP and >t
RM = >RM, for t ∈ N.

The set of possible next component states for pei is defined by:

Next~(i) = { (s, ε) | ε ∈ EV ~(i) and s = Select~(ε, i) }

and the set of possible next system states is defined by:

Next~ = { ((s1, ε1), . . . , (sn, εn)) | (si, εi) ∈ Next~(i), for 1 ≤ i ≤ M }

4.6.4 Computation tree

The computation tree for a system is a finitely branching, infinite tree, where
the root is the empty trace 〈 〉 and the internal nodes are (labelled by) system
states. Furthermore,

• there is an edge from the root to a distinct node for each system state in
Next〈 〉, and

• for every internal node nd in the tree, let ~nd be a trace of system states
leading from the root to nd . For every system state σ ∈ Next~nd

there is
an edge from nd to a distinct node labelled by σ.

A run of the system is an infinite sequence of states

ρ = σ1 σ2 σ3 · · ·

occurring on some path starting from the root of the computation tree.

Notice that when the worst and best case execution times are equal for every
task in the system, then there is exactly one run of the system, as the scheduling
is deterministic.

We call a system schedulable if for every run, each task finishes its job in all its
periods. We shall now show that this problem is decidable.

4.7 Decidability 49

4.7 Decidability

We now consider the problem of determining schedulability of a system. We will
give an upper bound on the size of the part of the computation tree it suffices
to consider when checking for schedulability.

We first establish a periodic behavior of the priority relations among tasks. The
two relations >t

FP and >t
RM for the static scheduling principles are trivial as

they are, in fact, static. We just need to consider the priorities with regard to
the earliest-deadline-first principle.

4.7.1 Scheduling situations

To this end, let a situation at time t, sit t, t ∈ N, be defined by the k-tuple:

sit t = (distτ1(t), distτ2(t), . . . , distτk(t))

where k = card(T) and the numbering is given by pr . For a given time t, the
earliest-deadline-first priorities can easily be extracted from sit t (it would actu-
ally suffice just to consider situations for tasks that are mapped to processing
elements with an earliest-deadline-first discipline).

Consider an arbitrary task τ . It is easy to see that distτ satisfies the following
properties:

distτ (t) = 1 ⇐⇒ distτ (t+ 1) = πτ (4.1)

distτ (t) > 1 ⇐⇒ distτ (t+ 1) = distτ (t)− 1 (4.2)

Therefore, for every t, c ∈ N:

distτ (oτ + t) = distτ (oτ + c · πτ + t) (4.3)

Hence, when the time of the offset for τ has passed, distτ becomes periodic with
period πτ and, hence, any multiplum of πτ is a period as well.

This generalizes to situations in the following way. Let OM = max {oτ1 , . . . , oτk}
be the maximal offset in the system, and ΠH = LCM {πτ1 , . . . , πτk} be the
hyper-period for the tasks, i.e. the least common multiple of all periods of tasks
in the system. Since the period of any task in the system is a divisor of the
hyper-period, we have, using (4.3), the following periodic properties:

distτ (OM + t) = distτ (OM + c ·ΠH + t) (4.4)

sitOM+t = sitOM+c·ΠH+t (4.5)

50 Semantics for MoVES

for every t, c ∈ N.

Hence, the infinite sequence of situations

Sit = sit1 sit2 sit3 . . .

has, using (4.5), the following form

Sit = sit1 sit2 sit3 . . . sitOM
(sitOM+1 sitOM+2 . . . sitOM+ΠH

)ω (4.6)

4.7.2 Depth of computation tree

Due to 4.6 we meet situations (and scheduling priorities), for any time t ≥
OM+ΠH , that we have seen earlier. This does not mean, however, that it suffices
to consider the computation tree to a depth OM +ΠH . The problem is that the
execution times may not have ”stabilized” yet at time OM +ΠH as the example
in Figure 4.3 shows. Even though the utilization U = 1/3+1/3+2/3 = 4/3 > 1
and the system obviously is not schedulable, the first deadline is missed three
hyper-periods after the maximal offset.

task execution time period offset
wcetτ = bcetτ πτ oτ

τ1 1 3 0
τ2 1 3 1
τ3 2 3 2

9
Deadline missed

Execution for period finished

Task executingX

Start of a new period

0 3 6

0 3 6

0 3 6
X

X

X

X

X

X

XX

X

X

X
9

9

τ3

τ2

τ1

Figure 4.3: Example: deadline missed at time OM+3·ΠH , where OM = 2,ΠH =
3

4.7 Decidability 51

Consider a run ρ = σ1 σ2 σ3 . . . where, for every task, the same execution
time is chosen throughout the run, i.e. for τ ∈ Tpei

and j, k ≥ oτ we have
that εi(τ) = ε′i(τ), where σj = ((s1, ε1), . . . , (si, εi), . . . , (sM , εM)) and σk =
((s′1, ε

′
1), . . . , (s

′
i, ε

′
i), . . . , (s

′
M , ε′M)).

For a given t ∈ N, let ρt be the prefix of ρ up to time t, and execρ(τ, t) be the
execution time of τ in the current period up to time t in ρt, i.e.

ρt = σ1 σ2 · · · σt and execρ(τ, t) = execσ(τ)

where σ = ρt(τ, cpn(ρt, τ)).

Consider a time t ≥ oτ . At time t, some tasks may not have started yet and,
therefore, τ may have been granted more executing time in its current period
at time t than one hyper-period later at time t+ΠH , i.e.

execρ(τ, t) ≥ execρ(τ, t+ΠH) ≥ 0 (4.7)

where we exploit that some task is executing on a processing element whenever
there is an enabled task on that element – execution time is not wasted.

When a time tp ≥ OM is reached where for every task t ∈ T :

execρ(τ, tp) = execρ(τ, tp +ΠH)

then ρ is periodic from time tp, i.e.

ρ = ρtp (σtp+1 σtp+2 . . . σtp+ΠH
)ω

An upper bound on tp is

OM +ΠH · (1 + Στ∈T wcetτ) (4.8)

since, by (4.7), the worst-case scenario is when one task only gets its execution
time decreased (by one) when one hyper-period has passed. This upper bound
(4.8) can be improved since execρ(τ, OM) = 0 for every task τ that starts a new
period at time OM . These tasks satisfy the property: πτ | (OM − oτ). Thus, in
order to search the computation checking for schedulability, it suffices to search
to the depth: OM+ΠH ·(1+Στ∈TX

wcetτ), where TX = {τ ∈ T | πτ 6 | (OM−oτ)}.
A missed deadline that occurs deeper in the computation tree will also occur at
a depth closer to the root, but possibly on another path.

4.7.3 Number of leaves in the computation tree

Let us examine the number of nodes at the following two depths OM +ΠH and
OM + ΠH · (1 + Στ∈TX

wcetτ) in the computation tree. These numbers are the

52 Semantics for MoVES

minimum and maximum number of paths in the tree that need examination in
order to check for schedulability. For a given task τ , we let

• periodicChoices τ denote the number of non-deterministic choices for exe-
cution time in each period for τ , i.e.

periodicChoices τ = wcetτi − bcetτi + 1

• initialChoices τ denote total number of non-deterministic choices for eval-
uation time of τ until OM , i.e.

initialChoices τ = d(OM − oτ)/πτe · periodicChoices τ

• hyperChoices τ denote the number of non-deterministic choices for the eval-
uation time of τ in a hyper-period, i.e.

hyperChoices τ = (ΠH/πtau) · periodicChoices τ

Hence the total number of non-deterministic choices for the system in the time
interval [0, OM +ΠH [is

totalChoices =
∏

τ∈T

(initialChoices τ + hyperChoices τ) (4.9)

which equals the number of nodes in the computation tree at depth OM +ΠH ,
i.e. the minimum depth in the computation tree to check before a system can
be deemed schedulable. Unschedulability may be determined earlier.

The total number of non-deterministic choices for the system in the time interval
[0, OM +ΠH · (1 + Στ∈TX

wcetτ)[is

maxChoices =
∏

τ∈T

(initialChoices τ +hyperChoices τ · (1+Στ∈TX
wcetτ)) (4.10)

which equals the number of nodes in the computation tree at depth OM +ΠH ·
(1 + Στ∈TX

wcetτ), i.e. the depth in the computation tree it suffices to search
when checking for schedulability.

4.7.4 A small example showing high complexity

It is easy to give a small system with a huge number of states in the computation
tree up to the depth OM + ΠH . Consider, for example, the system with three
tasks given in Figure 4.4.

4.8 Summary 53

task execution time period offset
(bcetτ ,wcetτ) πτ oτ

τ1 (1, 3) 11 0
τ2 (1, 4) 8 10
τ3 (1, 8) 251 27

Figure 4.4: Example: Small example with a huge state space in the non-periodic
part

The maximal offset and the hyper-period of this system are:

OM = max{0, 10, 27} = 27

ΠH = LCM{11, 8, 251} = 22088

and the number of non-deterministic choices for each task in the initial part,
each period and each hyper-period are given by:

Task Periodic choices Initial choices Hyper-choices
periodicChoices τ initialChoices τ hyperChoices τ

τ1 3 9 6024
τ2 4 12 11044
τ3 8 0 704

Hence the number of nodes at depth OM + ΠH = 22115 is

totalChoices = (9 + 6024) · (12 + 11044) · (0 + 704) ≈ 4.7 · 1010

and the number of nodes at depth OM +ΠH · (1 + Στ∈TX
wcetτ) = 176731 is

maxChoices = (9 + 6024 · 8) · (12 + 11044 · 8) · (0 + 704 · 8) ≈ 2.4 · 1013

4.8 Summary

In this chapter, a formal semantics for MoVES has been given. The concepts of
the formalization was informally introduced through an example and thereafter
the full formalization was shown. After the formalization of the MoVES model,
there was a result regarding decidability of schedulability analysis of systems
modelled with MoVES, and a small example showed that the complexity of
such analysis can be rather large, especially when periods are well-chosen in
order to produce a great hyper-period.

54 Semantics for MoVES

Chapter 5

MoVES Analyses using Timed

Automata

Having a decidability result for schedulability analysis of the MoVES compu-
tational model, the next question is to get an implementation of the decision
algorithm. One way would be to construct a program directly on the basis
of the computation tree and the results from Chapter 4 using well-known tree
search algorithms such as breadth-first search. Another way would be to reduce
the problem to a SAT solving problem, and use sat solvers such as iSAT [37].
However, we will take another approach as we aim at a more general frame-
work supporting both simulation and verification of systems. We will build a
model that comprises the components of systems where applications execute on
platforms, and exhibit the parallel activities occurring in such systems.

The model will comprise the concepts supported by the ARTS framework as
described in Chapter 2, and our approach is to develop a model of systems that
can be verified using a model-checking tool. Since the model of computation for
systems is discrete, we could use a system like SPIN [35]. But the ARTS frame-
work has notions that are naturally modelled by clocks and timed automata [5].
Therefore, we will use the Uppaal [8, 40] system for modelling, verification and
simulation.

We model systems as timed automata composed in parallel - the timing aspects
are modelled in the automata modelling tasks, see Section 5.1.2. We assume that

56 MoVES Analyses using Timed Automata

the reader has general knowledge of timed automata and the Uppaal system,
and we will therefore not give introductions to timed automata and the Uppaal

system here. For such introductions we refer to [5] and [8, 40].

In this chapter, we will provide the overview of timed automata models for
MoVES. We will explain how the models correspond to the formal model from
Chapter 4 and explain the structure of the timed automata models. Not all
details will be given here, but in Appendix A the full timed automata templates,
together with variable and procedure declarations, will be provided.

In Section 5.1.2, we give four different timed-automata implementations mod-
elling tasks. We aim at implementations that are simply explained and easily
understood. The implementations should, however, also provide precise re-
sults (i.e. either ”schedulable” or ”not schedulable”). Efficient analysis is also
preferable, so that analyses can be conducted quicker and larger systems can
be analyzed. We start at an easily understood implementation where precise
results cannot be guaranteed, and end in a much more complex implementation
that yields precise results and is efficient, but whose complexity makes it much
harder to explain and understand.

This chapter is based on the initial work in [10], work that was later revised in [9]
Here, we extend the timed automata models and explain them more in terms of
the formal model from Chapter 4. Also, we consider ways to remove inherent
non-determinism (see Section 5.3.1), something that has not been considered in
previous work.

5.1 Modelling MoVES Using Timed Automata

In Chapter 4, modelling of systems was introduced through a rather informal
explanation of the concepts involved in Section 4.1. We now use these con-
cepts to explain how modelling using timed automata can capture the model of
computation for MoVES.

The model of computation spans a finitely branching, infinite computation tree,
where each node represents a system state:

σ = ((s1, ε1), . . . , (sM , εM))

where sj is the task currently executing on processing element pej, and εj is
the current execution vector for the tasks mapped to pej for j ∈ 1 . . .M . See
Figure 4.2 for an example of such a computation tree.

5.1 Modelling MoVES Using Timed Automata 57

In the timed-automata model for the system Tsys, this M-tuple is represented
using parallel composition of timed automata for each of the M processing ele-
ments:

Tsys = ‖Mj=1Tpej ‖ Tadm

where Tadm is a timed automaton administering changes in dynamic scheduling
criteria and it implements sit and dist from the formal model. The full timed-
automata template of Tadm , the administrating template, for each verification
structure can be found in Appendix A.

5.1.1 Timed-automata model for processing elements

The timed-automata model for a processing element Tpej is a parallel compo-
sition of a timed automaton modelling the operating system of the processing
element Tosj and the tasks mapped to it i.e. τj1 . . . τjk :

Tpej = ‖ki=1Tτji
‖ Tosj

The timed-automata model for the operating system on the j’th processing ele-
ment Tosj is a parallel composition of a timed automaton for a controller Tconj

,
which manages the communication between tasks and processing element, and
the individual components of the operating system. Here we include a timed-
automata model for the synchronizer Tsynchj

managing task dependencies, as
well as a timed-automata model for the scheduler Tschj

granting execution time
to the tasks ready to be executed on the processing element:

Tosj = Tconj
‖ Tsynchj

‖ Tschj

This structure of timed-automata models for systems follows the concepts and
terminology found from ARTS and described in Chapter 2. The same structure
is supported by the MoVES language defined in Chapter 3. When using a
model-checking tool such as Uppaal, simulation and counter-example traces
are given in terms of this structure as well.

The timed automata comprising a system communicate by synchronous com-
munication and shared variables. In Figure 5.1 the channel communication
internally on each processing element and between the different processing ele-
ments is shown in terms of communication between pej and pel. The operating
system osj on processing element pej is made up of conj , synchj and schj .
The timed automata for these components Tconj

, Tsynchj
and Tschj

share the
channels synchronizej and schedulej , the same holds for osl. All operating

58 MoVES Analyses using Timed Automata

reschedule

pel

Synchronizerl

Controllerl

Schedulerl

synchronizel

schedulel

pej

Synchronizerj

Controllerj

Schedulerj

synchronizej

schedulej

Figure 5.1: Communication internally and between processing elements

systems on the processing elements making up the full system share the channel
reschedule , which is used to notify other processing elements when a depen-
dency has been resolved. This ensures that Enable~(ε, j) from the formal model
is consistent for all processing elements.

In the formal model it is stated that for a task to be in the set of enabled tasks,
every task on which the task in question depends on should be finished in the
given period. When a task that has tasks depending on it finishes, we say that
the dependency is resolved. If a task is released and there are still tasks on
which it depends that have not yet finished in the given period, we say that the
task has unresolved dependencies.

We give an overview of the channel communication between processing elements
and tasks in Figure 5.2. Suppose that the set of tasks {τj1 , . . . , τjk} = Tpej

is

.........

...... ...

ExecutionP latform

pej

readyj
finishj

runj
preemptj

τjkτj1

Application

Figure 5.2: Communication between execution platform and application

executed on the processing element pej . The timed automata for these k tasks
Tτj1

. . .Tτjk
and the processing element Tpej share four channels readyj , runj ,

preemptj and finishj . The model will be constructed so that all channel events
will occur at integer time points only, and the correctness of the construction
relies on that property.

5.1 Modelling MoVES Using Timed Automata 59

Before providing timed-automata templates, we give a brief explanation of some
of the syntax seen in these automata. Timed automata are generalized finite
automata extended with real-valued clocks. Locations in timed automata may
be marked with a C (for committed) or U (for urgent). For both types of
locations it is the case that time cannot advance in these locations. Furthermore,
for committed locations it is the case that a transition leaving the location should
be taken immediately, before taking any other transitions in the system.

A double circle indicates the initial location. Names for locations are in dark red
text. Transitions can have guards, synchronization events and updates. Guards
are in green text, synchronization events are in light blue text and updates are
in dark blue text. Guards and updates ending with parenthesis indicate a call
to a procedure (code or implementation details for these procedures will not be
given here, we instead refer to Appendix A for all implementation details).

A basic timed-automata template for the controller of a processing element can
be seen in Figure 5.3. We call it a basic template as some details have been
left out. Later in this section, we will give a full timed-automata template for
the controller where these details are included. In this basic template, some

//Activate scheduler
schedule!

//Wait for scheduler
schedule?

preempt!

//Wait for synchronizer
synchronize?

//Get a ready signal
ready?

//Get a finish signal
finish?

//activate synchronizer
synchronize!

reschedule?

run!

reschedule?

finish?

ready?

reschedule!

SchedulingReadyForScheduling

ExecutingChange

Synchronizing
ReadyForSynchronizing

handleFinish()

setRunningTaskId()

handleReady()

AwaitOtherPEs

handleFinish()

setRunningTaskId()

handleReady()

Idle

preemptionNeeded()

noSchedulingChange()

needForReschedule()

processorNotRunning()

Figure 5.3: Basic timed-automata template for controllers

60 MoVES Analyses using Timed Automata

locations have been shaded while others have not. The shaded (or light blue)
locations indicate locations where work internally on the processing element is
done (i.e. communication to the synchronizer and scheduler), whereas the un-
shaded (or white) locations indicate locations where synchronization externally
with the tasks is done.

The aim of the controller is to act as a layer between the application and the
execution platform. It acts in the following manner:

From the Idle location it awaits ready or finish signals from the tasks mapped
to it. After getting the signals from the tasks and acting on them accordingly
(through the procedures handleReady and handleFinish), the synchronizer is
activated. When the synchronizer finishes, the controller activates the scheduler
and waits for that to finish.

After this, the controller waits for other processing elements to finish their syn-
chronization and scheduling. If synchronization on another processing element
resolves a dependency, rescheduling is needed; this is communicated over the
channel reschedule.

When no more rescheduling is needed, the controller executes the scheduling
change if any is needed by use of the channels preempt and run. Whether or not
a scheduling change is needed is determined by the predicates preemptionNeeded,
noSchedulingChange and processorNotRunning. Setting the identification of
the selected task in the array tauid is done by the procedure setRunningTaskId.
See more on this in Section 5.1.2 where communication between tasks and the
platform is explained.

Full timed-automata template for controllers

In Figure 5.4 a full timed-automata template for controllers is given. The tem-
plate extends the basic template from Figure 5.3. Note that the synchronization
channels ready, finish, preempt, run, synchronize and schedule are now ar-
rays indexed with the processing element. This means for example that for pe1,
ready[1-1] correspond to the synchronization channel ready1; see Figures 5.2
and 5.1.

We also add an identifier for the processing element pe. Notice that identifiers
for processing elements are assumed to start at 1 and indexing of arrays start
at 0. Therefore, we see indexing of arrays as e.g. ready[pe-1] to handle this
subtlety.

5.1 Modelling MoVES Using Timed Automata 61

//Get a ready signal
ready[pe−1]?

//Wait for synchronizer
synchronize[pe−1]?

//Activate scheduler
schedule[pe−1]!

holdPE()

//Get a finish signal
finish[pe−1]?

rescheduleNeeded=0,
holdPE()

handleFinish()

ready[pe−1]?

finish[pe−1]?

//Wait for scheduler
schedule[pe−1]?

preempt[pe−1]!

reschedule?

run[pe−1]!

//activate synchronizer
synchronize[pe−1]!

ReadyForScheduling

ExecutingChange

AwaitOtherPEs

ReadyForSynchronizing

Scheduling

Synchronizing

handleReady()

setRunningTaskId()

holdPE()

handleFinish(),
holdPE()

handleReady(),
holdPE()

setRunningTaskId()

unholdPE()

Idle

reschedule?

processorNotRunning()

noSchedulingChange()

needForReschedule()

preemptionNeeded()

reschedule!

Figure 5.4: Full timed-automaton template for controllers

Furthermore, there is an addition on several transitions of calls to the procedure
holdPE and on one transition a call to the procedure unholdPE. These procedure
calls ensure a barrier synchronization of all processing elements in the case that
a reschedule is needed.

Timed-automata model for synchronizers

A timed-automata template for the synchronizer of a processing element can be
seen in Figure 5.5.

//Synchronizer starting
synchronize[pe−1]?

//Synchronizer finishing
synchronize[pe−1]!

syncFinish(),
syncReleased()

Synchronizing

Idle

Figure 5.5: Timed-automata template for synchronizers

62 MoVES Analyses using Timed Automata

From the Idle location, the synchronizer for pej is activated through the channel
synchronize[j-1] and uses the procedures syncFinish and syncReleased to
maintain Enable~(ε, j) from the formal model.

The procedure syncFinish checks whether the finishing of a task resolves a
dependency, in which case Enable~(ε, j) is updated and a global reschedule may
be needed.

The procedure syncReleased checks whether a newly released task has un-
resolved dependencies. If it does not, it is added to Enable~(ε, j); otherwise
suitable data structures keep track of released tasks that are waiting for depen-
dencies to be resolved.

After the synchronization is completed, the synchronizer on pej notifies its con-
troller through the channel synchronize[j-1]

Timed-automata model for schedulers

A timed-automata template for the scheduler of a processing element can be
seen in Figure 5.6.

//Scheduler starting
schedule[pe−1]?

findHighestPriority()

//Scheduler finishing
schedule[pe−1]!

//Scheduler finishing
schedule[pe−1]!

Idle

noTaskSelected()

tasksReadyOnProc() Scheduling

!aTaskIsReady

aTaskIsReady

Figure 5.6: Timed automata template for schedulers

When the scheduler on pej is activated through the schedule[j-1] channel, the
procedure tasksReadyOnProc makes a check of whether Enable~(ε, j) is empty
and sets the flag aTaskIsReady accordingly.

Recall the notion of a system state:

σ = ((s1, ε1), . . . , (sM , εM))

5.1 Modelling MoVES Using Timed Automata 63

If this flag is not set on the scheduler for pej, it corresponds to sj = ⊥ in the
in the system state, the procedure noTaskSelected administers this. If one or
more tasks are ready, the procedure findHighestPriority finds the biggest
element in Enable~(ε, j) wrt. >k

Sch(pej)
. Note that the actions of the scheduler

correspond to Select~(ε, j) in the formal model.

After completion of scheduling, the scheduler on pej notifies its controller through
the schedule[j-1] channel.

5.1.2 Timed-automata model for tasks

We explain the basics of the timed-automata model for tasks through a very
basic timed-automata skeleton for tasks in Figure 5.7 (variable names of the
skeleton are commented in Figure 5.8).

In this skeleton, a select statement is added to the syntax of timed automata
(as in Uppaal). This select statement is in yellow color and is explained later
in this section. Also, invariants on locations are added, these invariants are in
purple color.

We explain the correspondence of this skeleton to the concept of the system state
of the formal model. We call this a skeleton as it is not a fully specified timed-
automata template, and it serves only to provide an overview of the internal
workings of the implementation. In sections 5.1.4, 5.1.6 and 5.1.7 we provide
actual timed-automata templates for tasks.

preempt?

finish!

run?

ready!

cp<pi

cp==pi
cp==offset

cp<pi

cp==pi

Running

DmissReleaseDone

missedDeadline=1

missedDeadline=1

exe:int[bcet,wcet]

cp=pi cp=0, cr=0, e=exe
Offset

cr<=e && cp<=pi

cp<picp<=pi

cp==pi && cr<e

cr==e

cp<=offset

Figure 5.7: Basic timed-automata skeleton for tasks

1The clock cr should only accumulate when being in the Running location

64 MoVES Analyses using Timed Automata

Identifier Type Comment
cp clock Modelling the periodicity of the task
offset int The initial offset of the task, o
pi int The period of the task, π
e, exe int Modelling the non-deterministic choice for

execution time
cr clock Modelling exec - the accumulated running time

of the task1

missedDeadline flag indicating that the task has missed a deadline

Figure 5.8: Comments for variables in basic task skeleton

Recall the system state:

σ = ((s1, ε1), . . . , (sM , εM))

Each of the sj for j ∈ {1 . . .M} correspond to the task in the Running location.
Note that at most one of the tasks mapped to the processing element pej can
be in that location at one time instant.

The execution vector εj = 〈εj(τj1), . . . , εj(τjk)〉, j ∈ {1 . . .M} corresponds to
the chosen execution times for each of the k tasks mapped to the processing
element pej at the given time instant. Note that this choice is done on the
transition going from the Idle location to the Released location of the timed-
automata template in Figure 5.7. The select statement exe:int[bcet,wcet] is
syntax for a non-deterministic choice of execution time for the given period and
correspond to the EV ~(i) in the formal model.

Note that this choice - together with the selection done by the scheduler -
corresponds to Next~(i) in the formal model. Letting time pass through the use
of the clocks cp and cr, corresponds to a run of the system ρ = σ1 σ2 σ3 · · · in
the formal model.

On the transition going from the Idle location to the Released location we can
observe the guard cp==pi and the update cp=0. The guard and update handle
the periodicity of the task, but they also ensure that ready signals are issued
at the times dictated by sit1, sit2, . . ., formalized in Section 4.7.

5.1 Modelling MoVES Using Timed Automata 65

Adding communication with the platform

In Figure 5.9 the timed-automata skeleton for tasks has been extended so that
it includes communication with the execution platform, i.e. the controller. Note

run[pe−1]? preempt[pe−1]?

ready[pe−1]!

tauid[pe−1]=tau

cp==offset[tau−1]

finish[pe−1]!

cp<pi[tau−1] &&
tauid[pe−1]==tau

cp==pi[tau−1]

cp<=pi[tau−1]−1

Running

DmissReleasedDone

missedDeadline=1

missedDeadline=1

exe:int[bcet,wcet]

cp=pi[tau−1]

tauid[pe−1]=tau,
cp=0, cr=0, e=exe,
setOrigDep(tau−1)

Offset

cr<e && cp<=pi[tau−1]

cp<pi[tau−1]cp<=pi[tau−1]cp<=offset[tau−1]

cp>pi[tau−1]−1

cr==e

cp>pi[tau−1]−1 && cr<e

Figure 5.9: Timed-automata skeleton for tasks with platform communication

that offset and pi are now arrays indexed with the task in question, and the
synchronization channels ready, run, preempt and finish are indexed with the
processing element that the task is mapped to. As an example we say that the
channel ready[1-1] is the ready channel ready1 for the processing element pe1,
see Figure 5.2. In Figure 5.10 newly added and modified variable names are
commented. Note that identifiers for tasks and processing elements tau and pe

Identifier Type Comment
tau int Identification of the task, τ
pe int Identification of the processing element that the

task is mapped to, pe
offset int array The initial offset of tasks, o
pi int array The period of tasks, π
tauid int array Communicates the identifier of the task to the

platform
setOrigDep procedure Checks if the task should initially be in

Enable~(ε, pe), see Section 5.1.1

Figure 5.10: Comments for variables in task skeleton with platform communi-
cation

are assumed to start at 1; the array placements start at 0. Therefore, to handle
this subtlety, the indexing of arrays are tau-1 and pe-1.

66 MoVES Analyses using Timed Automata

Ordering ready and finish signals

One major decision to be made when making the timed-automata implemen-
tation is how to order signals sent from different tasks to the platform. If no
ordering is done, several temporary ”invalid” scheduling decisions may be made,
i.e. a task may be selected to execute only to be preempted in zero time if a
dependent task’s finish signal is handled later.

The ordering can be conducted in several ways. Here are three different strate-
gies for ordering:

1. No ordering used. This can result in several temporary ”invalid” schedul-
ing decisions to be made, and in quite inefficient schedulability analysis.
We will not pursue this strategy further here.

2. Any finish signals on a processing element are handled before ready signals.
This means that a correct local scheduling decision will be made. There
is, however, still a chance that finishing tasks on other processing elements
will require a reschedule, as one processing element will go through the
steps of synchronization and scheduling before the next starts its steps.
Note that in order to handle finish signals first, knowledge of these must
be available before that time instant.

We use this strategy in the stop-watch automata implementation in Sec-
tion 5.1.4 and in the implementation where the running time is discretized
in Section 5.1.6.

3. All ready and finish signals are accepted before any steps of synchroniza-
tion or scheduling is done. In this way, handling finish signals before
ready signals can be done without having knowledge of which signals will
be coming before the time instant where they actually do.

We use this strategy in the alternate stop-watch automata implementation
in Section 5.1.5 and in the implementation without clocks in Section 5.1.7.

5.1.3 Preemption of tasks and different timed-automata
implementations

As noted in Figure 5.8 by the clock cr, this clock should only accumulate when
the task is in the Running location. If a task is temporarily preempted, the
accumulating clock should be stopped. Usual operations on clocks are to reset
their values to a new specific value. If we wish to stop a clock temporarily and

5.1 Modelling MoVES Using Timed Automata 67

start it again later, the automata instead becomes a more general hybrid form.
Here, we call a timed automaton with at least one clock that can be stopped a
stop-watch automaton.

In [4], Alur et al. proves that, in general, the reachability problem for stop-watch
automata is undecidable but also that certain subsets of stop-watch automata
problems are decidable. We will elaborate more on this in Section 5.4. In order
to create an implementation for the decision algorithm for schedulability analysis
as stated in Chapter 4, we give four different automata models for tasks, each
of these handle the problem of preemption in a slightly different way:

1. In Section 5.1.4, we start with a stop-watch-automata implementation
that is easily explainable and understandable. We use the syntax of an
experimental version of Uppaal that includes stop watches. The analy-
sis of this model, however, relies on the reachability of models including
stop watches. This problem, in general, is undecidable. More on this in
Section 5.4.

2. Then, in Section 5.1.5 we provide an implementation that still uses stop
watches, but this model lies within a decidable subset of problems on stop-
watch automata, again see Section 5.4 for more details. However, it is not
clear whether the developmental version of Uppaal that includes the use
of stop watches, which we use to conduct the analysis, provides precise
results for this specific type of problem. This uncertainty is due to the
fact that an over-approximation is used in the reachability analysis.

3. In Section 5.1.6 we turn to a third implementation, where we stay within
the syntax for timed-automata without stop watches. In this version, we
discretize the running time of tasks, i.e. cr in Figure 5.7 is discretized.
Analysis on the basis of this implementation of the task model is not very
efficient, especially for tasks with large periods.

4. Therefore, we finally propose in Section 5.1.7 an automata model (without
clocks) that has been genuinely discretized, and where only time points
with real interest are examined. The clocks cp and cr are replaced by
a counter that finds the next ”interesting” time point through a list of
task release times that can be generated statically and through knowledge
of task finishing times, which are identified dynamically. The interesting
time points where tasks can be released sit1, sit2, . . . have already been
identified in the construction of the timed automation Tadm . This imple-
mentation gives precise results and is efficient when it comes to analysis.
It is however, not quite as easily explainable and understandable as the
three other implementations.

68 MoVES Analyses using Timed Automata

5.1.4 Stop-watch automata model

In Figure 5.11 we provide a timed-automata template for tasks using stop
watches. The clock cr is a stop watch that is only accumulating in the Running
and RunningA locations. The syntax for stop watches is as follows: The invari-
ant cr’==1 indicates that the clock is accumulating (i.e. the rate is 1), and
cr’==0 indicates that the clock is stopped (i.e. the rate is 0). Note that an ex-

cp<pi[tau−1] && cr’==0

cr<e && cr’==1 && cp<pi[tau−1]

cp<=pi[tau−1] && cr’==0cp<=offset[tau−1]

cp=pi[tau−1]

cr<=e

taskFinishing[pe−1]=1

tauid[pe−1]=tau,
cp=0, cr=0, e=exe,
Finished[tau−1]=0,
setOrigDep(tau−1) missedDeadline=1

cp<pi[tau−1] &&
tauid[pe−1]==tau

cr>e−1 && cr<e && cp<pi[tau−1]

cp==pi[tau−1]

cr==e

cp>pi[tau−1]−1
&& cr<e−1

cp==offset[tau−1] cp>pi[tau−1]−1

cp<=pi[tau−1]−1

exe:int[bcet,wcet]

RunningA

Dmiss

missedDeadline=1

run[pe−1]?
preempt[pe−1]?

ready[pe−1]!

tauid[pe−1]=tau,
Finished[tau−1]=1,
taskFinishing[pe−1]=0

Running

Released

finish[pe−1]!

DoneOffset

Figure 5.11: Task model using stop-watch automata

tra location RunningA is added between the Running and Done locations. This
is done to handle the issue of acting on finish signals before ready signals as
explained previously. A flag for each task in the array taskFinishing is set
when entering this extra location, and the invariant of Running is altered to
ensure that the location is left before cr reaches the value of e. In this way, the
system has knowledge of all finish signals before they should be acted on.

The timed-automata templates for the stop-watch automata model, including
the task template as well as all other templates (e.g. controller, synchronizer,
scheduler and administrating template), can be found in Appendix A.1.

5.1.5 Alternative stop-watch automata model

Figure 5.12 shows an alternative implementation using stop watches. In this
timed-automata template, we add extra ”zero-time” locations to all the loca-
tions where ready or finish signals can be issued. By zero-time we mean locations
where clocks cannot advance. These locations work as polling locations. When-
ever the platform receives either type of signal, it polls all other tasks to ensure
that all signals are being handled. A slight change in the controller is needed

5.1 Modelling MoVES Using Timed Automata 69

go?

go?go?

finish[pe−1]!

Hold[tau−1]=0

preempt[pe−1]?

ready[pe−1]!

run[pe−1]?

tauid[pe−1]=tau

cp==pi[tau−1]

cp==pi[tau−1] && cr<e

cp<pi[tau−1]

cp==pi[tau−1]

cp<pi[tau−1] &&
tauid[pe−1]==tau

cp==pi[tau−1]−1cp==offset[tau−1]

cp<pi[tau−1]

cr==e

RunningU

DoneUOffsetU

exe:int[bcet,wcet]

Done DmissReleased

Running

Hold[tau−1]=0

Hold[tau−1]=1

Hold[tau−1]=0

Hold[tau−1]=0

Hold[tau−1]=1

tauid[pe−1]=tau,
cp=0, cr=0, e=exe,
Hold[tau−1]=0cp=pi[tau−1]

Hold[tau−1]=1

missedDeadline=1

missedDeadline=1

Offset

cp<=pi[tau−1] && cr’==0

cr<=e && cr’==1 && cp<=pi[tau−1]

cp<=pi[tau−1]−1 && cr’==0cp<=offset[tau−1]

cr<e

cr==e

cp==pi[tau−1]

cp<pi[tau−1]

cp==offset[tau−1]

cp<offset[tau−1]

Figure 5.12: Alternative task model using stop-watch automata

in order to follow this strategy, but nothing major. There is a flag in the array
Hold for each task that ensures that all tasks are being polled.

The timed-automata templates for the alternative stop-watch automata model,
including the task template as well as all other templates (e.g. controller,
synchronizer, scheduler and administrating template), can be found in Ap-
pendix A.2.

5.1.6 Model with discretization of the running time

In Figure 5.13 we provide a timed-automata template for tasks where the run-
ning time has been made discrete.

In this model, cr is an accumulating variable. A clock x is added to handle the
discretization. Each time unit x ensures that cr is increased by one. There is a
flag in the array disc for each task that ensures that cr for all executing tasks
is being increased each time unit. Finally, the array taskFinishing contains a
flag for each task to ensure that the system has knowledge of all finish signals
before they should be acted on.

The timed-automata templates for the model with discretization of the run-
ning time, including the task template as well as all other templates (e.g. con-
troller, synchronizer, scheduler and administrating template), can be found in
Appendix A.3.

70 MoVES Analyses using Timed Automata

finish[pe−1]!

preempt[pe−1]?

cp==pi[tau−1] &&
!lockPE(taskFinishing)

run[pe−1]?

ready[pe−1]!

x=0, disc[tau−1]=0,
taskFinishing[pe−1]=cr==e

cp>pi[tau−1]−1

x>0 &&
cr<e

cp<pi[tau−1] &&
tauid[pe−1]==tau

cr==e &&
!lockT(disc)

cp<pi[tau−1]
&& cr<e &&
!lockT(disc)

cp==offset[tau−1]

x==1 &&
cp<pi[tau−1]

Dmiss

RunningU

exe:int[bcet,wcet]

Done

Running

Released

missedDeadline=1

missedDeadline=1

disc[tau−1]=1,
cr++

tauid[pe−1]=tau,
cp=0, cr=0, e=exe,
Finished[tau−1]=0,
setOrigDep(tau−1)

x=0

cp=pi[tau−1]

tauid[pe−1]=tau,
taskFinishing[pe−1]=0,
Finished[tau−1]=1

Offset

x<1

x<=1

cp<pi[tau−1]cp<=pi[tau−1]cp<=offset[tau−1]

cp==pi[tau−1] && cr<e

cp==pi[tau−1]
&& cr==e

Figure 5.13: Task model using discretization of the running time

5.1.7 Genuine discrete model (no clocks)

In Figure 5.14, we show a timed-automata template for tasks, which is a genuine
discrete model. In this implementation, all clocks are eliminated and a counter
is instead introduced to manage the timely aspects of the model. We will not
explain this model, as the previous three models have been explained from the
timed-automata skeleton for tasks. We will instead give explanations that relate
this model directly to the formal model defined in Chapter 4 and just give the
general idea behind the model.

The general idea is to replace all clocks in the system with a counter. This
counter is placed in the timed automaton administering changes in dynamic
scheduling criteria, Tadm. The reason for placing it here is that the times for
sit in the formal model are exactly the times when tasks are being released. At
any time after some scheduling has finished, Tadm determines whether the next
interesting time point is the next task release (given by sit), or a task finishing,
which for each task is updated in an auxiliary variable cfin that is maintained
by the procedures preemptUpdate, runUpdate and finishUpdate.

In the task template shown on Figure 5.14, the three locations Done, Released
and Running can still be identified. There is an extra location, Dpoll, which
acts as a polling mechanism for whether or not the specific task is being released.

5.2 Non-Determinism in MoVES vs. Timed-Automata Models 71

lock[t_id−1]=0

lock[t_id−1]=1

oActive=0,
dead[t_id−1]=TM+pi[t_id−1],
rem=e,
lock[t_id−1]=0

oActive=1

rem=e,
handleInitialReady()

missedDeadline=1

lock[t_id−1]=0 lock[t_id−1]=1

missedDeadline=1

preemptUpdate()

finishUpdate()

runUpdate()

rem=e,
handlePeriodicReady(),
lock[t_id−1]=0

TM<offset[t_id−1]

TM==offset[t_id−1]

offset[t_id−1]>0

offset[t_id−1]==0

deadlineMissReleased()

!newPeriod()

deadlineMissRunning()

preemptValid()

taskFinish()

newPeriod()

synch?

dmissed?

synch?

dmissed?

preempt[p_id−1]?

finish?

run[t_id−1]?

OpollOffsetStart

Dpoll Dmiss

Running

Released

Done

e:int[bcet,wcet]e:int[bcet,wcet]

e:int[bcet,wcet]

Figure 5.14: Task model with no clocks

This is checked with the procedure newPeriod that effectively replaces the ready
signal from the previously presented templates.

A few optimizations have been made to make the model more efficient in a
verification context. Observe that the finish signal now originates from Tadm

rather than the task automaton. Also, after the offset (i.e. the locations Start,
Offset and Opoll), the task moves directly to the Released location rather
than Done.

The timed-automata templates for the genuine discrete model, including the
task template and all other templates (e.g. controller, synchronizer, scheduler
and administrating template), can be found in Appendix A.4.

5.2 Non-Determinism in MoVES vs. Timed-
Automata Models

In Section 4.6.4, we formalized the notion of a schedulable system to be that for
every run of the system, starting from the root of the computation tree, each
task finishes its job in all its periods. The computation tree is finitely branching,

72 MoVES Analyses using Timed Automata

and each branch corresponds to a non-deterministic choice of execution time for
some task at some time point, i.e. in the formal model, all non-determinism is
due to choices of tasks’ execution times.

In the timed-automata models given in this chapter, however, this is not the
case. All non-determinism from the branching of the computation tree in the
formal model is preserved, but when modelling using networks timed automata
composed in parallel, inherent non-determinism occur. If nothing else is defined,
whenever two or more timed automata that are composed in parallel can fire a
transition, there will be a non-deterministic choice of which of these transitions
to take (first). This introduces a lot more non-determinism into the model than
what is contained in the formal model.

When aiming for a model that can be automatically verified efficiently, reduction
of this inherent non-determinism is desirable. However, any extra functional-
ity added to the networks of timed automata will make them so complex that
they become very hard to understand. If the network of timed automata has
an ordering; each time two or more automata can fire a transition, the ordering
decides which automata is allowed then the inherent non-determinism can be re-
moved, and the only non-determinism left will be that from choices of execution
time as in the formal model.

5.3 Analyses using Timed-Automata Models and
Uppaal

With the timed-automata models provided in this chapter, schedulability anal-
ysis of MoVES systems using Uppaal can be conducted. The aim of the schedu-
lability analysis is to detect whether any deadlines of the system are missed.
Since the timed-automata templates for tasks all have a flag missedDeadline

that is set whenever a deadline is missed, schedulability analysis is checking for
reachability of a state where this flag is set.

Uppaal uses a subset of Timed Computation Tree Logic (TCTL) where modal-
ities (path quantifiers E and A, state-quantifiers [] and <>) are only allowed at
the outermost level. This gives four combinations:

E<> φ: There exists a path, where there exists a state where φ holds

A[] φ: On all paths, in all states φ holds

E[] φ: There exists a path, where in all states φ holds

5.3 Analyses using Timed-Automata Models and Uppaal 73

A<> φ: On all paths, there exists a state where φ holds

The schedulability analysis can be conducted with the following query:

A[] !missedDeadline

which reads: On all Paths, in all states, the flag missedDeadline is never set.

If this query is satisfied, no deadlines of the system are ever missed. If however
this query is not satisfied, the Uppaal system can generate a counter example
in the form of a trace of a possible way of reaching a missed deadline is given.
This can be examined in the Uppaal simulator, or used to generate a diagram,
which is what we do in the tool explained in Chapter 6 that can generateMoVES
traces.

For the model where the running time is discretized, and the model without
clocks verification can be conducted using the official version of Uppaal. How-
ever, for the two models with stop watches, one must use a developmental
version of Uppaal, where stop watches are allowed. For the decision procedure
for reachability in this version of Uppaal, an over-approximation is used.

It is worth noting here, that in order to conduct efficient verification of timed-
automata models, one needs to limit the search space as much as possible. It
is important to bound all integer variables, and also consistent use of constants
whenever possible can help reducing the state space. One major trick in reduc-
ing the state space for timed-automata models is to remove non-determinism
introduced when composing timed-automata in parallel, we will elaborate on
this in Section 5.3.1.

5.3.1 Reduction of non-determinism in Uppaal models

In the Uppaal syntax for instantiating networks of timed automata, there is a
construction that allows for ordering of individual instantiated automata called
Priorities on processes. This ordering does exactly what is described in Sec-
tion 5.2: Whenever two or more automata can fire a transition, the one with
the higher priority is selected. This means that the inherent non-determinism
introduced by modelling using timed automata composed in parallel can be
removed using this ordering. However, when using Priorities on processes, Up-

paal is unable to generate a counter example trace. Still, the result of the
schedulability analysis can be found (i.e. Property is satisfied or Property is
NOT satisfied).

74 MoVES Analyses using Timed Automata

5.4 Summary

In this chapter we have shown how the formal model of MoVES presented
in Chapter 4 can be implemented using timed automata. We have provided
explanations of how the formal model and the notion of a system state relates to
the timed-automata composed in parallel, and we show how the timed-automata
models follow the structure of ARTS as explained in Chapter 2. Finally, we
provided timed-automata templates for all the components comprising a system
in MoVES, explanations of the most important design decisions and how the
timed automata implement the different aspects of the formal model.

A major aspect in creating a timed-automata implementation is the decision
of how to deal with preemption. We already referred to Alur et al. [4] on how
the general reachability problem for stop-watch automata is undecidable. In [4],
however, there is a decidability result showing that if guards and invariants for
stop watches are limited to the form c ≤ v and c ≥ v, where c is a clock and
v is an integer (i.e. no strict equalities), these can be encoded as normal timed
automata, and the reachability problem for this subset is therefore decidable. It
seems that especially the alternative stop-watch model presented in Section 5.1.5
can be constructed to follow these limitations. This indicates that this problem
lies within the decidable subset of problems for stop-watch automata. Whether
the algorithm used in the developmental version of Uppaal where stop watches
are allowed uses the over-approximation or gives exact results for these problems
is still unclear.

Chapter 6

The MoVES Tool

In this chapter we present the tool MoVES, which is a framework for modelling
and verifying embedded systems. It is developed to assist in the early phases of
embedded systems design.

The MoVES tool can be used to conduct schedulability analysis and has the
potential to reason about different types of resource usage such as memory
usage and power consumption. The framework has a modular, parameterized
structure supporting easy extension and adaptation of the MoVES language as
well as choice of verification backend.

First, in Section 6.1, we show how the MoVES tool can be used from a user’s
perspective, give brief explanations on how to conduct schedulability analysis
using the MoVES tool, and show the use of some options that can be used for
different types of analyses.

In Section 6.2, we explain the structure of the framework that makes up the
MoVES tool. This explanation is done to give advanced MoVES users and de-
velopers an idea of how parts of the MoVES tool can be modified, e.g. if wanting
to use other verification backends with the MoVES tool. The entire process is
highlighted: from a MoVES specification and verification structure through an
auto-generated verifiable implementation to be used for the verification. All this
results in a verification result and possibly a trace showing a counter example

76 The MoVES Tool

of the verification. Not all implementation details are given here, but the full
source code for the MoVES tool can be found in Appendix B.

Although the tool has been developed to be independent of verification back-
end, the current development is based on timed-automata models and use the
Uppaal model checker as backend. Therefore, the following explanations of the
use and structure of the MoVES tool will given on the basis of this. In the
summary, Section 6.5, we discuss the use of different verification backends.

This chapter is based on the initial work first examined in [45] and later further
substantiated in [12]. We extend the work with more explanations of usage of
the MoVES tool and more in-depth explanations of its structure.

6.1 A User’s Perspective of the MoVES Tool

The user specifies a system using the MoVES language as presented in Chap-
ter 3. A specific verification structure (e.g. the implementing timed-automata
models described in Chapter 5) can be used as a basis for the analysis conducted
by the MoVES tool. A verifiable implementation (e.g. a timed automaton) of
the system is constructed on the basis of the formal model from Chapter 4 and
automatic verification of the system can be conducted.

6.1.1 Default analysis using the MoVES tool

The simplest way to use the MoVES tool is to use the default settings. Cur-
rently, the default settings use the genuine discrete verification structure that is
provided in Section 5.1.7.

Consider the windmill control system and verification property shown in Sec-
tion 1.2.1 specified in a file with the file name windmill.mvs using the syntax
of the MoVES language specified in Chapter 3. Verification using the MoVES
tool with default settings can be done with the following command:

moves windmill.mvs

The result of such verification is either Property is satisfied or Property is NOT
satisfied. In the case of the latter, a trace showing a counter example of the
verification is also generated.

6.1 A User’s Perspective of the MoVES Tool 77

In the example of the windmill control system, verification of schedulability
property is not satisfied, e.g. schedulability analysis of deadline. The verification
result from MoVES looks like this:

Verifying property 1 at line 1

-- Property is NOT satisfied.

Showing counter example.

| 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6

T1 | ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

T2 | OO+ + OO+ + OO+ + OO+ +

T3 | OOOO++OO++ OOOO++OO++ OOOO++OO++ OOOO++OO++

T4 | OO++OOX

T2_T3 | OOO+ O+ OOO+ O+ OOO+ O+ OOO+ O+

We call this type of trace a MoVES trace. In a MoVES trace, the symbols
indicate when tasks are: a) executing (+), b) released with execution time re-
maining (O), c) finished executing or without execution time remaining () and
d) missing deadlines (X). Table 6.1 shows how these task states correspond to the
locations in the stop-watch automata from Figure 5.11. Also, the corresponding
symbol used in a MoVES trace is given for each of these task states.

Table 6.1: MoVES trace symbols and corresponding locations
Task state Automata location(s) Symbol

a executing Running +

b released Released O

c done Done,Offset
d missed deadline Dmiss X

An example of verification of a satisfied property using the MoVES tool looks
like this:

Verifying property 1 at line 1

-- Property is satisfied.

6.1.2 Analysis with a specific verification structure

Certain systems or types of verification may be better suited to using different
verification structures. If a user wishes to conduct an analysis using a specific
verification structure, this can be done using one of the options provided for the
MoVES tool:

78 The MoVES Tool

-sw Using the verification structure using stopwatches from Section 5.1.5

-drt Using the verification structure where the running time is discretized from
Section 5.1.6

-nc Using the genuine discrete verification structure from Section 5.1.7

Each of these verification structures is supported by specific verification back-
end. The verification structure specified by the -sw option is supported by a
developmental version of Uppaal, where stop watches are included, as verifi-
cation backend. The verification structures specified by the other options are
supported by the official version of Uppaal as verification backend.

Note that only one of the stop-watch verification structures has been imple-
mented in the MoVES tool. There is no problem in including the stop-watch
verification structure from Section 5.1.4 in the MoVES tool also, it only requires
including it in the batch scripts presented in Section 6.3.

If the user has specified a system and specification property in a file with the file
name example.mvs, this can be verified on the basis of the verification structure
using stop watches from Section 5.1.5. Using the MoVES tool, the verification
is conducted with the following command:

moves -sw example.mvs

This verification uses the developmental version of Uppaal, where stop watches
are included, as backend. As verification using this version is based on an over-
approximation, an example of a verification could be:

Verifying property 1 at line 1

-- Property MAY NOT be satisfied.

Showing counter example.

| 0 2 4 6

T1 | ++ +

T2 | OOO+++O

T3 | OOOX

T1_T2 | OO+ O

Note the Property MAY NOT be satisfied result, indicating that the verifica-
tion uses the aforementioned over-approximation.

6.1 A User’s Perspective of the MoVES Tool 79

Reducing non-determinism leading to no trace generation

As explained in Section 5.3.1, the Uppaal syntax allows for reduction of the
inherent non-determinism introduced by modelling systems through timed au-
tomata composed in parallel. The user can enable this reduction of non-determinism
by following any of the available options by -nt. For example, using the verifica-
tion structure where the running time is discretized from Section 5.1.6 as a basis
for verification can be done as follows: A system and verification property is
specified in a file with file name example.mvs. The following command conducts
the verification using the MoVES tool:

moves -drt-nt example.mvs

A possible result of this verification could be the following:

Verifying property 1 at line 1

-- Property is NOT satisfied.

Note that even though the verification property is not satisfied, no counter-
example trace is generated, because Uppaal is unable to generate a counter
example trace when using Priorities on processes as explained in Section 5.3.1.

So far, we explain the MoVES tool to the extent shown in Figure 6.1.

structure

Specification
in the MoVES
language

The MoVES tool
Verification result
possibly with
trace

Optionally
specifying
verification

Figure 6.1: The MoVES tool from a user’s perspective

In the following section, we present the parts that make up the MoVES tool.

80 The MoVES Tool

6.2 The MoVES Framework

We call the MoVES tool a framework, as it is a flexible and extendable tool. It
provides a generic form of analysis that can be made on the basis of concrete
verification structures using concrete verification backends.

The basic idea behind developing the MoVES tool as a framework is that the
user can easily choose the verification structure that is best suited for the desired
verification. Generally, the wish is to have a flexible and extendable tool, in
which slight chances in the verification structure do not require its recompilation.

In developing the formal model in Chapter 4 and the timed automata implemen-
tations in Chapter 5, the framework-structure of the MoVES tool has proven
very useful. It makes it easy to experiment with small alterations to implemen-
tations and verification structures, as no recompilation of the tool is needed for
small chances. Furthermore, quick verification of a set of standard examples
can easily be conducted when a new or altered verification structure is tested.

The MoVES tool has been developed in the functional programming language
SML [51]. No further introduction to functional programming or SML is given
here. We refer to Introduction to Programming using SML [28] and the website
for Moscow ML [55] for further information. The full concrete SML implemen-
tation of the MoVES tool can be found in Appendix B. The purpose of this
chapter is to convey the main idea only.

Generally, the MoVES tool can be explained in four parts:

Frontend: The system specification and the desired verification property are
parsed and represented in suitable data structures. We call these data
structures a MoVES syntax tree.

Model generation: On the basis of the MoVES syntax tree and the chosen
verification structure, the MoVES tool constructs a verifiable implemen-
tation. This implementation is suitable for verification using a specific
backend.

Verification: The verifiable implementation is verified by the backend that
matches the chosen verification structure. A verification result is then
found possibly together with a counter-example trace.

Trace generation: Because the result of the verification is given in terms of the
verification backend and the structure used, the trace generator translates
any possible counter-example trace to a diagram consisting of time points,

6.2 The MoVES Framework 81

and what tasks are executing at these time points. The diagram can be
understood directly based on the specification in the MoVES language.

In the following, we will present these four parts of the MoVES tool in more
detail. Note that this presentation is based on how this has been done in terms
of verification structures given in the Uppaal syntax. This is so that the general
idea of the MoVES tool can be understood.

6.2.1 Frontend

In Figure 6.2, the idea of the frontend of the MoVES tool is shown.

Frontendex.mvs MoVES syntax tree

Figure 6.2: The frontend for the MoVES tool

In order to capture the information from the system specification, the specifi-
cation is parsed and represented in suitable data structures: a MoVES syntax
tree. The parsing of the system specification and generation of the MoVES
syntax tree have been implemented using the syntax for the Moscow ML lexer
generator (mosmllex) and parser generator (mosmlyac) (see [55] for further in-
formation on the syntax). The full lexer and parser specifications can be found
in Appendix B.1. Here is also the abstract syntax used for the frontend and
model generator, as well as a few auxiliary functions used for parsing.

In Section 4.2, a few definitions describing well-formed parts of the system, e.g.
same period for all tasks in the same application. These definitions should be
included in the frontend, but has not been at this point.

6.2.2 Model generator

In Figure 6.3, the idea of the model generator of the MoVES tool is shown.

Model generation by the MoVES tool is basically the action of adding infor-
mation in terms of attributes of the specified system to the desired verification
structure. At the current time, all verification structures that users can select
between are given in the Uppaal syntax. A verification structure is basically
an annotated XML representation of a network of Uppaal timed automata.

82 The MoVES Tool

structure

Model generatorMoVES syntax tree Verifiable model

Verification

Figure 6.3: The model generator

The first step in adding information to a verification structure given in the
Uppaal syntax is to identify the areas that are system dependent and those
that are system independent. We denote areas of the verification structure
that are the same no matter what system is modelled as system independent.
These areas are just copied directly into the resulting model. The areas of
the verification structure that differ from system to system, such as number of
processing elements and tasks, scheduling principles, tasks’ timely properties
etc., we call system dependent. These are altered to make the implementing
model reflect the specified system.

For the model generator in the MoVES tool, we have chosen to insert tokens in
the verification structure to identify these parts. These tokens are as follows:

6.2 The MoVES Framework 83

//System-Dependent Decl Declarations of constants, variables and pro-
cedures that are dependent on the actual mod-
elled system. These are things like the number
of processing elements and tasks, scheduling
principles chosen for the specific processing
elements and timely properties for individual
tasks such as periods and offsets.

//System-Independent Decl Declarations of constants, variables, proce-
dures and individual timed-automata tem-
plates that are independent of the system
modelled. These are the general data struc-
tures and procedures that are in place. They
are the same, no matter which system is mod-
elled.

//System-Dependent Inst Instantiations of the network of timed au-
tomata that are dependent on the modelled
system. Usually all instantiations are system
dependent, as the number of tasks and pro-
cessing elements and some of their properties
are specified here. The differentiation between
system-dependent and -independent instanti-
ations is made to ensure that further develop-
ment can be conducted in the same setting.

//System-Independent Inst Instantiations of the actual timed automata
that are not dependent on the actual system
modelled. This is usually empty; see also
system-dependent instantiations above.

The tokens indicate the start of system-dependent and -independent declara-
tions of variables and procedures as well as system-dependent and -independent
instantiations. All system-dependent declarations are assumed to be in the
global declarations and not in the local declarations of the individual timed-
automata templates.

The following is an example of the beginning of the global declarations for a
verification structure specified in the Uppaal syntax. Note that in Appendix A,
the full specification of the four different verification structures can be found,
where these tokens are included.

clock TM;

const int FP = 0, RM = 1, EDF = 2; //symbolic representation

//of scheduling principles

//System-Dependent Decl

84 The MoVES Tool

const int M = 2;

const int N = 3;

const int MN = 3;

const int[FP,EDF] processorScheduling[M] = FP, RM;

...

const int MaxExe=6;

const int MaxPi=30;

//System-Independent Decl

//Synchronization channels

broadcast chan reschedule; //broadcast channel for reschelduling

//after a task has finished

chan synchronize[M], schedule[M];

...

Adding most of the information is straightforward, such as the number of pro-
cessing elements and tasks that can just be counted. Also, directly-specified
information such as scheduling principles of processing elements and timely
properties for tasks, e.g. periods and offsets, can be found directly from the
specification.

A collection of SML functions have been developed in order to extract this
information from the MoVES syntax tree and add it to the XML representation
for the network of timed automata given by the verification structure. We will
not explain all of these functions here, only highlight the most important. See
Appendix B.2 for the concrete SML implementation of all of these functions.

Scheduling situations

An important construction in the model generation done by the MoVES tool
is generating time points for scheduling situations (see sit in the formal model
in Chapter 4). This is done by the function mkBothULists with the following
SML signature:

taskDescription = offset * period * taskid

6.2 The MoVES Framework 85

order = taskid list

optimize = "U" | "O"

taskReleases = sit list

prioritizedReleases = taskReleases * priority list

mkBothULists = taskDescription list -> order -> optimize ->

prioritizedReleases * prioritizedReleases

This function takes a list of task descriptions as argument, one for each task in
the system is in the list. A task description is a triple (o, p, e), where o is the
task’s offset, p is the task’s period and e is the external representation of the
task or the taskid. The function generates two lists of scheduling situations
(see sit in Chapter 4) or taskReleases, as well as a list of priorities for each
of these situations to be used when earliest-deadline-first scheduling is speci-
fied. We call a list of scheduling situations together with a list of priorities
prioritizedReleases. The first of these corresponds to scheduling situations
occurring before the maximal offset has been reached, whereas the second cor-
responds to those occurring after the maximal offset has been reached, at which
point the situations are periodic.

Let us take an example to highlight the use of mkBothULists. Consider a
system consisting of three tasks, T1, T2 and T3 with the following properties:
Task Period (π) Offset (o)
T1 3 0
T2 3 1
T3 3 2

The following value tdl represents the list of task descriptions for this system
in SML syntax:

val tdl = [(0,3,"T1"),(1,3,"T2"),(2,3,"T3")]

Applying the function mkBothULists to the list of task descriptions, where the
order of the external representation of tasks is T1,T2,T3 and with unoptimized
list generation, can be done as follows:

mkBothULists tdl ["T1","T2","T3"] "U"

This function application generates the following pair of prioritized releases:

86 The MoVES Tool

(([1,2],[[1,2,3], [1,2,3]]),

([3,4,5],[[1,2,3], [3,1,2], [2,3,1]])

)

We see that there is one scheduling situation at time point 1 before the max-
imal offset, 2 is the maximal offset. Initially and throughout the time until
the maximal offset, the priority lists show that task prioritization according to
earliest-deadline-first is such that the first task (in terms of the order of external
representations) has highest priority and the third has lowest priority, i.e. T1
has highest priority and T3 has lowest priority.

After the maximal offset, there are scheduling situations at time points 3, 4 and
5 (after time point 5 the scheduling situations and prioritized releases become
periodic). Before the scheduling situation at time point 3, the priority list still
gives T1 first priority, T2 second priority and T3 third priority. At time point
3, the priority list shows that T1 has third priority, T2 has first priority and T3
has second priority. At time point 4, the priority list shows that T1 has second
priority, T2 has third priority and T3 has first priority. This means that at time
point 5, the scheduling situations become periodic and acts as time point 2, and
the first element in the prioritized releases is once again valid.

We can generate prioritized releases with optimized lists, so that consecutively
following scheduling situations that have the same priority list will be omitted,
i.e. only changes in priority lists will be included. Applying mkBothULists to
the system with the same order on external representation of task but with
optimized lists can be done as follows:

mkBothULists tdl ["T1","T2","T3"] "O"

This function application generates the following pair of prioritized releases:

(([2],[[1,2,3]]),

([3,4,5],[[1,2,3], [3,1,2], [2,3,1]])

)

There is no semantical difference, just that the repetition of the priority list
[1,2,3] at time point 1 is removed. The optimized lists can easily be used as
long as the scheduling situations are only used to manage earliest-deadline-first
priorities. But when using the scheduling situations to capture interesting time

6.2 The MoVES Framework 87

points as with the genuine discrete model, see Section 5.1.7, all time points must
be preserved. In that case, unoptimized lists must be used.

The full source code for the model generator written in SML can be found in
Appendix B.2. This source code includes all functions that are used to create
the model generator.

6.2.3 Verification of properties

In Figure 6.4, the basic idea of verification with the MoVES tool is shown.

Verification backendVerifiable model
Verification result
possibly with trace

Figure 6.4: Verification in the MoVES tool

The basic idea of verification is to just let the verification happen. The veri-
fiable implementation is generated for a specific verification backend. As the
verification backend can be a model checker developed externally (in which we
have no control), we just let the backend conduct the verification and thereby
get a verification result with possible counter-example trace.

In the case of the verification structures presented here, we have shown the use
of two different verification backends: 1) the original Uppaal model checker,
and 2) the developmental version of Uppaal including the use of stop watches.
If different verification backends are introduced into the MoVES tool, verifica-
tion structures, model generation and later trace generation should be altered
accordingly - more on this in Section 6.5.

6.2.4 Trace generator

In Figure 6.5, the idea of the trace generator of the MoVES tool is shown.

Trace generatorpossibly with trace
Verification result

MoVES trace

Figure 6.5: The trace generator

88 The MoVES Tool

Trace generation by the MoVES tool is rather straightforward, but highly de-
pends on the output of the verification backend. This explanation will be con-
ducted in terms of the output produced by the Uppaal model checker. If a
different verification backend is used, the approach will differ - more on this in
Section 6.5. The general idea of trace generation can be understood from the
explanation in this section.

The output of a Uppaal verification is a result (i.e. Property is satisfied or
Property is NOT satisfied). Furthermore, an option can be enabled to generate
a counter-example trace in addition to the verification result. This trace is given
in terms of the Uppaal timed-automata syntax and state space, and it can be
rather tedious to examine this directly. Therefore, the trace generator parses
this trace and provides the user with a diagram that is given in terms of the
original system specification with time points for task releases, task executions
and deadline misses. This diagram resembles that of figure 3.3. We call such a
diagram a MoVES trace.

The trace provided by the Uppaal verification contains a snapshot of each state
and each transition that takes the combined network of timed automata from the
initial state to a state where the verification property (A[] !missedDeadline) is
violated. In generating a trace in the form of a MoVES trace, the trace generator
parses the Uppaal and represents the trace in suitable data structures.

Functions over these data structures can then identify which tasks were in what
locations at any given time point in the trace. This is exactly the information
needed in order to generate a MoVES trace. Table 6.1 shows how task states
correspond to the locations in the stop-watch automata from Figure 5.11. Also,
the corresponding symbol used in a MoVES trace is given for each of these task
states.

The MoVES trace corresponding to that from Figure 3.3 is given here:

| 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6

T1 | ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

T2 | OO+ + OO+ + OO+ + OO+ +

T3 | OOOO++OO++ OOOO++OO++ OOOO++OO++ OOOO++OO++

T4 | OO++OOX

T2_T3 | OOO+ O+ OOO+ O+ OOO+ O+ OOO+ O+

Note that T2 T3 corresponds to the activity on the bus b1 from Figure 3.3, due
to the fact that the communication from T2 to T3 is the only activity on the
bus.

6.3 Integrating the Pieces 89

On a side note, the original trace fromUppaal representing this trace is 684,545
characters on 3,148 lines of text. This emphasizes how much less tedious it is
to analyze the representation of the trace that the MoVES trace provides.

A lexer definition, a parser definition and a collection of SML functions conducts
the parsing of the trace from Uppaal, extracts the information needed in order
to generate the MoVES trace and generates the MoVES trace to be presented
to the user. The concrete SML implementation of the lexer, parser and these
functions can be found in Appendix B.3.

6.3 Integrating the Pieces

The model generator (modelgen) and the trace generator (tracegen) are two
individual programs that require suitable arguments for correct analysis. Fur-
thermore, the frontend and the verification backends are individual parts that
need to be executed in the correct manner. Therefore, batch scripts ensure cor-
rect invocation of the programs with their arguments and also provide the user
with default settings if simply the fastest analysis is desired.

The batch script allows usage of the MoVES tool in the following ways:

• Simple default analysis: For this type of analysis, no option is specified,
and the default verification structure and verification backend are used as
basis for the analysis.

• Analysis with specific verification structure: For this type of analysis, the
user specifies which verification structure to use as basis for the analysis.
With the choice of verification structure comes the verification backend
selection, as each verification structure is associated with a specific back-
end.

For either analysis type, the MoVES tool conducts the following actions:

1. The system specified in the MoVES language is parsed and represented in
suitable data structures in a MoVES syntax tree.

2. The model generator generates a verifiable implementation based on the
verification structure and the specified system. The generated model in-
herits the file name of the system specification with an added file extension,

90 The MoVES Tool

”.xml” in the case of Uppaal models. The model generator also gener-
ates a verification query file if needed. In the case of Uppaal verification
queries, the query file inherits the file name of the system specification
with the added file extension ”.q”.

3. The verification backend conducts the specified verification and provides
the verification result (i.e. Property is satisfied or Property is NOT satis-
fied). Furthermore, a trace file is generated by the verification backend.
The trace file inherits the file name of the system specification with the
added file extension ”.trace”.

4. The trace generator generates a MoVES trace, which corresponds to the
trace file generated by the verification backend, and presents it to the user.

Currently, we have developed two batch scripts, one for Windows users and
another for Linux users. Both of these scripts can be found in Appendix C.

We can now show that the idea behind the framework is reached and that it
should be easy to make changes to verification structures without the need for
recompilation of the MoVES tool. Consider the stop-watch verification structure
presented in Section 5.1.4. This structure can be used to do analysis with the
MoVES tool. If we now consider the alternative stop-watch verification structure
presented in Section 5.1.5 to be a refinement of the original structure, we see
that this verification structure can be used by the MoVES tool without any
need for recompilation or changes to the tool. We simply use a different option
for choosing the correct verification structure.

6.4 The MoVES Tool Available Online

Interested users should direct their attention to the website:

http://www.imm.dtu.dk/moves

Here the MoVES tool can be downloaded as platform-specific executables and
batch scripts. Also, the full source code written in SML can be downloaded.
Note that compiler (mosmlc), lexer generator (mosmllex) and parser generator
(mosmlyac) for Moscow ML are needed for compilation of the MoVES tool.

At this website there is also documentation and instructions for MoVES, as well
as links to academic work concerning the development and theoretic background.

http://www.imm.dtu.dk/moves

6.5 Summary 91

6.5 Summary

In this chapter, we presented the MoVES tool. The basic use of the tool was
shown through an example, and we showed how to use some of the more ad-
vanced features, e.g. different verification structures. For more advanced users,
we presented the structure of the framework that makes up the MoVES tool.
This was intended to provide the users with an overview to make it easier to
improve the MoVES tool, e.g. by changing verification structures or introducing
different verification backends.

The introduction of different verification backends has been slightly touched
upon and can be summed up here. In the work presented in Chapter 5, differ-
ent verifiable implementations using the Uppaal syntax were provided. It has
become clear, through the development of the MoVES tool, that using different
versions of the Uppaal model checker does not complicate the development of
the MoVES tool much, as almost the same syntax is used.

If a user wishes to introduce a different timed-automata model checker, such
as Kronos, the frontend could probably still be used without alterations. In
the model generator more changes would be needed, as the syntax used for
verification structures and verifiable implementations for Kronos differs from
that for Uppaal. But the general idea could be kept, as both deal with networks
of timed-automata. It is clear that a totally different trace generator would be
needed, as the verification result from Kronos most certainly would differ from
Uppaal results.

However, if a user would like to introduce a totally different verification backend
- a SAT solver for example - then much more severe alterations to the differ-
ent parts of the MoVES tool would be needed. It would be wise to develop
verifiable implementations in the form of SAT-solving problems, as was done
for timed-automata implementations in Chapter 5 using the annotations. Much
inspiration can be found in the structure of the current MoVES tool, even for
such different backends.

92 The MoVES Tool

Chapter 7

Examples

In this chapter we will provide some examples of system specification and use
the MoVES tool to conduct analyses. The chapter serves as an indication of
how MoVES can be used and may inspire further development.

With the examples presented in this chapter, we show how the MoVES tool can
be used in connection with analyses on a few different levels. In Section 7.1, we
show how the MoVES tool is envisioned to be used in connection with design
space exploration. The example of an mp3 decoder in Section 7.2 shows that
the MoVES tool can be used for systems of a size that resembles interesting
systems found in industry.

In Section 7.3, we show how the MoVES tool can be used to analyze systems
with multiprocessor anomalies. The example provided in Section 7.4 shows how
the MoVES tool does analysis on systems where a deadline is not missed before
much later than the maximal offset and a hyper-period. Finally, in Section 7.5,
we experiment with systems with very large hyper-periods, and test the limits
of the size of systems that the MoVES tool can conduct analysis on.

All the verification of the examples in this chapter has been conducted on a
standard PC running Windows Vista, with a 2.4 GHz Intel Core2 Duo processor
and 4GB of RAM. The only exceptions are the experiments with the size of the
computation tree in Section 7.5.1. The system that these experiments have been

94 Examples

Application

Task: T1

Period: 4

Offset: 0

Task: T2

Period: 6

Offset: 0

Task: T3

Period: 6

Offset: 0

Task: T4

Period: 6

Offset: 40

Dependencies

T2 -> T3 : 2

Platform

Proc: P1

Sch: RM

Proc: P2

Sch: EDF

Bus: b1

Arb: FIFO

Speed: 2

Mapping

T1 : P1

T2 : P1

T3 : P2

T4 : P2

Creq

T1 @ P1

Bcet: 2

Wcet: 2

T2 @ P1

Bcet: 1

Wcet: 1

T3 @ P1

Bcet: 5

Wcet: 5

T3 @ P2

Bcet: 2

Wcet: 2

T4 @ P2

Bcet: 2

Wcet: 3

Property

Schedule?

Figure 7.1: MoVES specification for windmill control system

conducted on is specified in that section.

7.1 The Windmill Control System

This example is the windmill control system that we have used several times
previously to explain areas of MoVES. The first time we presented this example
was in Section 1.2.1. We show the MoVES specification for this system one
more time in Figure 7.1 to avoid confusion.

Let the specification from Figure 7.1 be saved in a file, say ”windmill control.mvs”.
With the following command:

moves windmill control.mvs

7.1 The Windmill Control System 95

the following MoVES trace is produced:

Verifying property 1 at line 1

-- Property is NOT satisfied.

Showing counter example.

| 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6

T1 | ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

T2 | OO+ + OO+ + OO+ + OO+ +

T3 | OOOO++OO++ OOOO++OO++ OOOO++OO++ OOOO++OO++

T4 | OO++OOX

T2_T3 | OOO+ O+ OOO+ O+ OOO+ O+ OOO+ O+

Upon examination of the MoVES trace, we observe that the missed deadline
occurs after 46 milliseconds and that it is the task T4 that misses the deadline.

7.1.1 Exploring the design space

With design space exploration as described in Section 3.1.8, three different ac-
tions are available in order to avoid the missed deadline and construct a schedu-
lable system: 1) remapping of some tasks to different processing elements, 2)
rewriting the application to generate different timely properties for some tasks or
alter dependencies, and 3) reconfiguring the execution platform by e.g. chang-
ing the protocols used by the different processing elements and busses such as
scheduling principles and arbiters.

Remapping

In the case of the windmill control system, there is only one option available for
remapping. The task T3 can be mapped to both processing elements, P1 and P2.
By altering the specification, mapping T3 to P1, and conducting schedulability

96 Examples

analysis on the altered specification, we get the following from the MoVES tool:

Verifying property 1 at line 1

-- Property is NOT satisfied.

Showing counter example.

| 0 23

T1 | ++

T2 | OO+

T3 | OOOX

T4 |

The schedulability analysis fails after only 3 milliseconds with a missed deadline
of T3. We conclude that remapping alone is not a suitable action for constructing
a schedulable system. (Remapping could possibly be done in connection with
one of the other actions in design space exploration.)

Rewriting the application

If it is possible to rewrite the application so that the timely properties of some
tasks change, it may generate a schedulable system. If, for example, it is possible
to rewrite the task T4 to have both best-case and worst-case execution time be
2, we can conduct schedulability analysis on the altered system. By altering
the worst-case execution time for T4 from 3 to 2 in the original specification
and conducting analysis on the altered system, we get the following from the
MoVES tool:

Verifying property 1 at line 1

-- Property is satisfied.

The altered system is schedulable. We can conclude that if T4 can be imple-
mented so that both best-case and worst-case execution times are 2, then the
system is without deadline misses. However, we find that it is not possible to
implement T4 to exhibit such behavior. We therefore turn to reconfiguration of
the execution platform.

Reconfiguring the execution platform

If we can change the configuration of the execution platform, it may generate a
schedulable system. We turn to the scheduling principles used by the processing

7.1 The Windmill Control System 97

elements to see if we can gain something there. The processing element P2 uses
rate-monotonic scheduling, and if it can use earliest-deadline-first scheduling, a
change here could lead to a solution to the schedulability problem. By altering
the original specification to let P2 use EDF scheduling and conducting schedu-
lability analysis in the altered system, we get the following from the MoVES
tool:

Verifying property 1 at line 1

-- Property is satisfied.

The altered system is schedulable. We can conclude that if P2 can use earliest-
deadline-first scheduling instead of rate-monotonic scheduling, we can generate
a schedulable system by using this.

More reconfiguration

Many factors could be of interest when constructing a system such as the wind-
mill control system. In reconfiguring the execution platform, we changed the
scheduling principle of one processing element from rate-monotonic scheduling
to earliest-deadline-first scheduling, so that both processing elements are using
earliest-deadline-first. However, considering that the administration involved
with using earliest-deadline-first is probably greater than that of rate-monotonic,
this could lead the system designer to prefer rate-monotonic scheduling.

We found that using earliest-deadline-first on P2 led to the system being schedu-
lable, but we did not explore the scheduling principle of P1. We now attempt
to change the system specification so that the scheduling principle of P1 is EDF
instead of RM in the already-altered specification where P2 uses EDF. Conduct-
ing schedulability analysis on this system, we get the following from the MoVES
tool:

Verifying property 1 at line 1

-- Property is satisfied.

We can conclude that by altering the system from the original specification
so that P1 uses rate-monotonic scheduling and P2 uses earliest-deadline-first
scheduling, we can generate a schedulable system.

98 Examples

task period execution time offset
πτ bcetτ = wcetτ oτ

τ0 30,000 45 0
τ1 30,000 20 0
τ2 30,000 20 0
τ3 30,000 1,545 0
τ4 30,000 1,545 0
τ5 30,000 595 0
τ6 30,000 595 0
τ7 30,000 2,685 0
τ8 30,000 108 0
τ9 30,000 108 0
τ10 30,000 895 0
τ11 30,000 895 0
τ12 30,000 6,087 0
τ13 30,000 6,087 0
τ14 30,000 11,200 0
τ15 30,000 11,200 0

Table 7.1: Timely properties for mp3 decoder

7.2 MP3 Decoder

We now turn to the example of an mp3 decoder briefly introduced in Chapter 2.
In Figure 2.5 we provided a task graph with an indication of the mapping onto
a platform consisting of two processing elements and a bus connecting them.
In [48], a table is provided giving all the timely properties of the system. It
quickly becomes clear, however, that the system as a whole cannot be verified
using the MoVES tool with Uppaal as backend, as the system runs out of
memory.

In order to make schedulability analysis of the mp3 decoder using the MoVES
tool, we remove the non-determinism from choices of execution times by only
analyzing worst-case execution times. In Table 7.1 the timely properties for the
mp3 decoder in this context is given.

In Figure 7.2, the full MoVES specification for the mp3 decoder is given.

Because the verification still runs out of memory, we remove the inherent non-
determinism. See more in Section 5.3.1 on non-determinism introduced by mod-
elling using timed automata composed in parallel. With the specification given
in Figure 7.2 located in the file called ”mp3Dec.mvs”, the schedulability analysis

7.2 MP3 Decoder 99

Application

Task: T0

Period: 30000

Offset: 0

Task: T1

Period: 30000

Offset: 0

Task: T2

Period: 30000

Offset: 0

Task: T3

Period: 30000

Offset: 0

Task: T4

Period: 30000

Offset: 0

Task: T5

Period: 30000

Offset: 0

Task: T6

Period: 30000

Offset: 0

Task: T7

Period: 30000

Offset: 0

Task: T8

Period: 30000

Offset: 0

Task: T9

Period: 30000

Offset: 0

Task: T10

Period: 30000

Offset: 0

Task: T11

Period: 30000

Offset: 0

Task: T12

Period: 30000

Offset: 0

Task: T13

Period: 30000

Offset: 0

Task: T14

Period: 30000

Offset: 0

Task: T15

Period: 30000

Offset: 0

Dependencies

T0 -> T1 : 0

T0 -> T2 : 0

T1 -> T3 : 0

T2 -> T4 : 0

T3 -> T5 : 0

T4 -> T6 : 0

T5 -> T7 : 0

T6 -> T7 : 0

T7 -> T8 : 0

T7 -> T9 : 0

T8 -> T10 : 0

T9 -> T11 : 0

T10 -> T12 : 0

T11 -> T13 : 0

T12 -> T14 : 0

T13 -> T15 : 0

Platform

Proc: P1

Sch: RM

Proc: P2

Sch: RM

Bus: B1

Arb: FIFO

Speed: 2

Mapping

T0 : P1

T1 : P1

T2 : P2

T3 : P1

T4 : P2

T5 : P1

T6 : P2

T7 : P2

T8 : P2

T9 : P1

T10 : P2

T11 : P1

T12 : P2

T13 : P1

T14 : P2

T15 : P1

Creq

T0 @ P1

Bcet: 45

Wcet: 45

T1 @ P1

Bcet: 20

Wcet: 20

T2 @ P2

Bcet: 20

Wcet: 20

T3 @ P1

Bcet: 1545

Wcet: 1545

T4 @ P2

Bcet: 1545

Wcet: 1545

T5 @ P1

Bcet: 595

Wcet: 595

T6 @ P2

Bcet: 595

Wcet: 595

T7 @ P2

Bcet: 2685

Wcet: 2685

T8 @ P2

Bcet: 108

Wcet: 108

T9 @ P1

Bcet: 108

Wcet: 108

T10 @ P2

Bcet: 895

Wcet: 895

T11 @ P1

Bcet: 895

Wcet: 895

T12 @ P2

Bcet: 6087

Wcet: 6087

T13 @ P1

Bcet: 6087

Wcet: 6087

T14 @ P2

Bcet: 11200

Wcet: 11200

T15 @ P1

Bcet: 11200

Wcet: 11200

Property

Schedule?

Figure 7.2: MoVES specification for mp3 decoder

100 Examples

using the MoVES tool can be done. We use the genuine discrete model as a
basis and remove the inherent non-determinism. The analysis can be conducted
with the command:

moves -nc-nt mp3Dec.mvs

The result of the schedulability analysis from the MoVES tool is:

Verifying property 1 at line 1

-- Property is satisfied.

The system as specified is schedulable, i.e. the mp3 decoder will meet all of its
deadlines in all of its periods if all tasks are executed in worst-case execution
time.

7.2.1 Re-introducing some non-determinism

Although it is not possible to analyze the original mp3 decoder with all the non-
determinism included (i.e. all intervals from best-case to worst-case execution
times), we can still add a little of the non-determinism. We add one time unit
of non-determinism for each task that has worst-case execution time of more
than 500 time units (i.e. all tasks except T0, T1, T2, T8 and T9). In Table 7.2
the timely properties of the system with that non-determinism reintroduced are
given.

Analysis of the mp3 decoder with some non-determinism can now be conducted
using the MoVES tool, and the result is:

Verifying property 1 at line 1

-- Property is satisfied.

This example shows that although the MoVES tool cannot analyze the original
mp3 decoder with all its non-determinism, it is possible to conduct analysis of
the system with some of the non-determinism included.

7.3 Multiprocessor Anomalies 101

task period best case worst case offset
πτ bcetτ wcetτ oτ

τ0 30,000 45 45 0
τ1 30,000 20 20 0
τ2 30,000 20 20 0
τ3 30,000 1,544 1,545 0
τ4 30,000 1,544 1,545 0
τ5 30,000 594 595 0
τ6 30,000 594 595 0
τ7 30,000 2,684 2,685 0
τ8 30,000 108 108 0
τ9 30,000 108 108 0
τ10 30,000 894 895 0
τ11 30,000 894 895 0
τ12 30,000 6,086 6,087 0
τ13 30,000 6,086 6,087 0
τ14 30,000 11,199 11,200 0
τ15 30,000 11,199 11,200 0

Table 7.2: Timely properties for mp3 decoder

7.3 Multiprocessor Anomalies

In this section we examine the example system with an interesting multiproces-
sor anomaly that was shown in Section 3.1.11. The MoVES specification of this
system is given in Figure 7.3 once again to avoid confusion.

Conducting schedulability analysis with the MoVES tool on the system yields
the following result:

Verifying property 1 at line 1

-- Property is NOT satisfied.

Showing counter example.

| 0 23

T1 | + +

T2 | O+ O

T3 | + +

T4 | OO+O

T5 | OOOX

Note that the counter-example trace is consistent with the expected trace shown
in Figure 3.5(b), namely that T5 misses a deadline after three time units.

102 Examples

Application

Task: T1

Period: 3

Offset: 0

Task: T2

Period: 3

Offset: 0

Task: T3

Period: 3

Offset: 0

Task: T4

Period: 3

Offset: 0

Task: T5

Period: 3

Offset: 0

Dependencies

T1 -> T2 : 0

T3 -> T4 : 0

T4 -> T5 : 0

Platform

Proc: P1

Sch: RM

Proc: P2

Sch: RM

Proc: P3

Sch: RM

Bus: b1

Arb: FIFO

Speed: 2

Mapping

T1 : P1

T2 : P2

T3 : P3

T4 : P2

T5 : P3

Creq

T1 @ P1

Bcet: 1

Wcet: 2

T2 @ P2

Bcet: 1

Wcet: 1

T3 @ P3

Bcet: 1

Wcet: 1

T4 @ P2

Bcet: 1

Wcet: 1

T5 @ P3

Bcet: 1

Wcet: 1

Property

Schedule?

Figure 7.3: MoVES specification for system with multiprocessor anomaly

7.4 Very Late Deadline Miss 103

If the application is rewritten so that T1 always has an execution time of two
time units, schedulability analysis of the altered system can be conducted. Con-
ducting this analysis using the MoVES tool gives the following result:

Verifying property 1 at line 1

-- Property is satisfied.

This example illustrates the interesting phenomenon of a local best-case exe-
cution time triggering a missed deadline, where worst-case execution time does
not (i.e. this is an example of a multiprocessor anomaly).

7.4 Very Late Deadline Miss

We now turn our attention to an example that shows just how late a deadline
miss can occur. The system was introduced in Section 4.7.2. In Figure 7.4, the
MoVES specification for this system is given.

Application

Task: T1

Period: 3

Offset: 0

Task: T2

Period: 3

Offset: 1

Task: T3

Period: 3

Offset: 2

Dependencies

Platform

Proc: P1

Sch: EDF

Bus: b1

Arb: FIFO

Speed: 2

Mapping

T1 : P1

T2 : P1

T3 : P1

Creq

T1 @ P1

Bcet: 1

Wcet: 1

T2 @ P1

Bcet: 1

Wcet: 1

T3 @ P1

Bcet: 2

Wcet: 2

Property

Schedule?

Figure 7.4: MoVES specification of system with late deadline miss

Conducting schedulability analysis using the MoVES tool provides the following

104 Examples

result:

Verifying property 1 at line 1

-- Property is NOT satisfied.

Showing counter example.

| 0 2 4 6 8 01

T1 | + O+ OO+OOO

T2 | + O+ OO+OO

T3 | ++ O++OO+X

We can see that the system is not schedulable as T3 misses a deadline after 11
time units. The interesting aspect here is that the maximal offset is two and
the hyper-period is three. In other words, the deadline miss occurs in the third
hyper-period after the maximal offset.

7.5 Systems with Large Hyper-Periods

In this example, we examine a system with a very large hyper-period. We
introduced the example in Section 4.7.4. The timely properties for this system
were given in Figure 4.4. In Figure 7.5, we provide the MoVES specification for
the system.

Application

Task: T1

Period: 11

Offset: 0

Task: T2

Period: 8

Offset: 10

Task: T3

Period: 251

Offset: 27

Dependencies

Platform

Proc: P1

Sch: EDF

Bus: b1

Arb: FIFO

Speed: 2

Mapping

T1 : P1

T2 : P1

T3 : P1

Creq

T1 @ P1

Bcet: 1

Wcet: 3

T2 @ P1

Bcet: 1

Wcet: 4

T3 @ P1

Bcet: 1

Wcet: 8

Property

Schedule?

Figure 7.5: MoVES specification of system with large hyper-period

7.5 Systems with Large Hyper-Periods 105

With periods 11, 8 and 251, the hyper-period is calculated as LCM{11, 8, 251}=
22088.

Conducting schedulability analysis on this system using the MoVES tool tests
the capabilities of the MoVES framework and the verification backend. The
result is the following:

Verifying property 1 at line 1

-- Property is satisfied.

However, if we attempt to analyze the system where T3 has a worst-case execu-
tion time of nine instead of eight, the verification fails with an out of memory
error message. This system tests the limits of how large a system the MoVES
framework can analyze when using Uppaal as verification backend.

Note that the verification was conducted on a standard PC running Windows
Vista. Since the Uppaal model checker (verifyta) is a single-threaded 32-bit
process, it can only be allocated 2GB of RAM by a Windows operating system.
If running the MoVES tool with the Uppaal backend on a PC running Linux,
the 32-bit process can be allocated in approximately 3.4GB of RAM, and some-
what larger systems can be verified that way. We now look a bit further into
this.

7.5.1 Experimenting with size of computation tree

We will now conduct some experiments to analyze the correlation between the
size of the computation tree of a system needing to be explored (see Section 4.7.3
for details concerning sizes of computation trees), as compared to the amount
of memory used in schedulability analysis with the MoVES tool.

The following verification examples have all been conducted on Linux servers
with 4 dual core AMD Opteron processors running at 2.4 GHz and with 32GB
of RAM.

The example with a large hyper-period is now analyzed in eight slightly different
versions, where we change the worst-case execution time for the task T3. In
Table 7.3 we show the number of nodes in the computation tree at the depth it
suffices to search when checking for schedulability as shown in Section 4.7.3 with
the definition of maxChoices in Equation (4.10). Also, we show the maximal
amount of memory used by the MoVES tool when conducting schedulability
analysis.

106 Examples

wcetT3 maxChoices Max memory used
5 1.5 · 1013 1.3GB
8 2.4 · 1013 1.8GB
11 3.3 · 1013 2.2GB
14 4.2 · 1013 2.4GB
17 5.1 · 1013 2.6GB
20 6.0 · 1013 2.9GB
23 6.9 · 1013 3.2GB
26 7.8 · 1013 3.4GB

Table 7.3: Size of computation tree vs. memory usage by the MoVES tool

1 2 3 4 5 6 7 8

x 10
13

1

1.5

2

2.5

3

3.5

Number of leaves in computation tree

M
em

or
y

us
ag

e
in

 G
B

Figure 7.6: Computation tree vs. memory usage

We see that as the size of the computation tree grows, the amount of mem-
ory needed by the MoVES tool when conducting schedulability analysis grows
somewhat accordingly. This is an indication that there is a correlation between
the memory requirements needed for analysis using the MoVES tool and the
computation tree identified in the formal model in Chapter 4.

7.6 Summary

In this chapter we have shown how systems can be analyzed and schedulability
verified using the MoVES tool. The examples showed that the framework can

7.6 Summary 107

conduct analysis of systems that are close to industrially-interesting sizes such as
the mp3 decoder. We also showed how the MoVES tool can be used to analyze
systems with multiprocessor anomalies. In short, this chapter gave a snapshot
of how MoVES can be used in the design space exploration at an early stage in
the design process of embedded systems.

108 Examples

Chapter 8

Perspective

In this chapter we will highlight some of the perspective enabled through the
work presented in the dissertation. Firstly in Section 8.1, we discuss the use of
different verification structures and backends in the MoVES tool. In Section 8.2,
we comment on analysis of purely deterministic systems where all tasks have
bcet = wcet . Section 8.3 contains ideas regarding analysis of resource usage such
as power and memory consumption. Then, in Section 8.4, we have a deeper
explanation of the realization of some tasks of embedded systems in hardware
and how the realized components can have timely properties from the MoVES
specification verified.

In Section 8.5, we touch on some of the underlying assumptions that are inte-
grated in the model for MoVES, and we give indications of how some of these
can be lifted and the model altered accordingly. Section 8.6 discusses how the
task model in MoVES relates to tasks found in networked, embedded control
systems. We especially touch on control tasks, where sampling is an integrated
component. Finally, in Section 8.7, we present a vision for a development pro-
cess for embedded systems that relies on refinement steps. We explain where
we feel that MoVES fits into this type of a process.

110 Perspective

8.1 Verification Structures and Backends

The work presented in this dissertation relies on the use of four specific ver-
ification structures. They are all timed automata in Uppaal syntax. Two
verification backends are used, which are two different versions of the Uppaal

model checker.

The MoVES tool is developed as a framework to be independent of verification
structures and backends. In Chapter 6 we discussed how the use of other verifi-
cation structures and backends can be deployed within the framework, and the
ease with which verification structures can be altered and still be used within
the framework without the need for recompilation.

Interesting alternative backends could include other timed-automata model check-
ers such as Kronos [20], different SAT solvers such as iSAT [37] and implemen-
tation of well-known tree search algorithms. The possible use of Kronos as
backend and the implications thereof were discussed in Section 6.5.

If using a SAT solver as verification backend for the MoVES tool is desired,
suitable verification structures should be developed. Posing the schedulability
problem as a SAT problem can be conducted, as an upper limit of the depth
of the computation tree has been defined. Therefore, bounded model checking
could be used to conduct automatic verification of such a problem in the MoVES
tool.

Another approach for solving the schedulability problem would be to generate
the computation tree directly. On the basis of this, well-known tree search
algorithms (e.g. depth-first or breadth-first search) could be used to conduct
the analysis. This approach could contribute as another verification backend to
the MoVES tool.

8.2 Purely Deterministic Systems

The MoVES language, the formal model and the MoVES tool presented in this
dissertation have focused on capturing systems that exhibit behavior, which
can be represented in a computation tree such as the one depicted in Figure 4.2.
This type of computation tree is really interesting if some branching occurs.
However, from the point of analysis, even systems that exhibit a behavior that
can be represented in a non-branching computation tree may still give valuable
verification results. We call such systems purely deterministic, as the computa-

8.3 Analysis of Resource Usage 111

tion tree never branches, i.e. the system is without non-deterministic choices of
execution times.

In the case of the mp3 decoder that we conducted analysis on in Section 7.2,
we did the initial analysis on a system where the computational requirements
for all tasks had best-case execution time equal to worst-case execution time.
Systems like this exhibit exactly the behavior that can be represented in a non-
branching computation tree. Verification results for schedulability analysis of
such systems are still correct and valuable.

An interesting concept occurs when conducting verification on a non-branching
computation tree. There is no need to keep track of which nodes in the compu-
tation tree have been visited already, and therefore, the memory usage of such a
verification can be dramatically reduced. As a result, much larger systems can
be verified if they are represented in a non-branching computation tree.

In [46], we did experiments with this type of model. An experimental version of
Uppaal, where no tracking of visited nodes in the computation tree needed to be
kept, was made available to us. With the use of this as verification backend, we
conducted schedulability analysis on a smartphone consisting of 3 applications
with a total of 103 tasks executing on a platform with 4 cores. This can easily
be considered a system that is close to industrially-interesting size.

8.3 Analysis of Resource Usage

In MoVES, as presented in this dissertation, no specific attention has been
given to the area of resource analysis such as analysis of power consumption
and memory usage. However, we have conducted several experiments where
resource analysis was a component.

The general idea of introducing resource usage in MoVES is to add the attributes
identifying the individual resource usage by specific tasks on specific processing
elements directly to the computational requirements. Furthermore, the notion
of allocation of resources must be introduced, so that access to resources is
managed. The introduction of allocation of resources to MoVES is envisioned
to be conducted much like the scheduling. Different protocols for managing
resource allocation (e.g. priority ceiling) can be modelled.

With the power consumption of executing a task on a given processing element
specified, suitable verification queries can give upper and lower bounds on the
total power consumption of the system over time. The same can be done for

112 Perspective

memory usage, and analysis can identify the greatest amount of memory needed
at any time for any possible execution of the system.

In [46], we provided examples of analysis including resource usage. We showed
that bounds on power consumption and memory usage could be guaranteed
using an extended model in the general MoVES framework.

8.4 Hardware Specifications and Tasks in MoVES

The notion of a task in MoVES is defined in terms of its timely properties and
dependencies with other tasks. When mapped to a specific processing element,
the computational requirements for the task with that mapping must be spec-
ified. We have not given any explanation of how to extract the computational
requirements (i.e. best-case and worst-case execution times) as of yet.

In this dissertation, we have not touched the topic of whether tasks are imple-
mented in hardware or software. This has been done so that developers are not
forced to make design decisions too early and to leave room for design space ex-
ploration. If a task is implemented in software, one can attempt executing that
specific task on different processing elements in order to extract computational
requirements; this is how the extraction of computational requirements for the
mp3 decoder example from Section 7.2 was done in [60].

With tasks implemented strictly in hardware, there can be more direct ways
to extract computational requirements. This is the case if these tasks are
implemented as dedicated hardware components (ASIC) or as programmable
components (FPGA). Extraction of computational requirements on the basis
of specifications of tasks implemented in hardware requires a language with a
certain abstraction level. The level should be low enough to be realized, i.e.
automatically synthesized in hardware, but also high enough to avoid a level of
detail that will clutter a clear semantics. We have identified Gezel as being such
a language.

8.4.1 Gezel specifications

Gezel [59] is a high-level hardware description language. It comes with an
interpreter as well as a translator with VHDL [36] as its target language. With
the interpreter, simulation can be done at the level of abstraction provided by
Gezel, a level that is higher than other hardware description languages (e.g.

8.4 Hardware Specifications and Tasks in MoVES 113

VHDL and Verilog [62]). This is very useful for debugging. The translator can
give synthesizable VHDL descriptions. In other words, a Gezel description is a
hardware specification that can be realized.

A Gezel specification describes a number of components and their interconnec-
tions. A component in Gezel is made up of a datapath and a controller. A
datapath provides a number of actions, and a controller is expressed as a fi-
nite state machine where one or more actions can be executed in each state
transition.

This model is called a finite state machine with datapath (FSMD). Figure 8.1
shows the structure of an (FSMD).

control input

control output

data input

data output

command

status

FSM Datapath

Gezel-component

control computation

Figure 8.1: The FSMD model

8.4.2 Key elements from the semantics domain

The Gezel language as described in [59] does not have formal semantics, and
there are no tools for verification of Gezel specifications. In [27], we gave a
semantics domain that can be used for hardware design languages like Gezel.
Here, we will highlight some of the key notions of the semantics domain but we
refer to [27] for details.

The semantics provide definitions for modules. Modules are the building blocks
for systems. There are three different types of modules: basic modules, compo-
sition of modules and top-level module.

114 Perspective

Semantically, a module is basically a Mealy automaton with the addition of
a single function that allow for parallel composition of modules, especially for
cases where inputs are computed by other modules. Composition of modules
preserves this semantical basis.

A basic module consists of input- and output ports, signals, registers, and a set
of actions. Each action is a single assignment program where registers, signals
and output ports can be assigned a value. All assignments of registers and
signals must be done in basic modules. No such assignments can exist at the
level of composition of modules or at the top level.

Composition of modules (either basic- or already composed modules) is defined
as modules composed in parallel using single assignment programs to connect
their input- and output ports as well as any input- or output ports of the
resulting composed module.

A top-level module describes the system as a whole at the highest level in the
hierarchical structure. All input- and output ports of the modules composed by
the top-level module are connected to either ports of the other modules involved
in the composition or to the ports of the top-level module. The ports of the top-
level module describe the interface (input- and output ports) of the described
system to the outside world.

8.4.3 Verification and analysis of quantitative properties

Using the semantics domain highlighted here, an implementation can be con-
structed on this basis. In [27], we gave such an implementation in finite au-
tomata. With the use of the Uppaal model checker, we conducted verification
of the functionality of a few smaller examples. The verification could guarantee
that any combination of input to the system would generate an output (i.e. a
”final” state would be reached), and furthermore that the resulting output was
correct (i.e. corresponded to a mathematical specification or result table).

In [11], the type of analysis of implementations in finite automata based on
the semantics domain was extended to also include non-functional aspects. We
conducted analysis on the size of the resulting hardware component in terms of
the required number of lookup-tables on an FPGA. Analysis of the latency and
throughput of the resulting hardware component was also conducted.

We showed that the analysis can guarantee computational requirements in terms
of number of cycles needed before a result is ready, as well as the latency of one

8.5 Ideal Assumptions 115

cycle. This indicates that a link to best-case and worst-case execution times of
tasks described as hardware components in Gezel has been established.

8.5 Ideal Assumptions

In the work described in this dissertation, some underlying ideal assumptions
have been made. An area for further development could be to examine whether
any of these could be lifted and then handled within the framework.

One obvious assumption is the progress of time. On the multi-core systems
modelled in MoVES, all clocks in the different components of the system are
assumed to be synchronized. There has been much work analyzing clock drift,
and it could be an interesting area in the future to examine how drifting clocks
affect the models in MoVES. The work in [3] provides timed-automata models
for systems with perfectly periodic digital clocks as well as different types of
clocks with non-perfect periods. Inspiration for including clocks that drift could
possibly be found here.

Another assumption is that the time conducting scheduling changes and task
preemption (and possible context switching) is ignored. This time could be
assumed to already be included in the computational requirements for the tasks.
But since tasks can have several preemptions during one period, and different
amounts of preemptions in different periods, it could be very interesting to see
how it would affect the models in MoVES if scheduling delay and delay for task
preemption and context switches would be included. This is another interesting
area for future work.

8.6 MoVES in the Context of Networked Em-

bedded Control Systems

In [15], Cervin el al. present the tool TrueTime, which is a simulation tool that
can be used in development of networked embedded control systems. Its main
focus is systems developed for automatic control. Often, sampling is an inte-
grated component of the control systems. Specifically, sampled control theory
is used, where a discrete digital controller controls a continuous system through
sampling.

In sampling control theory, the sampling tasks are usually periodic with a certain

116 Perspective

frequency, which is chosen high enough to ensure the correct behavior of the
controlled system. Also, there is a natural list of tasks to be done periodically.

It seems that the notions of periodicity and task dependencies are identified in
much the same manner in TrueTime and sampled control theory as envisioned
in MoVES. The connection to sampled control theory was identified quite late
in the project. Most of the time was spent relating the work to streaming
applications. As a result, we have not explored this connection further as of yet.
It would be an interesting area for further research to explore whether systems
from sampled control theory would be naturally modelled and analyzed using
MoVES.

8.7 MoVES in a Greater Development Process

Throughout this dissertation, we have pointed out that it is the intent for
MoVES to be used by designers of embedded systems in early development
phases. We have also shown how to specify systems in MoVES, and through
this, described what is needed in order to use the MoVES tool for analysis. We
will now discuss how we envision MoVES being used in the development pro-
cess of embedded systems. The approach envisioned here relies on the notions
of specification and refinement from Unifying Theories of Programming [34].

8.7.1 An example - railway crossing refinement

The aim would be to have a development process with a special focus on trace-
ability from an overall requirements specification to components on a multi-core
platform. Think of a railway crossing: one would have clear requirements spec-
ified mathematically - requirements that specify the timing properties at the
highest level of abstraction. These requirements would dictate how signal lights
and train gates should act in any successful realization.

The realization of such requirements would be achieved through a number of
refinement steps. Each step would contain computational rules that ensure the
step preserves the specification from which the refinement was based.

The traceability through the development process would allow developers to
clearly identify which parts of the realized components originate from what
parts of the specifications at any given refinement step. For example, for a
task for opening a train gate at a train crossing, which is executed on a specific

8.7 MoVES in a Greater Development Process 117

processing element, the developer would be able to identify which part of the
initial overall requirements specification gave rise to the task, and exactly what
refinement steps led to the exact realization.

8.7.2 Development process in general terms

Initially, an embedded system should ultimately be specified at a high level of
abstraction in a simple and convincing fashion using mathematical notation.
Through a number of refinement steps, more and more design decisions should
be made, and each step should preserve the properties of the specification that
are refined.

At some step, one or more applications of the embedded system are specified,
including a number of tasks, and task graphs indicating dependencies. At this
point, design decisions regarding choices of execution platform can be made.
With these choices, MoVES can be used to analyze the different designs, and
the MoVES tool can verify that the design decisions preserve the properties of
the original specification.

After this refinement step, the result is specifications of the tasks and process-
ing elements that constitute a verifiably correct system based on the analysis
conducted with the MoVES tool. Further refinement steps should lead to im-
plementations of the specified tasks, either in software or as dedicated hardware
components. The tasks implemented in software are to be executed on pro-
cessing elements with the chosen real-time operating system attributes. The
tasks implemented as dedicated hardware components could possibly be refined
toward Gezel-like specifications as mentioned in Section 8.4.

118 Perspective

Chapter 9

Conclusion

The general goal of this work is to provide languages, models, tools and method-
ologies, which in early stages of the design process can help the designer of
embedded systems analyze different configurations and setups of systems.

In Chapter 1, we gave an overview of the setting in which this work should
be considered, and we pointed out different approaches and current research
within the area of analysis of embedded systems. Chapter 2 highlighted the
ARTS framework, which has been a key inspiration in the work on MoVES.
Through examples, we also showed that for some systems, theories that are
well founded within classic scheduling theory for single-processor systems do
not generalize to multi-core systems, e.g. the use of a critical instant.

The MoVES language was defined in Chapter 3, together with a few examples
that highlighted its use. In Chapter 4, a formal model for MoVES was derived.
A computation tree for a system was defined to capture all possible runs of the
system. A definition of the schedulability problem in the context of the formal
model was given through a decidability result. This gave an upper limit to how
much of the computation tree for a system needed to be examined in order to
ensure schedulability. A small example system indicated that even apparently
simple systems can be difficult to analyze complexity wise.

Chapter 5 showed how the formal model and the schedulability problem could

120 Conclusion

be encoded using timed automata and verified using the Uppaal model checker.
In using Uppaal as verification backend, we found that it scaled much better
than expected. We learned a few tricks, especially to bound all integer variables
and use constants whenever possible to reduce the state space. We also expe-
rienced that priorities on processes, which we touched on in Section 5.3.1, was
a convenient approach to removing inherent non-determinism. Furthermore,
when developing the genuine discrete verification structure from Section 5.1.7,
we found that the Uppaal model checker also performed well for models with-
out clocks. Actually in most cases, analysis based on this verification structure
uses less memory for the verification and provides the verification results faster
than any of the other verification structures mentioned.

The MoVES tool, a framework for analysis and verification of embedded sys-
tems, was presented in Chapter 6. The tool was built to support automatic
verification of properties of embedded systems such as timing properties, i.e.
schedulability analysis. The tool uses the MoVES language as specification lan-
guage, and the verification is conducted on implementations of the formal model
for MoVES.

In Chapter 7, we used a few examples to show how the MoVES tool works in
connection with analysis of embedded systems. We used the MoVES tool in
connection with simple design space exploration, but we also showed how it can
be used to analyze systems with interesting properties such as multiprocessor
anomalies. Finally, some experiments showed the limits on the size of problems
that the MoVES tool can analyze.

Chapter 8 gave some insight into how MoVES can be further developed, areas of
particular interest when further development is done, and also how we envision
MoVES being used in a greater development process when designing embedded
systems in the future. Regarding special interest in future development, we
should mention the following: 1) analyze and experiment with systems from the
area of networked, embedded control systems to examine whether these could
directly be analyzed using MoVES and 2) explore how this work could inspire a
development process for embedded systems that is closer to classic development
methods used in software development - possibly inspired by Unifying Theories
of Programming.

9.1 Final Remarks

We have established a semantic basis for analysis of applications executing on
multi-core platforms. On this semantic basis, a language, a model and a tool

9.1 Final Remarks 121

have been developed for automatic verification in the context of schedulability
analysis of multi-core embedded systems. They have also opened up for other
types of analysis of such systems. Examples have shown that timed-automata
implementations are suitable as verification structures that can form a basis for
automatic verification.

With this dissertation we have found and justified, that semantically-based ver-
ification is a suitable approach when analyzing embedded systems. A few ex-
amples, especially the example of the mp3 decoder in Section 7.2, show great
promise in terms of using MoVES to analyze systems that are industrially in-
teresting in size and complexity.

Throughout the dissertation, especially in Chapters 5 and 6, we showed that
interesting properties of embedded systems can be modelled and verified using
models of timed automata and the Uppaal model checker.

122 Conclusion

Appendix A

Timed-Automata Templates

for Verification Structures

This appendix includes timed-automata templates for the verification structures
presented in the dissertation in Chapter 5.

A.1 Stop-watch automata model

This is the full definition of the stop-watch automata verification structure. The
task model was presented in Section 5.1.4.

A.1.1 Global declarations

1 const i n t FP=0, RM=1, EDF=2;
2
3 //System−Dependent Decl
4 const i n t M = ; //The number o f Proces sor s
5 const i n t N = ; //The maximum number o f tasks per Proces sor
6 const i n t MN = ; //The t o t a l number o f tasks
7
8 i n t [FP,EDF] proces sorSchedu l ing [M] = {} ; //Contains in f ormat i on

about the schedu l ing p r i n c i p l e f o r each p r oc e s s o r .

124 Timed-Automata Templates for Verification Structures

9 i n t [0 ,MN] onPE [M] [N]={} ; // g l oba l t a s k i d s from l o c a l s
10 const i n t p i [MN] = {} ; //RM schedu l ing p r i o r i t i e s
11 const i n t o f f s e t [MN] = {} ; // g l oba l o f f s e t in f ormat i on
12 const i n t f p r i s [MN] = {} ; //FP schedu l ing p r i o r i t i e s
13
14 // array f o r o r i g i n a l dependencies , 1 f o r dependency , 0 f o r no

dependency − {{0 ,1} ,{0 ,0}} means that 1 i s dependant on 2
15 bool or i gdep [MN] [MN]={} ;
16
17 // dynamical ly updated array f o r cur r ent dependencies
18 bool depend [MN] [MN]={} ;
19
20 i n t [1 ,MN] p r i [MN] ; //EDF schedu l ing p r i o r i t i e s
21
22 // dynamical ly updated p r i o r i t i e s
23 const i n t NRSteps=, NROffSteps=, MAXOffStep=, MAXStep=;
24
25 const i n t [0 ,MAXOffStep] Of fSteps [NROffSteps] = {} ;
26 const i n t [1 ,MN] Of fPr i os [NROffSteps] [MN] = {} ;
27
28 const i n t [0 ,MAXStep] Steps [NRSteps] = {} ;
29 const i n t [1 ,MN] Pr i os [NRSteps] [MN] = {} ;
30
31 const i n t MaxExe=;
32 const i n t MaxPi=;
33
34 //System−Independent Decl
35
36 // Synchron i zat i on channel s
37 broadcast chan r e s chedu l e ; // broadcast channel f o r r e s c h e l d u l i n g

a f t e r a task has f i n i s h e d
38 chan synchron i ze [M] , s chedu l e [M] ;
39 chan ready [M] , run [M] , preempt [M] ;
40 chan f i n i s h [M] ;
41
42 i n t [0 ,MN] tauid [M] ; // t r a n s f e r o f l o c a l t a s k i d from task to

c o n t r o l l e r
43 i n t [0 ,MN] cu r t i d [M] ; // va r i ab l e used to hold the id o f the task

cu r r en t l y chosen
44 // i n t [0 ,MN] f t i d [M] ; // ta s k i d o f task which has f i n i s h ed , f t i d=0

means no f i n i s h e d task
45 i n t [0 ,MN] l t i d [M] ; // va r i ab l e used to hold the id o f the task

cu r r en t l y running
46 bool Released [MN] ; // array o f tasks which have i s s u ed ready s i g n a l s
47 bool Enabled [MN] ; // array o f tasks which are not await ing

dependencies to be r e s o l v ed
48 bool rescheduleNeeded ; // i n d i c a t o r f o r the need f o r a g l oba l

r e s chedu l e
49 bool F in i shed [MN] ; // array s p e c i f y i n g which tasks are f i n i s h ed now
50 bool WaitDep [MN] ; // array f o r tasks which are await ing dependencies

to be r e s o l v ed
51 bool Running [M] ; // i n d i c a t i n g wether a task i s cu r r en t l y running on

the p r oc e s s o r
52 bool missedDeadl ine = f a l s e ; // i n d i c a t o r f o r a missed dead l ine
53

A.1 Stop-watch automata model 125

54 // C r i t e r i a usab l e in schedu l ing
55 i n t s t a t i c C r i t e r i a [M] [N] ; // c r i t e r i o n used f o r s t a t i c s chedu l ing

and conta ins the o r i g i n a l parameters f o r dynamic schedu l ing .
56 i n t dynamicCr i ter ia [M] [N] ; // c r i t e r i o n used f o r dynamic schedu l ing
57
58
59
60 //Locking mechanisms
61 bool d i s c [MN] ; // l o ck i ng mechanism f o r ensur ing f u l l d i s c r e t i z a t i o n

run
62 bool t a s kF i n i s h i ng [M] ; // l o ck i ng mechanism f o r ensur ing r ea c t i on to

a l l f i n i s h s i g n a l s b e f o r e any ready s i g n a l s
63
64 // f unc t i on checking f o r dependencies f o r task t
65 bool taskHasDependency (i n t t) {
66 f o r (i n i : i n t [0 ,MN−1]) {
67 i f (depend [t] [i n i]) {
68 r eturn true ;
69 }
70 }
71 r eturn f a l s e ;
72 }
73
74 // f unc t i on updating dependencies when task t has f i n i s h ed
75 void opdDep (i n t t) {
76 f o r (i n i : i n t [0 ,MN−1]) {
77 depend [i n i] [t]= f a l s e ;
78 }
79 }
80
81
82 // f unc t i on checking f o r ex i s t ance o f boolean value in array o f s i z e

M
83 bool lockPE (bool l a [M]) {
84 f o r (i n i : i n t [0 ,M−1]) {
85 i f (l a [i n i]) {
86 r eturn true ;
87 }
88 }
89 r eturn f a l s e ;
90 }
91
92 // f unc t i on checking f o r ex i s t ance o f boolean value in array o f s i z e

MN
93 bool lockT (bool pen [MN]) {
94 bool b = f a l s e ;
95 f o r (i n i : i n t [0 ,MN−1]) {
96 i f (pen [i n i] == true) {
97 r eturn true ;
98 }
99 }

100 r eturn f a l s e ;
101 }
102
103 // f unc t i on checking i f task t i s on p r oc e s s i ng element p

126 Timed-Automata Templates for Verification Structures

104 bool isOnPE (i n t t , i n t p) {
105 f o r (i : i n t [0 ,N−1]){
106 i f (onPE [p−1] [i]==t) r eturn true ;
107 }
108 r eturn f a l s e ;
109 }

A.1.2 Task template

cp<pi[tau−1] && cr’==0

cr<e && cr’==1 && cp<pi[tau−1]

cp<=pi[tau−1] && cr’==0cp<=offset[tau−1]

cp=pi[tau−1]

cr<=e

taskFinishing[pe−1]=1

tauid[pe−1]=tau,
cp=0, cr=0, e=exe,
Finished[tau−1]=0,
setOrigDep(tau−1) missedDeadline=1

cp<pi[tau−1] &&
tauid[pe−1]==tau

cr>e−1 && cr<e && cp<pi[tau−1]

cp==pi[tau−1]

cr==e

cp>pi[tau−1]−1
&& cr<e−1

cp==offset[tau−1] cp>pi[tau−1]−1

cp<=pi[tau−1]−1

exe:int[bcet,wcet]

RunningA

Dmiss

missedDeadline=1

run[pe−1]?
preempt[pe−1]?

ready[pe−1]!

tauid[pe−1]=tau,
Finished[tau−1]=1,
taskFinishing[pe−1]=0

Running

Released

finish[pe−1]!

DoneOffset

A.1.3 Task template declarations

1 c l ock cp , c r ;
2 i n t e ;
3
4 void setOrigDep (i n t t) {
5 f o r (i n i : i n t [0 ,MN−1]) {
6 i f ((o f f s e t [t]> o f f s e t [i n i])&&Fin i shed [i n i])
7 depend [t] [i n i]= f a l s e ;
8 e l s e
9 depend [t] [i n i]= or i gdep [t] [i n i] ;

10 }
11 }

A.1 Stop-watch automata model 127

A.1.4 Controller template

PEtoPEComm PEtoAPPComm

ExecutingChange

ReadyForScheduling Scheduling

SynchronizingAPPtoPEComm

Idle

reschedule!

reschedule?

run[pe−1]!

preempt[pe−1]!

//Wait for scheduler
schedule[pe−1]?

//Activate scheduler
schedule[pe−1]!

//Wait for synchronizer
synchronize[pe−1]?

//activate synchronizer
synchronize[pe−1]!

//Get a ready signal
ready[pe−1]?

//Get a finish signal
finish[pe−1]?

rescheduleNeeded=false

Running[pe−1]=true

setRunningTaskId()setRunningTaskId()

Released[tauid[pe−1]−1]=true
Running[pe−1]=false,
opdDep(tauid[pe−1]−1),
Enabled[tauid[pe−1]−1]=false

rescheduleNeeded

!rescheduleNeeded

noSchedulingChange()

processorNotRunning()

runningTaskHasLowerPriority()

!lockPE(taskFinishing)

A.1.5 Controller template declarations

1 bool processorNotRunning () {
2 r eturn (! Running [pe−1] && cur t i d [pe−1] != 0) ;
3 }
4
5 void setRunningTaskId () {
6 tauid [pe−1] = cu r t i d [pe−1] ;
7 l t i d [pe−1] = cu r t i d [pe−1] ;

128 Timed-Automata Templates for Verification Structures

8 }
9

10 bool noSchedulingChange () {
11 r eturn ((l t i d [pe−1]==cur t i d [pe−1] && Running [pe−1]) | | cu r t i d [pe

−1]==0) ;
12 }
13
14 bool runningTaskHasLowerPrior ity () {
15 r eturn (l t i d [pe−1]!= cu r t i d [pe−1] && Running [pe−1]) ;
16 }

A.1.6 Synchronizer template

Synchronizing

Idle

//Synchronizer finishing
synchronize[pe−1]!

//Synchronizer finishing
synchronize[pe−1]!

//Synchronizer starting
synchronize[pe−1]?

setGlobalReschedule()

syncFinish(),
syncReleased()

!aDependencyHasChanged()

aDependencyHasChanged()

A.1.7 Synchronizer template declarations

1 bool depCh ; // f l a g used i f a dependency has been changed
2
3
4 bool aDependencyHasChanged () {
5 r eturn (depCh) ;
6 }
7
8 void setGloba lReschedu l e () {
9 depCh=f a l s e ;

10 rescheduleNeeded = true ;
11 }
12
13
14
15 void syncF in i sh () {
16 f o r (i : i n t [0 ,MN−1]) {
17 i f (WaitDep [i] && ! taskHasDependency (i)) {
18 Enabled [i]= true ;
19 WaitDep [i]= f a l s e ;
20 depCh=true ;
21 }

A.1 Stop-watch automata model 129

22 }
23 }
24
25 void syncReleased () {
26 f o r (i : i n t [0 , MN−1]) {
27 i f (Released [i] && isOnPE(i +1,pe)) {
28 Released [i]= f a l s e ;
29 i f (taskHasDependency (i)) {
30 WaitDep [i]= true ;
31 }
32 e l s e {
33 Enabled [i]= true ;
34 }
35 }
36 }
37 }

A.1.8 Scheduler template

Idle Scheduling

//Scheduler finishing
schedule[pe−1]!

//Scheduler finishing
schedule[pe−1]!

//Scheduler starting
schedule[pe−1]?

findHighestPriority()

noTasksReady()

tasksReadyOnProc()

aTaskIsReady

!aTaskIsReady

A.1.9 Scheduler template declarations

1 i n t l c r i , l c r i 2 ; // v a r i a b l e s used to hold the c r i t e r i o n o f the task
cu r r en t l y chosen

2 bool aTaskIsReady ;
3
4 void noTasksReady () {
5 cu r t i d [pe−1]=0;
6 }
7
8 void f i ndH i ghe s tP r i o r i t y () {
9 f o r (i : i n t [0 ,MN−1]) {

10 i f (isOnPE (i +1,pe)) {
11 i f (Enabled [i]) {

130 Timed-Automata Templates for Verification Structures

12 i f (proces sorSchedu l ing [pe−1] == FP && (f p r i s [i] < l c r i)) {
13 cu r t i d [pe−1]= i +1;
14 l c r i=f p r i s [i] ;
15 }
16 i f (proces sorSchedu l ing [pe−1] == RM && (pi [i] < l c r i | | (p i

[i] == l c r i && f p r i s [i] < l c r i 2))) {
17 cu r t i d [pe−1]= i +1;
18 l c r i=pi [i] ;
19 l c r i 2=f p r i s [i] ;
20 }
21 i f (proces sorSchedu l ing [pe−1] == EDF && (pr i [i] < l c r i | | (

p r i [i] == l c r i && f p r i s [i] < l c r i 2))) {
22 cu r t i d [pe−1]= i +1;
23 l c r i=pr i [i] ;
24 l c r i 2=f p r i s [i] ;
25 }
26 }
27 }
28 }
29 }
30
31 void tasksReadyOnProc () {
32 aTaskIsReady = f a l s e ;
33 f o r (i : i n t [0 ,MN−1]) {
34 i f (isOnPE (i +1,pe)) {
35 i f (Enabled [i]) {
36 aTaskIsReady = true ;
37 i f (proces sorSchedu l ing [pe−1] == FP) {
38 l c r i = f p r i s [i] ;
39 }
40 i f (proces sorSchedu l ing [pe−1] == RM) {
41 l c r i = pi [i] ;
42 l c r i 2 = f p r i s [i] ;
43 }
44 i f (proces sorSchedu l ing [pe−1] == EDF) {
45 l c r i = pr i [i] ;
46 l c r i 2 = f p r i s [i] ;
47 }
48 cu r t i d [pe−1]= i +1;
49 r eturn ;
50 }
51 }
52 }
53 }

A.1 Stop-watch automata model 131

A.1.10 Administrating template

i=0, pri=Prios[i],
sc=OffSteps[NROffSteps−1]

i=0, pri=Prios[i]

i++, pri=Prios[i]

sc==OffSteps[i] &&
!(i<NROffSteps−1)
&& !lockT(disc) &&
!lockPE(taskFinishing)

i++, pri=OffPrios[i]

sc==Steps[i] &&
!(i<NRSteps−1)
&& !lockT(disc) &&
!lockPE(taskFinishing)

sc==Steps[i] &&
(i<NRSteps−1)
&& !lockT(disc) &&
!lockPE(taskFinishing)

sc==OffSteps[i] &&
(i<NROffSteps−1) &&
!lockT(disc) &&
!lockPE(taskFinishing)

sc<=OffSteps[i]

reschedule!

reschedule!

Priorities

sc<=Steps[i]

OffsetPriorities

reschedule!

reschedule!

A.1.11 Administrating template declarations

1 c l ock sc ; // c l ock f o r updating dynamical ly updated p r i o r i t i e s
2 i n t [0 , NRSteps−1] i =0;

A.1.12 System instantiation

1
2 //System−Dependent In s t
3 //Control (pe)
4 // Synchronizer (pe)
5 // Scheduler (pe)
6
7 //Task (pe , tau , bcet , wcet)
8
9 // system Tasks , Cons , Syns , Schs , Tadm;

10
11 //System−Independent In s t

132 Timed-Automata Templates for Verification Structures

A.2 Alternative stop-watch automata model

This is the full definition of the alternative stop-watch automata verification
structure. The task model was presented in Section 5.1.5.

A.2.1 Global declarations

1 c l ock TM;
2 const i n t FP = 0 , RM = 1 , EDF = 2 ; // symbol i c r ep r e s en ta t i on o f

s chedu l ing p r i n c i p l e s
3
4 //System−Dependent Decl
5 const i n t M=; //The number o f Proces sor s
6 const i n t N=; //The maximum number o f tasks per Proces sor
7 const i n t MN=; //The t o t a l number o f tasks
8
9 //Contains in f ormat i on about the schedu l ing p r i n c i p l e f o r each

p r oc e s s o r .
10 const i n t [FP,EDF] proces sorSchedu l ing [M] = {} ;
11 const i n t [0 ,MN] onPE [M] [N]={} ; // tasks on which p r oc e s s o r s
12
13 const i n t f p r i s [MN] = {} ; //FP schedu l ing p r i o r i t i e s
14 const i n t p i [MN] = {} ; //RM schedu l ing p r i o r i t i e s
15 const i n t o f f s e t [MN] = {} ; // g l oba l o f f s e t in f ormat i on
16 i n t [1 ,MN] p r i [MN] = {} ; //EDF schedu l ing p r i o r i t i e s
17
18 // array f o r o r i g i n a l dependencies , 1 f o r dependency , 0 f o r no

dependency
19 // − {{0 ,1} ,{0 ,0}} means that 1 i s dependant on 2
20 const bool or i gdep [MN] [MN]={} ;
21
22 // dynamical ly updated array f o r cur r ent dependencies
23 bool depend [MN] [MN]={} ;
24
25 // dynamical ly updated p r i o r i t i e s
26 const i n t NRSteps=, NROffSteps=, MAXOffStep=, MAXStep=, MAXListSize

=;
27
28 const i n t [0 ,MAXOffStep] Of fSteps [NROffSteps] = {} ;
29 const i n t [1 ,MN] Of fPr i os [NROffSteps] [MN] = {} ;
30
31 const i n t [0 ,MAXStep] Steps [NRSteps] = {} ;
32 const i n t [1 ,MN] Pr i os [NRSteps] [MN] = {} ;
33
34
35 //System−Independent Decl
36 // Synchron i zat i on channel s
37 chan ready [M] , run [M] , preempt [M] , f i n i s h [M] , synchron i ze [M] ,

s chedu l e [M] ;
38 broadcast chan r e s chedu l e ; // broadcast channel f o r r e s c h e l d u l i n g

a f t e r a task has f i n i s h e d

A.2 Alternative stop-watch automata model 133

39 broadcast chan go ; // broadcast channel f o r ensur ing r ea c t i on on
a l l s i g n a l s b e f o r e s chedu l ing

40 broadcast chan check ; // check f o r change in dynamical ly updated
schedu l ing c r i t e r i a

41
42 i n t [0 ,MN] tauid [M] ; // t r a n s f e r o f l o c a l t a s k i d from task to

c o n t r o l l e r
43 i n t [0 ,MN] cu r t i d [M] ; // va r i ab l e used to hold the id o f the task

cu r r en t l y chosen
44 i n t [0 ,MN] l t i d [M] ; // va r i ab l e used to hold the id o f the task

cu r r en t l y running
45 bool Released [MN] ; // array o f tasks which have i s s u ed ready s i g n a l s
46 bool Enabled [MN] ; // array o f tasks which are not await ing

dependencies to be r e s o l v ed
47 bool rescheduleNeeded ; // i n d i c a t o r f o r the need f o r a g l oba l

r e s chedu l e
48 bool F in i shed [MN] ; // array s p e c i f y i n g which tasks are f i n i s h e d now
49 bool WaitDep [MN] ; // array f o r tasks which are await ing dependencies

to be r e s o l v ed
50 bool running [M] ; // i n d i c a t i n g wether a task i s cu r r en t l y running on

the p r oc e s s o r
51 bool missedDeadl ine ; // i n d i c a t o r f o r a missed dead l ine
52
53 //Locking mechanisms
54 bool Plock [M] ; // l o ck i ng mechanism f o r the p r o c e s s o r s ensur ing ”

c o r r e c t ” schedu l ing
55 bool Hold [MN] ; // l o ck i ng mechanism f o r the tasks ensur ing ” c o r r e c t ”

schedu l ing
56
57 // f unc t i on checking f o r dependencies f o r task t
58 bool taskHasDependency (i n t t) {
59 f o r (i n i : i n t [0 ,MN−1]) {
60 i f (depend [t] [i n i]) {
61 r eturn true ;
62 }
63 }
64 r eturn f a l s e ;
65 }
66
67 // f unc t i on updating dependencies when task t has f i n i s h ed
68 void opdDep (i n t t) {
69 f o r (i n i : i n t [0 ,MN−1]) {
70 depend [i n i] [t]= f a l s e ;
71 }
72 }
73
74
75 // f unc t i on checking f o r ex i s t ance o f t rue boolean value in array o f

s i z e M
76 bool exi stsPE (bool l a [M]) {
77 f o r (i n i : i n t [0 ,M−1]) {
78 i f (l a [i n i]) {
79 r eturn true ;
80 }
81 }

134 Timed-Automata Templates for Verification Structures

82 r eturn f a l s e ;
83 }
84
85 // f unc t i on checking f o r ex i s t ance o f t rue boolean value in array o f

s i z e MN
86 bool ex i s t sT (bool pen [MN]) {
87 bool b = f a l s e ;
88 f o r (i n i : i n t [0 ,MN−1]) {
89 i f (pen [i n i] == true) {
90 r eturn true ;
91 }
92 }
93 r eturn f a l s e ;
94 }
95
96 // f unc t i on checking i f task t i s on p r oc e s s i ng element p
97 bool isOnPE (i n t t , i n t p) {
98 f o r (i : i n t [0 ,N−1]){
99 i f (onPE [p−1] [i]==t) r eturn true ;

100 }
101 r eturn f a l s e ;
102 }
103
104 // f unc t i on checking i f a l l boolean va lues in array o f s i z e MN are

true
105 bool a l lT (bool ar r [MN]) {
106 f o r (i n i : i n t [0 ,MN−1]){
107 i f (! a r r [i n i]) r e turn f a l s e ;
108 }
109 r eturn true ;
110 }

A.2 Alternative stop-watch automata model 135

A.2.2 Task template

go?

go?go?

finish[pe−1]!

Hold[tau−1]=0

preempt[pe−1]?

ready[pe−1]!

run[pe−1]?

tauid[pe−1]=tau

cp==pi[tau−1]

cp==pi[tau−1] && cr<e

cp<pi[tau−1]

cp==pi[tau−1]

cp<pi[tau−1] &&
tauid[pe−1]==tau

cp==pi[tau−1]−1cp==offset[tau−1]

cp<pi[tau−1]

cr==e

RunningU

DoneUOffsetU

exe:int[bcet,wcet]

Done DmissReleased

Running

Hold[tau−1]=0

Hold[tau−1]=1

Hold[tau−1]=0

Hold[tau−1]=0

Hold[tau−1]=1

tauid[pe−1]=tau,
cp=0, cr=0, e=exe,
Hold[tau−1]=0cp=pi[tau−1]

Hold[tau−1]=1

missedDeadline=1

missedDeadline=1

Offset

cp<=pi[tau−1] && cr’==0

cr<=e && cr’==1 && cp<=pi[tau−1]

cp<=pi[tau−1]−1 && cr’==0cp<=offset[tau−1]

cr<e

cr==e

cp==pi[tau−1]

cp<pi[tau−1]

cp==offset[tau−1]

cp<offset[tau−1]

A.2.3 Task template declarations

1 c l ock cp , c r ;
2 i n t [bcet , wcet] e=bcet ;

136 Timed-Automata Templates for Verification Structures

A.2.4 Controller template

rescheduleNeeded=0,
holdPE()

holdPE()

handleFinish()

handleReady()

needForReschedule()
&& !existsPE(Plock)

handleFinish(),
holdPE()

noSchedulingChange()

processorNotRunning()

holdPE()

setRunningTaskId()

handleReady(),
holdPE()

setRunningTaskId()

unholdPE()

preemptionNeeded()

finish[pe−1]?

reschedule? reschedule!

run[pe−1]!

ready[pe−1]?

reschedule?

preempt[pe−1]!

ReadyForScheduling

ExecutingChange

Idle

ReadyForSynchronizing

Scheduling

Synchronizing

//Wait for synchronizer
synchronize[pe−1]?

//Activate scheduler
schedule[pe−1]!

//Wait for scheduler
schedule[pe−1]?

//Get a finish signal
finish[pe−1]?

//activate synchronizer
synchronize[pe−1]!

//Get a ready signal
ready[pe−1]?

A.2.5 Controller template declarations

1 bool processorNotRunning () {
2 r eturn ((! running [pe−1] && cur t i d [pe−1] != 0) && !

rescheduleNeeded) && ! exi stsPE (Plock) ;
3 }
4
5 void holdPE () {
6 Plock [pe−1]=1;
7 }
8
9 void unholdPE () {

A.2 Alternative stop-watch automata model 137

10 Plock [pe−1]=0;
11 }
12
13 void setRunningTaskId () {
14 tauid [pe−1]=cu r t i d [pe−1] ;
15 l t i d [pe−1] = cu r t i d [pe−1] ;
16 running [pe−1]=1;
17 }
18
19 bool noSchedulingChange () {
20 r eturn (((l t i d [pe−1]==cur t i d [pe−1] && running [pe−1]) | | cu r t i d [pe

−1]==0) && ! rescheduleNeeded) && ! exi stsPE (Plock) ;
21 }
22
23 bool preemptionNeeded () {
24 r eturn ((l t i d [pe−1]!= cu r t i d [pe−1] && running [pe−1]) && !

rescheduleNeeded) && ! exi stsPE (Plock) ;
25 }
26
27 bool needForReschedule () {
28 r eturn (! exi s tsPE (Plock) && rescheduleNeeded) ;
29 }
30
31 void setOrigDep (i n t t) {
32 f o r (i n i : i n t [0 ,MN−1]) {
33 i f ((o f f s e t [t]> o f f s e t [i n i])&&Fin i shed [i n i])
34 depend [t] [i n i]= f a l s e ;
35 e l s e
36 depend [t] [i n i]= or i gdep [t] [i n i] ;
37 }
38 }
39
40 void handleReady () {
41 Fin i shed [tauid [pe−1]−1]=0;
42 Released [tauid [pe−1]−1]=1;
43 setOrigDep (tauid [pe−1]−1) ;
44 }
45
46 void hand l eF in i sh () {
47 Fin i shed [tauid [pe−1]−1]=1;
48 opdDep (tauid [pe−1]−1) ;
49 Enabled [tauid [pe−1]−1]=0;
50 running [pe−1]=0;
51 }

138 Timed-Automata Templates for Verification Structures

A.2.6 Synchronizer template

//Synchronizer starting
synchronize[pe−1]?
syncFinish(),
syncReleased()

Synchronizing//Synchronizer finishing
synchronize[pe−1]!

Idle

A.2.7 Synchronizer template declarations

1 void syncF in i sh () {
2 f o r (i : i n t [0 ,MN−1]) {
3 i f (WaitDep [i] && ! taskHasDependency (i)) {
4 Enabled [i]= true ;
5 WaitDep [i]= f a l s e ;
6 rescheduleNeeded=true ;
7 }
8 }
9 }

10
11 void syncReleased () {
12 f o r (i : i n t [0 , MN−1]) {
13 i f (Released [i] && isOnPE(i +1,pe)) {
14 Released [i]= f a l s e ;
15 i f (taskHasDependency (i)) {
16 WaitDep [i]= true ;
17 }
18 e l s e {
19 Enabled [i]= true ;
20 }
21 }
22 }
23 }

A.2 Alternative stop-watch automata model 139

A.2.8 Scheduler template

noTaskSelected()

findHighestPriority()

tasksReadyOnProc()

aTaskIsReady

!aTaskIsReady

//Scheduler finishing
schedule[pe−1]!

//Scheduler finishing
schedule[pe−1]!

SchedulingIdle

//Scheduler starting
schedule[pe−1]?

A.2.9 Scheduler template declarations

1 i n t l c r i , l c r i 2 ; // v a r i a b l e s used to hold the c r i t e r i o n o f the task
cu r r en t l y chosen

2 bool aTaskIsReady ;
3
4 void noTaskSelected () {
5 cu r t i d [pe−1]=0;
6 }
7
8 void f i ndH i ghe s tP r i o r i t y () {
9 f o r (i : i n t [0 ,MN−1]) {

10 i f (isOnPE (i +1,pe)) {
11 i f (Enabled [i]) {
12 i f (proces sorSchedu l ing [pe−1] == FP && (f p r i s [i] < l c r i)) {
13 cu r t i d [pe−1]= i +1;
14 l c r i=f p r i s [i] ;
15 }
16 i f (proces sorSchedu l ing [pe−1] == RM && (pi [i] < l c r i | | (p i

[i] == l c r i && f p r i s [i] < l c r i 2))) {
17 cu r t i d [pe−1]= i +1;
18 l c r i=pi [i] ;
19 l c r i 2=f p r i s [i] ;
20 }
21 i f (proces sorSchedu l ing [pe−1] == EDF && (pr i [i] < l c r i | | (

p r i [i] == l c r i && f p r i s [i] < l c r i 2))) {
22 cu r t i d [pe−1]= i +1;
23 l c r i=pr i [i] ;
24 l c r i 2=f p r i s [i] ;
25 }
26 }
27 }
28 }
29 }

140 Timed-Automata Templates for Verification Structures

30
31 void tasksReadyOnProc () {
32 aTaskIsReady = f a l s e ;
33 f o r (i : i n t [0 ,MN−1]) {
34 i f (isOnPE (i +1,pe)) {
35 i f (Enabled [i]) {
36 aTaskIsReady = true ;
37 i f (proces sorSchedu l ing [pe−1] == FP) {
38 l c r i = f p r i s [i] ;
39 }
40 i f (proces sorSchedu l ing [pe−1] == RM) {
41 l c r i = pi [i] ;
42 l c r i 2 = f p r i s [i] ;
43 }
44 i f (proces sorSchedu l ing [pe−1] == EDF) {
45 l c r i = pr i [i] ;
46 l c r i 2 = f p r i s [i] ;
47 }
48 cu r t i d [pe−1]= i +1;
49 r eturn ;
50 }
51 }
52 }
53 }

A.2.10 Administrating template

i=0, pri=Prios[i], h=0,
sc=OffSteps[NROffSteps−1]

i=0, pri=Prios[i], h=0

i++, pri=OffPrios[i], h=0

i++, pri=Prios[i], h=0

h=1

h=1

sc==Steps[i] &&
!(i<NRSteps−1)

sc==OffSteps[i] &&
!(i<NROffSteps−1) !h || sc<Steps[i]

sc==Steps[i] &&
(i<NRSteps−1)

!h || sc<OffSteps[i]

sc==OffSteps[i] &&
(i<NROffSteps−1)

check?

OffsetPriorities Priorities

check?

sc<=Steps[i]sc<=OffSteps[i]

A.2.11 Administrating template declarations

1 c l ock sc ; // c l ock f o r updating dynamical ly updated p r i o r i t i e s
2 i n t [0 , MAXListSize−1] i =0;
3 bool h ;

A.2.12 System instantiation

A.2 Alternative stop-watch automata model 141

1
2 //System−Dependent In s t
3 //Control (pe)
4 // Synchronizer (pe)
5 // Scheduler (pe)
6
7 //Task (pe , tau , bcet , wcet)
8
9 // system Tasks , Cons , Syns , Schs , Tadm;

10
11 //System−Independent In s t

142 Timed-Automata Templates for Verification Structures

A.3 Model with discretization of the running
time

This is the full definition of the timed-automata verification structure where the
running time was discretized. The task model was presented in Section 5.1.5.

A.3.1 Global declarations

1 c l ock TM;
2
3 const i n t FP = 0 , RM = 1 , EDF = 2 ; // symbol i c r ep r e s en ta t i on o f

s chedu l ing p r i n c i p l e s
4
5
6
7 //System−Dependent Decl
8 const i n t M = ;
9 const i n t N = ;

10 const i n t MN = ;
11
12 const i n t [FP,EDF] proces sorSchedu l ing [M] = {} ;
13 const i n t [0 ,MN] onPE [M] [N] = {} ;
14 const i n t f p r i s [MN] = {} ;
15 const i n t p i [MN] = {} ;
16 const i n t o f f s e t [MN] = {} ;
17
18 const bool or i gdep [MN] [MN] = {} ;
19
20 bool depend [MN] [MN] = {} ;
21
22 i n t [1 ,MN] p r i [MN] = {} ; //EDF schedu l ing p r i o r i t i e s
23
24 const i n t NRSteps=, NROffSteps=, MAXOffStep=, MAXStep=, MAXListSize

=;
25
26 const i n t [0 ,MAXOffStep] Of fSteps [NROffSteps] = {} ;
27 const i n t [1 ,MN] Of fPr i os [NROffSteps] [MN] = {} ;
28
29 const i n t [0 ,MAXStep] Steps [NRSteps] = {} ;
30 const i n t [1 ,MN] Pr i os [NRSteps] [MN] = {} ;
31
32 const i n t MaxExe=;
33 const i n t MaxPi=;
34
35 //System−Independent Decl
36 // Synchron i zat i on channel s
37 broadcast chan r e s chedu l e ; // broadcast channel f o r r e s c h e l d u l i n g

a f t e r a task has f i n i s h e d
38 chan synchron i ze [M] , s chedu l e [M] ;
39 chan ready [M] , run [M] , preempt [M] ;

A.3 Model with discretization of the running time 143

40 urgent chan f i n i s h [M] ;
41
42 i n t [0 ,MN] tauid [M] ; // t r a n s f e r o f l o c a l t a s k i d from task to

c o n t r o l l e r
43 i n t [0 ,MN] cu r t i d [M] ; // va r i ab l e used to hold the id o f the task

cu r r en t l y chosen
44 i n t [0 ,MN] l t i d [M] ; // va r i ab l e used to hold the id o f the task

cu r r en t l y running
45 bool Released [MN] ; // array o f tasks which have i s s u ed ready s i g n a l s
46 bool Enabled [MN] ; // array o f tasks which are not await ing

dependencies to be r e s o l v ed
47 bool rescheduleNeeded ; // i n d i c a t o r f o r the need f o r a g l oba l

r e s chedu l e
48 bool F in i shed [MN] ; // array s p e c i f y i n g which tasks are f i n i s h e d now
49 bool WaitDep [MN] ; // array f o r tasks which are await ing dependencies

to be r e s o l v ed
50 bool running [M] ; // i n d i c a t i n g wether a task i s cu r r en t l y running on

the p r oc e s s o r
51 bool missedDeadl ine = f a l s e ; // i n d i c a t o r f o r a missed dead l ine
52
53
54 //Locking mechanisms
55 bool d i s c [MN] ; // l o ck i ng mechanism f o r ensur ing f u l l d i s c r e t i z a t i o n

run
56 bool t a s kF i n i s h i ng [M] ; // l o ck i ng mechanism f o r ensur ing r ea c t i on to

a l l f i n i s h s i g n a l s b e f o r e any ready s i g n a l s
57
58 // f unc t i on checking f o r dependencies f o r task t
59 bool taskHasDependency (i n t t) {
60 f o r (i n i : i n t [0 ,MN−1]) {
61 i f (depend [t] [i n i]) {
62 r eturn true ;
63 }
64 }
65 r eturn f a l s e ;
66 }
67
68 // f unc t i on updating dependencies when task t has f i n i s h ed
69 void opdDep (i n t t) {
70 f o r (i n i : i n t [0 ,MN−1]) {
71 depend [i n i] [t]= f a l s e ;
72 }
73 }
74
75
76 // f unc t i on checking f o r ex i s t ance o f boolean value in array o f s i z e

M
77 bool lockPE (bool l a [M]) {
78 f o r (i n i : i n t [0 ,M−1]) {
79 i f (l a [i n i]) {
80 r eturn true ;
81 }
82 }
83 r eturn f a l s e ;
84 }

144 Timed-Automata Templates for Verification Structures

85
86 // f unc t i on checking f o r ex i s t ance o f boolean value in array o f s i z e

MN
87 bool lockT (bool pen [MN]) {
88 bool b = f a l s e ;
89 f o r (i n i : i n t [0 ,MN−1]) {
90 i f (pen [i n i] == true) {
91 r eturn true ;
92 }
93 }
94 r eturn f a l s e ;
95 }
96
97 // f unc t i on checking i f task t i s on p r oc e s s i ng element p
98 bool isOnPE (i n t t , i n t p) {
99 f o r (i : i n t [0 ,N−1]){

100 i f (onPE [p−1] [i]==t) r eturn true ;
101 }
102 r eturn f a l s e ;
103 }

A.3.2 Task template

x=0, disc[tau−1]=0,
taskFinishing[pe−1]=cr==e

missedDeadline=1

disc[tau−1]=1,
cr++

missedDeadline=1cp=pi[tau−1]

tauid[pe−1]=tau,
taskFinishing[pe−1]=0,
Finished[tau−1]=1

x=0

tauid[pe−1]=tau,
cp=0, cr=0, e=exe,
Finished[tau−1]=0,
setOrigDep(tau−1)

cp==pi[tau−1]
&& cr==e

cp==pi[tau−1] && cr<e

x==1 &&
cp<pi[tau−1]

x>0 &&
cr<e

cp>pi[tau−1]−1

cp<pi[tau−1]
&& cr<e &&
!lockT(disc)

cp==offset[tau−1]

cr==e &&
!lockT(disc)

cp<pi[tau−1] &&
tauid[pe−1]==tau

cp==pi[tau−1] &&
!lockPE(taskFinishing)

preempt[pe−1]?

finish[pe−1]!

run[pe−1]?

ready[pe−1]!

x<=1

x<1

cp<pi[tau−1]cp<=pi[tau−1]cp<=offset[tau−1]

RunningU

Dmiss

Running

ReleasedDoneOffset

exe:int[bcet,wcet]

A.3 Model with discretization of the running time 145

A.3.3 Task template declarations

1 c l ock cp , x ;
2 i n t [0 , wcet] c r ;
3 i n t [bcet , wcet] e=bcet ;
4
5 void setOrigDep (i n t t) {
6 f o r (i n i : i n t [0 ,MN−1]) {
7 i f ((o f f s e t [t]> o f f s e t [i n i])&&Fin i shed [i n i])
8 depend [t] [i n i]= f a l s e ;
9 e l s e

10 depend [t] [i n i]= or i gdep [t] [i n i] ;
11 }
12 }

146 Timed-Automata Templates for Verification Structures

A.3.4 Controller template

rescheduleNeeded=false

running[pe−1]=true

setRunningTaskId()setRunningTaskId()

Released[tauid[pe−1]−1]=true
running[pe−1]=false,
opdDep(tauid[pe−1]−1),
Enabled[tauid[pe−1]−1]=false

rescheduleNeeded

!rescheduleNeeded

!lockT(disc)

noSchedulingChange()

processorNotRunning()

runningTaskHasLowerPriority()

!lockT(disc)
!lockT(disc)

reschedule!

reschedule?

run[pe−1]!

preempt[pe−1]!

//Wait for scheduler
schedule[pe−1]?

//Activate scheduler
schedule[pe−1]!

//Wait for synchronizer
synchronize[pe−1]?

//activate synchronizer
synchronize[pe−1]!

//Get a ready signal
ready[pe−1]?

//Get a finish signal
finish[pe−1]?

PEtoPEComm PEtoAPPComm

ExecutingChange

ReadyForScheduling Scheduling

SynchronizingAPPtoPEComm

Idle

A.3.5 Controller template declarations

1 bool processorNotRunning () {
2 r eturn (! running [pe−1] && cur t i d [pe−1] != 0) ;
3 }
4
5 void setRunningTaskId () {
6 tauid [pe−1]=cu r t i d [pe−1] ;
7 l t i d [pe−1] = cu r t i d [pe−1] ;

A.3 Model with discretization of the running time 147

8 }
9

10 bool noSchedulingChange () {
11 r eturn ((l t i d [pe−1]==cur t i d [pe−1] && running [pe−1]) | | cu r t i d [pe

−1]==0) ;
12 }
13
14 bool runningTaskHasLowerPrior ity () {
15 r eturn (l t i d [pe−1]!= cu r t i d [pe−1] && running [pe−1]) ;
16 }

A.3.6 Synchronizer template

setGlobalReschedule()

syncFinish(),
syncReady()

!aDependencyHasChanged()

aDependencyHasChanged()

//Synchronizer finishing
synchronize[pe−1]!

//Synchronizer finishing
synchronize[pe−1]!

//Synchronizer starting
synchronize[pe−1]?

Synchronizing

Idle

A.3.7 Synchronizer template declarations

1 bool depCh ; // f l a g used i f a dependency has been changed
2
3
4 bool aDependencyHasChanged () {
5 r eturn (depCh) ;
6 }
7
8 void setGloba lReschedu l e () {
9 depCh=f a l s e ;

10 rescheduleNeeded = true ;
11 }
12
13
14
15 void syncF in i sh () {
16 f o r (i : i n t [0 ,MN−1]) {
17 i f (WaitDep [i] && ! taskHasDependency (i)) {
18 Enabled [i]= true ;
19 WaitDep [i]= f a l s e ;
20 depCh=true ;
21 }

148 Timed-Automata Templates for Verification Structures

22 }
23 }
24
25 void syncReady () {
26 f o r (i : i n t [0 , MN−1]) {
27 i f (Released [i] && isOnPE(i +1,pe)) {
28 Released [i]= f a l s e ;
29 i f (taskHasDependency (i)) {
30 WaitDep [i]= true ;
31 }
32 e l s e {
33 Enabled [i]= true ;
34 }
35 }
36 }
37 }

A.3.8 Scheduler template

findHighestPriority()

noTasksReady()

tasksReadyOnProc()

aTaskIsReady

!aTaskIsReady

//Scheduler finishing
schedule[pe−1]!

//Scheduler finishing
schedule[pe−1]!

//Scheduler starting
schedule[pe−1]?

Idle Scheduling

A.3.9 Scheduler template declarations

1 i n t [0 ,MN] l c r i , l c r i 2 ; // v a r i a b l e s used to hold the c r i t e r i o n o f
the task cu r r en t l y chosen

2 i n t [0 ,MaxPi] l c r i rm ;
3 bool aTaskIsReady ;
4
5 void noTasksReady () {
6 cu r t i d [pe−1]=0;
7 }
8
9 void f i ndH i ghe s tP r i o r i t y () {

10 f o r (i : i n t [0 ,MN−1]) {
11 i f (isOnPE (i +1,pe)) {

A.3 Model with discretization of the running time 149

12 i f (Enabled [i]) {
13 i f (proces sorSchedu l ing [pe−1] == FP && (f p r i s [i] < l c r i)) {
14 cu r t i d [pe−1]= i +1;
15 l c r i=f p r i s [i] ;
16 }
17 i f (proces sorSchedu l ing [pe−1] == RM && (pi [i] < l c r i rm | | (

p i [i] == l c r i rm && f p r i s [i] < l c r i 2))) {
18 cu r t i d [pe−1]= i +1;
19 l c r i rm=pi [i] ;
20 l c r i 2=f p r i s [i] ;
21 }
22 i f (proces sorSchedu l ing [pe−1] == EDF && (pr i [i] < l c r i | | (

p r i [i] == l c r i && f p r i s [i] < l c r i 2))) {
23 cu r t i d [pe−1]= i +1;
24 l c r i=pr i [i] ;
25 l c r i 2=f p r i s [i] ;
26 }
27 }
28 }
29 }
30 }
31
32 void tasksReadyOnProc () {
33 aTaskIsReady = f a l s e ;
34 f o r (i : i n t [0 ,MN−1]) {
35 i f (isOnPE (i +1,pe)) {
36 i f (Enabled [i]) {
37 aTaskIsReady = true ;
38 i f (proces sorSchedu l ing [pe−1] == FP) {
39 l c r i = f p r i s [i] ;
40 }
41 i f (proces sorSchedu l ing [pe−1] == RM) {
42 l c r i rm = pi [i] ;
43 l c r i 2 = f p r i s [i] ;
44 }
45 i f (proces sorSchedu l ing [pe−1] == EDF) {
46 l c r i = pr i [i] ;
47 l c r i 2 = f p r i s [i] ;
48 }
49 cu r t i d [pe−1]= i +1;
50 r eturn ;
51 }
52 }
53 }
54 }

150 Timed-Automata Templates for Verification Structures

A.3.10 Administrating template

i++, pri=Prios[i]

i=0, pri=Prios[i],
sc=OffSteps[NROffSteps−1]

i=0, pri=Prios[i]

i++, pri=OffPrios[i]

sc==Steps[i] &&
(i<NRSteps−1)
&& !lockT(disc) &&
!lockPE(taskFinishing)

sc==Steps[i] &&
!(i<NRSteps−1)
&& !lockT(disc) &&
!lockPE(taskFinishing)

sc==OffSteps[i] &&
!(i<NROffSteps−1)
&& !lockT(disc) &&
!lockPE(taskFinishing)

sc==OffSteps[i] &&
(i<NROffSteps−1) &&
!lockT(disc) &&
!lockPE(taskFinishing)

reschedule!

reschedule!

reschedule!

reschedule!

sc<=Steps[i]sc<=OffSteps[i]

PrioritiesOffsetPriorities

A.3.11 Administrating template declarations

1 c l ock sc ; // c l ock f o r updating dynamical ly updated p r i o r i t i e s
2 i n t [0 , MAXListSize−1] i =0;

A.3.12 System instantiation

1
2 //System−Dependent In s t
3 //Control (pe)
4 // Synchronizer (pe)
5 // Scheduler (pe)
6
7 //Task (pe , tau , bcet , wcet)
8
9 // system Tasks , Cons , Syns , Schs , Tadm;

10
11 //System−Independent In s t

A.4 Genuine discrete model 151

A.4 Genuine discrete model

This is the full definition of the genuine discrete verification structure. The task
model was presented in Section 5.1.5.

A.4.1 Global declarations

1 //Constants f o r s chedu l ing p r i n c i p l e s
2 const i n t FP=0, RM=1, EDF=2;
3
4 //System−Dependent Decl
5 const i n t M = ; //The number o f Proces sor s
6 const i n t N = ; //The maximum number o f tasks per Proces sor
7 const i n t MN = ; //The t o t a l number o f tasks
8
9 const i n t [FP,EDF] proces sorSchedu l ing [M] = {} ;

10 const i n t [0 ,MN] onPE [M] [N] = {} ;
11 const i n t f p r i s [MN] = {} ;
12 const i n t p i [MN] = {} ;
13 const i n t o f f s e t [MN] = {} ;
14
15 const bool or i gdep [MN] [MN] = {} ;
16
17 bool depend [MN] [MN] = {} ;
18
19 i n t [1 ,MN] p r i [MN] = {} ; //EDF schedu l ing p r i o r i t i e s
20
21 const i n t NRSteps=, NROffSteps=, MAXOffStep=, MAXStep=;
22
23 const i n t [0 ,MAXOffStep] Of fSteps [NROffSteps] = {} ;
24 const i n t [1 ,MN] Of fPr i os [NROffSteps] [MN] = {} ;
25
26 const i n t [0 ,MAXStep] Steps [NRSteps] = {} ;
27 const i n t [1 ,MN] Pr i os [NRSteps] [MN] = {} ;
28
29 const i n t MaxExe=;
30 const i n t MaxPi=;
31
32 //System−Independent Decl
33 i n t [0 ,MAXStep] TM;
34 i n t [0 ,MAXStep] c f i n [M] ;
35 bool c f inNextPer [M] ;
36 bool c f i nVa l i d [M] ;
37 bool missedDeadl ine ;
38
39 broadcast chan synch , f i n i s h , dmissed , prc ;
40 chan run [MN] , preempt [M] ;
41 // bool r e l e a s e d [MN] ;
42 i n t [0 ,MAXStep] dead [MN] ;
43 bool deadNextPer [MN] ;
44 i n t [0 ,MAXStep] s t [M] ;

152 Timed-Automata Templates for Verification Structures

45 i n t [0 ,MN] execut ing [M] ;
46 bool l ock [MN] , lockp [M] ;
47
48 bool Released [MN] ; // array o f tasks which have i s s u ed ready s i g n a l s
49 bool Enabled [MN] ; // array o f tasks which are not await ing

dependencies to be r e s o l v ed
50 bool WaitDep [MN] ; // array f o r tasks which are await ing dependencies

to be r e s o l v ed
51 bool rescheduleNeeded ; // i n d i c a t o r f o r the need f o r a g l oba l

r e s chedu l e
52 bool F in i shed [MN] ;
53
54 void setOrigDep (i n t t) {
55 f o r (i n i : i n t [0 ,MN−1]) {
56 i f ((o f f s e t [t]> o f f s e t [i n i])&&Fin i shed [i n i])
57 depend [t] [i n i]= f a l s e ;
58 e l s e
59 depend [t] [i n i]= or i gdep [t] [i n i] ;
60 }
61 }
62
63 // f unc t i on updating dependencies when task t has f i n i s h ed
64 void opdDep (i n t t) {
65 f o r (i n i : i n t [0 ,MN−1]) {
66 depend [i n i] [t]= f a l s e ;
67 }
68 }
69
70 // f unc t i on checking i f task t i s on p r oc e s s i ng element p
71 bool isOnPE (i n t t , i n t p) {
72 f o r (i : i n t [0 ,N−1]){
73 i f (onPE [p−1] [i]==t) r eturn true ;
74 }
75 r eturn f a l s e ;
76 }
77
78 bool anyT (bool array [MN])
79 {
80 f o r (i : i n t [0 ,MN−1])
81 {
82 i f (ar ray [i])
83 {
84 r eturn 1 ;
85 }
86 }
87 r eturn 0 ;
88 }
89
90 bool anyP(bool array [M])
91 {
92 f o r (i : i n t [0 ,M−1])
93 {
94 i f (ar ray [i])
95 {
96 r eturn 1 ;

A.4 Genuine discrete model 153

97 }
98 }
99 r eturn 0 ;

100 }
101
102 i n t minCfin (i n t stp)
103 {
104 bool v ld ;
105 i n t [0 ,MAXStep∗2] r e t ; // = c f i n [0]+(cf inNextPer [0] ∗MAXStep) ;
106 f o r (i : i n t [0 ,M−1])
107 {
108 i f (! v ld && c f i nVa l i d [i])
109 {
110 r e t=c f i n [i]+(cf inNextPer [i]∗MAXStep) ;
111 vld=1;
112 }
113 i f (c f i n [i]+(cf inNextPer [i]∗MAXStep)<r e t && c f i nVa l i d [i])
114 {
115 r e t=c f i n [i]+(cf inNextPer [i]∗MAXStep) ;
116 }
117 }
118 i f (! v ld)
119 {
120 r eturn stp+1;
121 }
122 e l s e
123 {
124 r eturn r e t ;
125 }
126 }
127
128
129 i n t nextEventTime (i n t nextStep)
130 {
131 i n t [0 ,MAXStep] r e s = nextStep ;
132 f o r (i : i n t [0 ,M−1])
133 {
134 i f (c f i n [i]< r e s && c f i nVa l i d [i] && ! cf inNextPer [i])
135 {
136 r e s=c f i n [i] ;
137 }
138 }
139 r eturn r e s ;
140 }
141
142 bool dmissCheck (i n t timep)
143 {
144 f o r (i : i n t [0 ,MN−1])
145 {
146 i f (dead [i]<timep)
147 {
148 r eturn 1 ;
149 }
150 }
151 r eturn 0 ;

154 Timed-Automata Templates for Verification Structures

152 }

A.4.2 Task template

lock[t_id−1]=0

lock[t_id−1]=1

oActive=0,
dead[t_id−1]=TM+pi[t_id−1],
rem=e,
lock[t_id−1]=0

oActive=1

rem=e,
handleInitialReady()

missedDeadline=1

lock[t_id−1]=0 lock[t_id−1]=1

missedDeadline=1

preemptUpdate()

finishUpdate()

runUpdate()

rem=e,
handlePeriodicReady(),
lock[t_id−1]=0

TM<offset[t_id−1]

TM==offset[t_id−1]

offset[t_id−1]>0

offset[t_id−1]==0

deadlineMissReleased()

!newPeriod()

deadlineMissRunning()

preemptValid()

taskFinish()

newPeriod()

synch?

dmissed?

synch?

dmissed?

preempt[p_id−1]?

finish?

run[t_id−1]?

OpollOffsetStart

Dpoll Dmiss

Running

Released

Done

e:int[bcet,wcet]e:int[bcet,wcet]

e:int[bcet,wcet]

A.4.3 Task template declarations

1 // Place l o c a l d e c l a r a t i o n s here .
2 i n t [0 ,MaxExe] rem ;
3 bool oActive ;
4
5 void handleReady () {
6 Fin i shed [t i d −1]=0;
7 Released [t i d −1]=1;
8 setOrigDep (t i d −1) ;
9 }

10
11 void handlePer iodicReady () {
12 dead [t i d −1]=TM+pi [t i d −1]>MAXStep?TM+pi [t i d −1]−MAXStep+

MAXOffStep :TM+pi [t i d −1] ;
13 deadNextPer [t i d −1]=TM+pi [t i d −1]>MAXStep? 1 : 0 ;
14 handleReady () ;
15 }
16
17 void hand l e In i t i a lReady () {
18 dead [t i d −1]=TM+pi [t i d −1] ;
19 handleReady () ;
20 }

A.4 Genuine discrete model 155

21
22 void hand l eF in i sh () {
23 Fin i shed [t i d −1]=1;
24 opdDep (t i d −1) ;
25 Enabled [t i d −1]=0;
26 }
27
28 bool dead l ineMi s sRe l eased () {
29 r eturn TM>=dead [t i d −1]+deadNextPer [t i d −1]∗(MAXStep−MAXOffStep) ;
30 }
31
32 bool deadl ineMissRunning () {
33 r eturn dead [t i d −1]+(MAXStep−MAXOffStep)∗deadNextPer [t i d −1] <

c f i n [p id −1]+(MAXStep−MAXOffStep) ∗ cf inNextPer [p id −1] ;
34 }
35
36 bool taskF in i sh () {
37 r eturn TM<=deadNextPer [t i d −1]∗(MAXStep−MAXOffStep)+dead [t i d −1]

&& TM==cf inNextPer [p id −1]∗(MAXStep−MAXOffStep)+c f i n [p id −1] ;
38 }
39
40 bool preemptVal id () {
41 r eturn TM<dead [t i d −1]+deadNextPer [t i d −1]∗(MAXStep−MAXOffStep) ;
42 }
43
44 bool newPeriod () {
45 r eturn (TM−o f f s e t [t i d −1]) % pi [t i d −1]==0;
46 }
47
48 void preemptUpdate () {
49 rem=rem−(TM−s t [p id −1]) ;
50 c f i n [p id −1]=0;
51 c f i nVa l i d [p id −1]=0;
52 }
53
54 void runUpdate () {
55 s t [p id−1]=TM;
56 c f i n [p id−1]=TM+rem>MAXStep?TM+rem−MAXStep+MAXOffStep :TM+rem ;
57 cf inNextPer [p id−1]=TM+rem>MAXStep? 1 : 0 ;
58 c f i nVa l i d [p id −1]=1;
59 }
60
61 void f in i shUpdate () {
62 c f i n [p id −1]=0;
63 execut ing [p id −1]=0;
64 c f i nVa l i d [p id −1]=0;
65 hand l eF in i sh () ;
66 }

156 Timed-Automata Templates for Verification Structures

A.4.4 Controller template

executing[p_id−1]=c,
lockp[p_id−1]=0

executing[p_id−1]=c,
lockp[p_id−1]=0

lockp[p_id−1]=0

c = choose(),
lockp[p_id−1]=1

executing[p_id−1]==0

executing[p_id−1]>0

c!=executing[p_id−1] && c>0

c==executing[p_id−1] || c==0

run[c−1]!

run[c−1]!

preempt[p_id−1]!

prc?

Pre

SchSpollStart

A.4.5 Controller template declarations

1 i n t [0 ,MN] c ;
2 i n t choose ()
3 {
4 i n t [0 ,MN] cand=0;
5 i n t [0 ,MN] l p r i ;
6 i n t [0 ,MaxPi] rmlpr i ;
7 f o r (i : i n t [0 ,MN−1])
8 {
9 i f (Enabled [i] && isOnPE(i +1, p id))

10 {
11 i f (cand==0)
12 {
13 i f (proces sorSchedu l ing [p id−1]==EDF)
14 {
15 l p r i=pr i [i] ;
16 }
17 i f (proces sorSchedu l ing [p id−1]==RM)
18 {
19 rmlpr i=pi [i] ;
20 }
21 i f (proces sorSchedu l ing [p id−1]==FP)
22 {
23 l p r i=f p r i s [i] ;
24 }
25 cand=i +1;
26 }
27 e l s e
28 {

A.4 Genuine discrete model 157

29 i f (proces sorSchedu l ing [p id−1]==EDF)
30 {
31 i f (p r i [i]< l p r i)
32 {
33 l p r i=pr i [i] ;
34 cand=i +1;
35 }
36 }
37 i f (proces sorSchedu l ing [p id−1]==RM)
38 {
39 i f (p i [i]< rmlpr i)
40 {
41 rmlpr i=pi [i] ;
42 cand=i +1;
43 }
44 }
45 i f (proces sorSchedu l ing [p id−1]==FP)
46 {
47 i f (f p r i s [i]< l p r i)
48 {
49 l p r i=f p r i s [i] ;
50 cand=i +1;
51 }
52 }
53 }
54 }
55 }
56 r eturn cand ;
57 }

A.4.6 Synchronizer template

A.4.7 Synchronizer template declarations

A.4.8 Scheduler template

158 Timed-Automata Templates for Verification Structures

A.4.9 Scheduler template declarations

A.4.10 Administrating template

i=0,
newHyper()

TM=cfin[sp]

i++,
pri=OffPrios[i],
TM=OffSteps[i]

TM=cfin[sp]

nextEventTime(Steps[i])==Steps[i] &&
(!anyP(cfinValid)||Steps[i]<minCfin(Steps[i]))
&& !anyP(lockp)

syncReleased(),
syncFinish()

i==NRSteps−1

TM=Steps[i],
i++,
pri=Prios[i]

i<NRSteps−1
i++,
pri=Prios[i]

pri=Prios[0]

TM=Steps[i],
pri=Prios[0]

synch!

i++,
pri=OffPrios[i]

syncReleased(),
syncFinish()

pri=Prios[0]

i=0

syncReleased(),
i=−1

prc!
(i<NRSteps−1 || TM<MAXStep)
&& !anyP(lockp)

TM==Steps[i]

i==NRSteps−1 &&
!anyP(lockp) &&
TM==MAXStep

nextEventTime(OffSteps[i+1])==OffSteps[i+1] &&
(!anyP(cfinValid)||OffSteps[i+1]<minCfin(OffSteps[i+1]))
&& !anyP(lockp)

nextEventTime(OffSteps[i+1])==cfin[sp]
&& executing[sp]>0 && !anyP(lockp)

sp:int[0,M−1]

nextEventTime(Steps[i])==cfin[sp]
&& executing[sp]>0
&& !anyP(lockp)

i<NRSteps−1

!anyT(lock)

i==NRSteps−1

i<NROffSteps−1
&& !anyP(lockp)

TM!=OffSteps[i+1]

!anyT(lock)

i==NROffSteps−1

TM==OffSteps[i+1]

i<NROffSteps−1

TM!=Steps[i]

!anyT(lock)

i==NROffSteps−1
&& !anyP(lockp)

sp:int[0,M−1]

Start

OFin

ODcheck

OSch ODone

ORea

finish!

synch!

finish!

prc!

dmissed!

finish!

synch!

synch!

dmissed!

dmissed!

Sch

Dcheck

Done

Fin Rea

finish!

dmissed!

synch!

synch!

prc!

A.4 Genuine discrete model 159

A.4.11 Administrating template declarations

1 i n t [−1 ,NRSteps] i = 0 ;
2
3 void newHyper ()
4 {
5 f o r (i : i n t [0 ,MN−1])
6 {
7 i f (deadNextPer [i])
8 {
9 deadNextPer [i]=0;

10 // dead [i]=dead [i]−(MAXStep−MAXOffStep) ;
11 }
12 }
13 f o r (i : i n t [0 ,M−1])
14 {
15 i f (c f inNextPer [i])
16 {
17 cf inNextPer [i]=0;
18 s t [i]= s t [i]−MAXStep+MAXOffStep ;
19 }
20 }
21
22 }
23
24 // f unc t i on checking f o r dependencies f o r task t
25 bool taskHasDependency (i n t t) {
26 f o r (i n i : i n t [0 ,MN−1]) {
27 i f (depend [t] [i n i]) {
28 r eturn true ;
29 }
30 }
31 r eturn f a l s e ;
32 }
33
34 void syncReleased () {
35 f o r (i : i n t [0 , MN−1]) {
36 i f (Released [i]) {
37 Released [i]= f a l s e ;
38 i f (taskHasDependency (i)) {
39 WaitDep [i]= true ;
40 }
41 e l s e {
42 Enabled [i]= true ;
43 }
44 }
45 }
46 }
47
48 void syncF in i sh () {
49 f o r (i : i n t [0 ,MN−1]) {
50 i f (WaitDep [i] && ! taskHasDependency (i)) {
51 Enabled [i]= true ;
52 WaitDep [i]= f a l s e ;
53 rescheduleNeeded=true ;

160 Timed-Automata Templates for Verification Structures

54 }
55 }
56 }

A.4.12 System instantiation

1
2 //System−Dependent In s t
3 //Control (pe)
4 // Synchronizer (pe)
5 // Scheduler (pe)
6
7 //Task (pe , tau , bcet , wcet)
8
9 // system Tasks , Cons , Syns , Schs , Tadm;

10
11 //System−Independent In s t

Appendix B

Source Code for the MoVES

Tool

This appendix includes the full source code for the MoVES tool. There are lexer
and parser definitions for both the frontend and the trace generator. Further-
more, all the SML functions that make up the MoVES tool are given here.

B.1 Frontend

Here we give the abstract syntax used for the frontend and the model generator.
Also, there is lexer and parser definitions for the frontend and a few auxiliary
functions used for parsing.

B.1.1 Abstract syntax

1 (∗ Absyn . sml : Abs t rac t syntax f o r MoVES
2 Aske Brek l ing 13/5/2008
3 ∗)
4
5 exception noSuchSchPr inciple
6 exception noSuchArbiter

162 Source Code for the MoVES Tool

7 exception noSuchT
8 exception emptyMapping
9 exception mappingError

10 type tname = s t r i n g
11 type pname = s t r i n g
12 type bname = s t r i n g
13 type bcet = in t
14 type wcet = in t
15 type per i od = in t
16 type o f f s e t = in t
17 type speed = in t
18 type data = in t
19 datatype sch = FP | RM | EDF
20 datatype arb = FIFO
21 datatype task = T of tname ∗ bcet ∗ wcet ∗ per i od ∗ o f f s e t
22 datatype mtask = MT of tname ∗ per i od ∗ o f f s e t
23 datatype pe = P of pname ∗ sch
24 datatype bus = B of bname ∗ arb ∗ speed
25 type appl = task l i s t
26 type p l a t = pe l i s t
27 type mplat = pe l i s t ∗ bus
28 type mapping = (tname ∗ pname) l i s t
29 type depend = (tname ∗ tname) l i s t
30 type mdepend = (tname ∗ tname ∗ data) l i s t
31 datatype system = S of (p l a t ∗ appl ∗ mapping ∗ depend)
32 type tonp = tname ∗ pname ∗ bcet ∗ wcet
33 type chr = tonp l i s t
34 type mappl = mtask l i s t ∗ mdepend
35 datatype prop = Schedule | Trace
36 datatype msys = M of (mplat ∗ mappl ∗ (tname ∗ pname) l i s t ∗ chr ∗

prop)
37
38 fun mkSch s = case s of

39 ”FP” => FP
40 | ”RM” => RM
41 | ”EDF” => EDF
42 | => raise noSuchSchPr inciple
43
44 fun mkArb a = case a of

45 ”FIFO” => FIFO
46 | => raise noSuchArbiter
47
48 fun mkMp [] = raise emptyMapping
49 | mkMp((t1 , p1) : : tps) = f o l d l (fn ((t ’ , p ’) , g) => fn (t1) => (i f t1=t

’ then p ’ else (g (t1)))) (fn t => (i f t=t1 then p1 else raise

noSuchT)) ((t1 , p1) : : tps)

B.1.2 Lexer (lex)

1 {
2 (∗ MoVESlex . l e x : l e x e r s p e c i f i c a t i o n f o r MoVES
3 Aske Brek l ing 13/05/2008
4 ∗)

B.1 Frontend 163

5
6 open Lexing MoVESpar ;
7
8 exception Lex i ca lE r r o r of s t r i n g ∗ i n t ∗ i n t (∗ (message , loc1 ,

loc2) ∗)
9

10 fun l e x e rE r r o r l exbuf s =
11 raise Lex i ca lE r r o r (s , getLexemeStart l exbuf , getLexemeEnd

l exbuf) ;
12
13 }
14
15 ru l e Token = parse
16 [‘ ‘ ‘\ t ‘ ‘\n ‘ ‘\ r ‘] { Token l exbuf }
17 | ”Appl i cat i on ” { APP }
18 | ”Platform ” { PLAT }
19 | ”Task : ” { TASK }
20 | ”Bcet : ” { BCET }
21 | ”Wcet : ” { WCET }
22 | ”Per iod : ” { PERIOD }
23 | ” O f f s e t : ” { OFFSET }
24 | ”Proc : ” { PE }
25 | ”Sch : ” { SCH }
26 | ”Bus : ” { BUS }
27 | ”Arb : ” { ARB }
28 | ”Mapping” { MAP }
29 | ”Dependencies ” { DEP }
30 | ” Cha r a c t e r i s t i c s ” { CHR }
31 | ”Speed : ” { SPEED }
32 | ”@” { AT }
33 | ” : ” { COLON }
34 | ”−>” { PREC }
35 | ”Property ” { PROP }
36 | ” Schedule ?” { SCHEDULE }
37 | ”Trace ! ” { TRACE }
38
39 | [‘ 0 ‘− ‘ 9 ‘]+ { case Int . f romStr ing (getLexeme l exbuf)

of

40 NONE => l e x e rE r r o r l exbuf ”
i n t e r n a l e r r o r ”

41 | SOME i => INT i
42 }
43 | [‘ a ‘− ‘ z ‘ ‘A‘− ‘Z ‘] [‘ a ‘− ‘ z ‘ ‘A‘− ‘Z ‘ ‘ 0 ‘ − ‘ 9 ‘]∗
44 { NAME (getLexeme l exbuf) }
45 | eo f { EOF }
46 | { l e x e rE r r o r l exbuf ” I l l e g a l symbol in

input ” }
47 and SkipToEndLine = parse
48 [‘ \n ‘ ‘\ r ‘] { () }
49 | (eo f | ‘\ˆZ ‘) { () }
50 | { SkipToEndLine l exbuf }
51 ;

164 Source Code for the MoVES Tool

B.1.3 Parser (yacc)

1 %{
2 (∗ MoVESpar . grm : parser s p e c i f i c a t i o n f o r MoVES
3 Aske Brek l ing 13/5/2008
4 ∗)
5
6 open Absyn ;
7 %}
8
9 %token <int> INT // Accepting numbers

10 %token <s t r i ng> NAME // Accepting names
11 %token APP PLAT MAP DEP ARB CHR // Tokens f o r system

keywords
12 %token TASK BCET WCET PERIOD OFFSET // Tokens f o r app l i c a t i on

keywords
13 %token PE SCH COLON PREC AT SPEED BUS // Tokens f o r more keywords
14 %token PROP SCHEDULE TRACE // Tokens f o r more keywords
15 %token EOF // Token f o r end of f i l e
16
17
18 %s t a r t Main
19
20 %type <Absyn . msys> Main
21 %type <Absyn . mappl> app
22 %type <Absyn . mtask l i s t > t a s k l i s t
23 %type <Absyn . mtask> task
24 %type <Absyn . mplat> p l a t
25 %type <Absyn . pe l i s t > p e l i s t
26 %type <Absyn . pe> pe
27 %type <Absyn . bus> bus
28 %type <(Absyn . tname ∗ Absyn . pname) l i s t > mpl i s t mapping
29 %type <Absyn . tname ∗ Absyn . pname> mp
30 %type <Absyn . mdepend> dependencies
31 %type <Absyn . tname ∗ Absyn . tname ∗ Absyn . data> dep
32 %type <Absyn . chr> chr t o n p l i s t
33 %type <Absyn . tonp> tonp
34 %type <Absyn . prop> prop
35
36 %%
37
38 // The main program
39 Main :
40 app p l a t mapping chr prop EOF { M($2 , $1 , $3 , $4 , $5) }
41 ;
42
43 app :
44 APP t a s k l i s t DEP dependencies { ($2 , $4) }
45 ;
46
47 t a s k l i s t :
48 task { [$1] }
49 | task t a s k l i s t { $1 : : $2 }
50 ;
51

B.1 Frontend 165

52 task :
53 TASK NAME PERIOD INT OFFSET INT { MT($2 , $4 , $6) }
54 ;
55
56 p l a t :
57 PLAT p e l i s t bus { ($2 , $3) }
58 ;
59
60 p e l i s t :
61 pe { [$1] }
62 | pe p e l i s t { $1 : : $2 }
63 ;
64
65 pe :
66 PE NAME SCH NAME { P($2 , mkSch($4)) }
67 ;
68
69 bus :
70 BUS NAME ARB NAME SPEED INT { B($2 , mkArb($4) , $6) }
71 ;
72
73 mapping :
74 MAP mpl i s t { $2 }
75 ;
76
77 mpl i s t :
78 mp { [$1] }
79 | mp mpl i s t { ($1 : : $2) }
80 ;
81
82 mp:
83 NAME COLON NAME { ($1 , $3) }
84 ;
85
86 dependencies :
87 /∗ empty ∗/ { [] }
88 | dep dependencies { $1 : : $2 }
89 ;
90
91 dep :
92 NAME PREC NAME COLON INT { ($1 , $3 , $5) }
93 ;
94
95 chr :
96 CHR t o n p l i s t {$2}
97 ;
98
99 t on p l i s t :

100 tonp { [$1]}
101 | tonp t on p l i s t {$1 : : $2}
102 ;
103
104 tonp :
105 NAME AT NAME BCET INT WCET INT {($1 , $3 , $5 , $7)}
106 ;

166 Source Code for the MoVES Tool

107
108 prop :
109 PROP SCHEDULE { Schedule }
110 | PROP TRACE { Trace }
111 ;

B.1.4 Auxiliary functions for the frontend

1 (∗ Lexer and parser f o r MoVES using mosmllex and mosmlyac
2 Aske Brek l ing 13/5/2008
3 ∗)
4 open Absyn ;
5
6 (∗ Plain pars ing from a s t r i n g , wi th poor error r e por t i n g ∗)
7
8 fun parse s t r =
9 l et val l exbuf = Lexing . c r ea t eLexe r S t r i ng s t r

10 val expr = MoVESpar .Main MoVESlex . Token l exbuf
11 in

12 Pars ing . c l e a rPa r s e r () ;
13 expr
14 end

15 handle exn => (Pars ing . c l e a rPa r s e r () ; raise exn) ;
16
17
18 (∗ Fancy pars ing from a f i l e ; show the o f f end ing program piece on

error ∗)
19
20 fun parseExprReport f i l e stream lexbuf =
21 l et val expr =
22 MoVESpar .Main MoVESlex . Token l exbuf
23 handle

24 Pars ing . ParseError f =>
25 l et val pos1 = Lexing . getLexemeStart l exbuf
26 val pos2 = Lexing . getLexemeEnd l exbuf
27 in

28 Location . errMsg (f i l e , stream , l exbuf)
29 (Location . Loc (pos1 , pos2))
30 ”Syntax e r r o r . ”
31 end

32 | MoVESlex . Lex i ca lE r r o r (msg , pos1 , pos2) =>
33 i f pos1 >= 0 andalso pos2 >= 0 then

34 Location . errMsg (f i l e , stream , l exbuf)
35 (Location . Loc (pos1 , pos2))
36 (” Lex i ca l e r r o r : ” ˆ msg)
37 else

38 (Location . errPrompt (” Lex i ca l e r r o r : ” ˆ msg
ˆ ”\n\n”) ;

39 raise Fa i l ” Lex i ca l e r r o r ”) ;
40 in

41 Pars ing . c l e a rPa r s e r () ;
42 expr
43 end

44 handle exn => (Pars ing . c l e a rPa r s e r () ; raise exn) ;

B.1 Frontend 167

45
46 (∗ Parse a program from a s t r i n g , wi th error r e por t i n g ∗)
47
48 fun par ses s t r =
49 parseExprReport ”” (BasicIO . s t d i n) (Lexing . c r ea t eLexe r S t r i ng

s t r) ;
50
51 (∗ Create l e x e r from instream ∗)
52
53 fun createLexerStream (i s : BasicIO . instream) =
54 Lexing . c r eateLexer (fn bu f f => fn n => Nonstdio . bu f f i npu t i s

bu f f 0 n)
55
56 (∗ Parse a program from a f i l e , wi th error r e por t i n g ∗)
57
58 fun pa r s e f f i l e =
59 l et val i s = Nonstdio . open in b in f i l e
60 val expr = parseExprReport f i l e i s (createLexerStream i s)
61 handle exn => (BasicIO . c l o s e i n i s ; raise exn)
62 in

63 BasicIO . c l o s e i n i s ;
64 expr
65 end ;

168 Source Code for the MoVES Tool

B.2 Model generator

Here are the SML functions that make up the model generator.
Interesting signatures (based on types from the abstract syntax):

filename = string

vs_filename = filename (*verification structure*)

input_filename = filename

output_filename = filename

optimize = "U" (*unoptimized lists*) | "O" (*optimized lists*)

symbol = "," | "<" (*delimiter for system instantiation*)

xml_rep = string

readModel: input_filename -> (xml_rep * xml_rep * xml_rep)

(* Splits up the system-independent parts of the verification

structure in three parts based on tokens; before \\System-

Dependent Decl, after \\System-Independent Decl and after

\\System-Dependent Inst. *)

mkDeclText: (system * optimize) -> xml_rep

(* Generates the system-dependent declarations of the

verifiable impelementation. *)

mkFullSysDecl: (system * symbol) -> xml_rep

(* Generates the system-dependent instantiations of

the verifiable implementation. *)

collectFullModel: (vs_filename * system * optimize * symbol)

-> xml_rep

(* Collects the verifiable implementation of the system in a .xml

representation in the Uppaal syntax for timed automata. *)

transMtoS: msys -> (system * prop)

(* Transforms a representation in msys (close to MoVES syntax)

to a representation in system (closer to uppaal syntax). *)

mkQuery: (output_filename * input_filename) -> unit

(* Generates a query file. *)

mkModelFromFile: (vs_filename * input_filename *

output_filename * optimize * symbol) -> unit

(* Generates a file with an .xml representation of a verifiable

B.2 Model generator 169

timed-automata implementation. *)

1 in f ix i s i n ;
2 open par ser ;
3 exception EmptyList ;
4
5 fun getPName (P(n ,)) = n
6 fun getSch (P(, s)) = s
7 fun getTName (T(n , , , ,)) = n
8 fun getBC (T(, b , , ,)) = b
9 fun getWC (T(, ,w, ,)) = w

10 fun getPi (T(, , , p ,)) = p
11 fun getO (T(, , , , o f f)) = o f f
12
13 exception wrongName ;
14 local

15 fun isPName(n , p) = n=getPName p
16 in

17 fun getP (, []) = raise wrongName
18 | getP (n , p : : r e s t) = i f isPName(n , p) then p else getP (n , r e s t)
19 fun getPIndex (, , []) = raise wrongName
20 | getPIndex (i , n , p : : r e s t) = i f isPName(n , p) then i else

getPIndex (i +1,n , r e s t)
21 end

22
23 local

24 fun isTName (n , t) = n=getTName t
25 in

26 fun getT (, []) = raise wrongName
27 | getT (n , t : : r e s t) = i f isTName (n , t) then t else getT (n , r e s t)
28 end

29
30 fun remDupl icates (l s t) = L i s t . f o l d r (fn (x , ys) => i f (L i s t . e x i s t s (

fn y => x=y) ys) then ys else x : : ys) [] l s t
31
32 fun cons tructTLi s t [] = []
33 | cons tructTLi s t (t : : r e s t) = getTName t : : cons t ructTLi s t (r e s t)
34
35 fun getPforT (, []) = raise mappingError
36 | getPforT (t , (tn , pn) : : r e s t) = i f t=tn
37 then pn : pname
38 else getPforT (t , r e s t)
39
40
41 fun cons tructPLi s t ([] ,) = []
42 | cons tructPLi s t (t : : app ,mp) = getPforT (getTName t ,mp) : :

cons t ructPLi s t (app ,mp)
43
44 fun nrOfOccur p [] = 0
45 | nrOfOccur p (pn : : r e s t) = (i f p=pn then 1 else 0) + nrOfOccur p

r e s t
46
47 fun extractPs [] = []
48 | extractPs (p : : r e s t) = getPName p : : extractPs (r e s t)
49

170 Source Code for the MoVES Tool

50 fun co l l ec tAux [] = []
51 | co l l ec tAux (p : : r e s t) cp l = (nrOfOccur p cp l) : : (co l l ec tAux r e s t

cp l)
52
53 fun col l ectNrOfOcc (plat , app ,mp) = co l l ec tAux (extractPs (p l a t)) (

cons tructPLi s t (app ,mp))
54
55 fun maxOfIntList [] = 0
56 | maxOfIntList (l : : l s t) = l et val m = maxOfIntList l s t
57 in i f l>m then l else m
58 end

59
60 fun maxTonP(plat , app ,mp, dp) = l et val (o c cL i s t) = col l ectNrOfOcc (

plat , app ,mp)
61 in maxOfIntList o c cL i s t
62 end

63
64 fun mkPSch FP = ”FP”
65 | mkPSch RM = ”RM”
66 | mkPSch EDF = ”EDF”
67
68 fun mkProcSch [] = raise EmptyList
69 | mkProcSch ([p]) = mkPSch(getSch p)
70 | mkProcSch (p : : r e s t) = mkPSch(getSch p) ˆ” , ” ˆ(mkProcSch r e s t)
71
72 fun mkOnPET(, [] , ,) = raise EmptyList
73 | mkOnPET(i , [T(t , , , ,)] , p ,mp) = i f (getPforT (t ,mp)=p) then [i]

else []
74 | mkOnPET(i ,T(t , , , ,) : : r e s t , p ,mp) = i f getPforT (t ,mp)=p then i

: :mkOnPET(i +1, r es t , p ,mp) else mkOnPET(i +1, r es t , p ,mp)
75
76 fun mkOnPE(, [] ,) = raise EmptyList
77 | mkOnPE(ts , [p] ,mp) = [mkOnPET(1 , ts , getPName p ,mp)]
78 | mkOnPE(ts , p : : r e s t ,mp) = (mkOnPET(1 , ts , getPName p ,mp)) : : (mkOnPE(

ts , r e s t ,mp))
79
80 fun mkOnPETAux(, 0) = ””
81 | mkOnPETAux([] , 1) = ”0”
82 | mkOnPETAux ([] , i) = ”0 , ”ˆmkOnPETAux ([] , i −1)
83 | mkOnPETAux([t] , 1) = Int . t oS t r i ng (t)
84 | mkOnPETAux([t] , i) = Int . t oS t r i ng (t) ˆ” , ”ˆmkOnPETAux ([] , i −1)
85 | mkOnPETAux(t : : r e s t , i) = Int . t oS t r i ng (t) ˆ” , ”ˆmkOnPETAux(r es t , i

−1)
86
87 fun mkOnPETextAux ([] ,) = raise EmptyList
88 | mkOnPETextAux ([t l s t] , nr) = ”{”ˆmkOnPETAux(t l s t , nr) ˆ”}”
89 | mkOnPETextAux(t l s t : : r e s t , nr) = ”{”ˆmkOnPETAux(t l s t , nr) ˆ” } , ”ˆ

mkOnPETextAux(r es t , nr)
90
91 fun mkOnPEText(plat , app ,mp, dp) = ”{”ˆmkOnPETextAux(mkOnPE(app , plat ,

mp) ,maxTonP(plat , app ,mp, dp)) ˆ” } ;\n”
92
93 fun mkFPris (, []) = raise EmptyList
94 | mkFPris (i , [t]) = Int . t oS t r i ng (i)
95 | mkFPris (i , t : : r e s t) = Int . t oS t r i ng (i) ˆ” , ”ˆmkFPris (i +1, r e s t)

B.2 Model generator 171

96
97 fun appStrLst [] = ””
98 | appStrLst [a] = a
99 | appStrLst (h : : t) = hˆ” , ”ˆ appStrLst t

100
101 fun mkX fnx t s k l = appStrLst (map Int . t oS t r i ng (map fnx t s k l))
102
103 val mkPi2 = mkX getPi
104
105 val mkO2 = mkX getO
106
107 fun mkPi [] = raise EmptyList
108 | mkPi ([t]) = Int . t oS t r i ng (getPi t)
109 | mkPi(t : : r e s t) = Int . t oS t r i ng (getPi t) ˆ” , ”ˆmkPi(r e s t)
110
111 fun mkO [] = raise EmptyList
112 | mkO([t]) = Int . t oS t r i ng (getO t)
113 | mkO(t : : r e s t) = Int . t oS t r i ng (getO t) ˆ” , ”ˆmkO(r e s t)
114
115 fun i s i n [] = f a l s e
116 | a i s i n (b : : r e s t) = i f a=b then t rue else a i s i n r e s t
117
118 fun mkDep(, [] ,) = raise EmptyList
119 | mkDep(t , [tn] , dp) = (i f ((getTName tn , t) i s i n dp) then Int .

t oS t r i ng (1) else Int . t oS t r i ng (0))
120 | mkDep(t , tn : : r e s t , dp) = (i f ((getTName tn , t) i s i n dp) then Int .

t oS t r i ng (1) else Int . t oS t r i ng (0)) ˆ ” , ” ˆ mkDep(t , r e s t , dp)
121
122 fun mkDepRel ([] , ,) = ””
123 | mkDepRel ([t] , ot , dp) = ”{”ˆmkDep(getTName t , ot , dp) ˆ”}”
124 | mkDepRel(t : : r e s t , ot , dp) = ”{”ˆmkDep(getTName t , ot , dp) ˆ” } , ”ˆ

mkDepRel(r e s t , ot , dp)
125
126 fun mkDepend(app , dp) = ”{”ˆmkDepRel(app , app , dp) ˆ” } ;\n”
127
128 exception MixedLists ;
129 local

130 (∗ f indSmal l e s tD : (i n t ∗ ∗) l i s t −> i n t
131 ∗ Gives the sma l l e s t r e l a t i v e dead l ine in the l i s t
132 ∗)
133 fun f indSmal lestD [] = raise EmptyList
134 | f indSmal lestD [(d , ,)] = d
135 | f indSmal lestD ((d , ,) : : xs) =
136 l et val sm = f indSmal lestD xs
137 in

138 i f d<sm
139 then d
140 else sm
141 end

142
143 local

144 (∗ t imeStep : (i n t ∗ i n t ∗ i n t ∗ ’ a) −> (i n t ∗ i n t ∗ ’ a)
145 ∗ Makes a time s t ep f o r a s i n g l e element in the l i s t
146 ∗)

172 Source Code for the MoVES Tool

147 fun timeStep (dead , step , per , e) = (((dead−step −1) mod per)+1, per ,
e)

148 in

149 (∗ t imeStepL i s t : (i n t ∗ i n t ∗ ’ a) l i s t −> (i n t ∗ i n t ∗ ’ a) l i s t
150 ∗ Makes a time s t ep f o r the whole l i s t wi th the sma l l e s t

e lement
151 ∗)
152 fun t imeStepL i s t ds = map (fn (x , y , e) => timeStep (x ,

f indSmal lestD ds , y , e)) ds
153 end

154 local

155 (∗ findAndRemoveSmallest : (i n t ∗ i n t ∗ ’ a) l i s t −> (i n t ∗ i n t
l i s t)

156 ∗ Gives the element in the l i s t wi th the sma l l e s t r e l a t i v e
dead l ine as we l l as the

157 ∗ l i s t w i thout t ha t element
158 ∗)
159 fun f indAndRemoveSmallest [] = raise EmptyList
160 | f indAndRemoveSmallest [e] = (e , [])
161 | f indAndRemoveSmallest (x : : xs) =
162 l et val (sm , r e s t) = findAndRemoveSmallest xs
163 val (d1 , ,) = x
164 val (d2 , ,) = sm
165 in

166 i f d1>d2
167 then (sm, x : : r e s t)
168 else (x , xs)
169 end

170 (∗ sor tULis t : (i n t ∗ i n t ∗ ’ a) l i s t −> (i n t ∗ i n t ∗ ’ a) l i s t
171 ∗ Sor t s the l i s t according to r e l a t i v e dead l i n e s
172 ∗)
173 fun sor tULi s t xs =
174 l et val (sm , r e s t) = findAndRemoveSmallest xs
175 in

176 i f r e s t = []
177 then [sm]
178 else sm : : sor tULi s t r e s t
179 end

180 (∗ ge tEx t : (, , ’ a) −> ’ a
181 ∗ Gets the t h i r d element in a 3− t up l e
182 ∗)
183 fun getExt (, , ext) = ext
184 in

185 (∗ mkPrio : (i n t ∗ i n t ∗ ’ a) l i s t −> ’ a l i s t
186 ∗ Makes p r i o r i t i e s f o r a g i ven time s t ep in the e x t e rna l

r e p r e s en t a t i on (’ a)
187 ∗)
188 fun mkPrio xs = map getExt (sor tULi s t xs)
189 end

190 in

191 local

192 (∗ mkUListsAux : ((i n t ∗ i n t ∗ ’ a) l i s t ∗ (i n t ∗ i n t ∗ ’ a) l i s t ∗
i n t l i s t ∗ ’ a l i s t l i s t)

193 ∗ −> (
i n t l i s t ∗ ’ ’ a l i s t l i s t)

B.2 Model generator 173

194 ∗ Auxi lary func t ion f o r ’mkULists ’ c o l l e c t i n g time s t ep s i z e s
in ’As ’ and a l i s t o f

195 ∗ p r i o r i t i e s in ’ pr ios ’
196 ∗)
197 fun mkUListsAux (ds , ods , As , p r i o s) =
198 i f ds=ods
199 then (As , p r i o s)
200 else mkUListsAux (t imeStepL i s t ds , ods , f indSmal lestD ds : : As ,

mkPrio ds : : p r i o s)
201 in

202 (∗ mkULists : (i n t ∗ i n t ∗ ’ a) l i s t −> (i n t l i s t ∗ ’ a l i s t l i s t)
203 ∗ Function f o r c r e a t i n g urgency l i s t s . I t t ake s a l i s t o f

e lements (d , p , e) where
204 ∗ d i s the r e l a t i v e deadl ine , p i s t he per iod and e i s the

e x t e rna l r e p r e s en t a t i on
205 ∗ f o r a g i ven task
206 ∗)
207 fun mkULists ds =
208 l et val (ts , ps) = mkUListsAux (t imeStepL i s t ds , ds , [

f indSmal lestD ds] , [mkPrio ds])
209 in (rev ts , rev ps)
210 end

211 end

212 end

213
214 local

215 (∗ optULists : (i n t l i s t ∗ ’ a l i s t l i s t) −> (i n t l i s t ∗ ’ a l i s t
l i s t)

216 ∗ Function making opt imized urgency l i s t s , removing repeat ed
e lements

217 ∗ from the p r i o r i t y l i s t by adding t h e i r durrat ions
218 ∗)
219 fun optULists ([t] , [p]) = ([t] , [p])
220 | optULists (t : : ts , p : : ps) =
221 l et val (t1s , p1s) = optULists (ts , ps)
222 in

223 i f hd p1s = p
224 then ((t+hd t1s) : : t l t1s , p1s)
225 else (t : : t1s , p : : p1s)
226 end

227 | optULists = raise MixedLists
228 (∗ sumList : (i n t ∗ i n t l i s t) −> i n t l i s t
229 ∗ Function f o r adding a number to the head of an in t l i s t and

adding
230 ∗ t he r e s u l t o f t he addi t i on to the r e s t o f t he e lements in the

l i s t
231 ∗ r e c u r s i v e l y
232 ∗)
233 fun sumList (, []) = []
234 | sumList (n , x : : xs) = x+n : : sumList (x+n , xs)
235 in

236 (∗ sumOptULists : (i n t ∗ (i n t l i s t ∗ ’ a l i s t l i s t)) −> (i n t l i s t ∗
’ a l i s t l i s t)

237 ∗ Function making the opt imized urgency l i s t and p o s s i b l y adding
a maximal o f f s e t

174 Source Code for the MoVES Tool

238 ∗ to the time s t e p s
239 ∗)
240 fun sumOptULists (MO, (ts , ps) , opt) =
241 i f (opt=”O”) then

242 l et val (ots , ops) = optULists (ts , ps)
243 in (sumList (MO, ots) , ops)
244 end

245 else

246 (sumList (MO, t s) , ps)
247 end

248
249 (∗ FSMO: (in t ∗ i n t ∗ i n t ∗ ’ a) l i s t −> i n t
250 ∗ Function f o r f i nd ing the sma l l e s t e lement in
251 ∗ o f f s e t s or r e l a t i v e dead l i n e s
252 ∗)
253 fun FSMO [] = raise EmptyList
254 | FSMO [(d , o f f , ,)] = i f o f f=0 then d else o f f
255 | FSMO((d , o f f , ,) : : r e s t) =
256 l et val sm = FSMO r e s t
257 in

258 i f o f f=0
259 then (i f d<sm then d else sm)
260 else (i f o f f<sm then o f f else sm)
261 end

262
263 (∗ o f f S t e p : (i n t ∗ i n t ∗ i n t ∗ ’ a ∗ i n t) −> (i n t ∗ i n t ∗ i n t ∗ ’ a)
264 ∗ Function tak ing a s t ep during o f f s e t f o r a s i n g l e element in
265 ∗ a (d i s tance , o f f s e t , per iod , ex t) l i s t
266 ∗)
267 fun o f f S t ep (d , o f f , per , ext , s tep) =
268 i f o f f > 0
269 then

270 i f o f f−s tep = 0
271 then (per , 0 , per , ext)
272 else (d , o f f−step , per , ext)
273 else (((d−step −1)mod per)+ 1 , o f f , per , ext)
274
275 (∗ o f f S t e p : (i n t ∗ i n t ∗ i n t ∗ ’ a) l i s t −> (i n t ∗ i n t ∗ i n t ∗ ’ a)

l i s t
276 ∗ Function tak ing a s t ep during o f f s e t f o r a
277 ∗ (d i s t ance , o f f s e t , per iod , ex t) l i s t
278 ∗)
279 fun o f f S t e pL i s t l s t = map (fn (d , o f f , p , e) => o f f S t ep (d , o f f , p , e ,FSMO(

l s t))) l s t
280
281 (∗ o f fZ e ro s : (i n t ∗ i n t ∗ i n t ∗ ’ a) l i s t −> boo l
282 ∗ Function check ing i f a l l o f f s e t s are zero
283 ∗)
284 fun o f f Z e r o s [] = true
285 | o f f Z e r o s ((, o f f , ,) : : r e s t) = o f f=0 andalso o f f Z e r o s r e s t
286
287 (∗ findAndRemoveSmallest : (i n t ∗ i n t ∗ i n t ∗ ’ a) l i s t −> (i n t ∗ i n t

∗ i n t l i s t)
288 ∗ Gives the element in the l i s t wi th the sma l l e s t r e l a t i v e

dead l ine or o f f s e t

B.2 Model generator 175

289 ∗ as we l l as the l i s t wi thout t ha t element
290 ∗)
291 fun f indAndRemoveSmallestOff [] = raise EmptyList
292 | f indAndRemoveSmallestOff [e] = (e , [])
293 | f indAndRemoveSmallestOff (x : : xs) =
294 l et val (sm, r e s t) = findAndRemoveSmallestOff xs
295 val (d1 , o1 , ,) = x
296 val (d2 , o2 , ,) = sm
297 in

298 i f o1=0 andalso o2=0
299 then

300 i f d1>d2
301 then (sm, x : : r e s t)
302 else (x , xs)
303 else

304 i f o1=0 andalso o2>0
305 then (x , xs)
306 else

307 i f o1>0 andalso o2=0
308 then (sm, x : : r e s t)
309 else

310 i f o1>o2
311 then (sm , x : : r e s t)
312 else (x , xs)
313 end

314 (∗ sor tULis tOf f : (i n t ∗ i n t ∗ i n t ∗ ’ a) l i s t −> (i n t ∗ i n t ∗ i n t ∗ ’
a) l i s t

315 ∗ Sor t s the l i s t according to r e l a t i v e dead l i n e s and o f f s e t s
316 ∗)
317 fun sor tULi s tOf f xs =
318 l et val (sm, r e s t) = findAndRemoveSmallestOff xs
319 in

320 i f r e s t = []
321 then [sm]
322 else sm : : sor tULi s tOf f r e s t
323 end

324
325 (∗ ge tEx tOf f : (, , ’ a) −> ’ a
326 ∗ Gets the f our t h element in a 4− t up l e
327 ∗)
328 fun getExtOf f (, , , ext) = ext
329
330 (∗ mkPrioOff : (i n t ∗ i n t ∗ i n t ∗ ’ a) l i s t −> ’ a l i s t
331 ∗ Makes p r i o r i t i e s f o r a g i ven time s t ep during the o f f s e t in
332 ∗ t he e x t e rna l r e p r e s en t a t i on (’ a)
333 ∗)
334 fun mkPrioOff xs = map getExtOf f (sor tULi s tOf f xs)
335
336 (∗ mkOffUListsAux ((i n t ∗ i n t ∗ i n t ∗ ’ a) l i s t ∗ i n t l i s t ∗ ’ a l i s t

l i s t) −>
337 ∗ (i n t l i s t ∗ ’ a l i s t l i s t)
338 ∗
339 ∗ Auxi lary func t ion f o r ’ mkOffULists ’ c o l l e c t i n g time s t ep s i z e s

in ’As ’
340 ∗ and a l i s t o f p r i o r i t i e s in ’ pr ios ’ during o f f s e t

176 Source Code for the MoVES Tool

341
342 ∗)
343 fun mkOffUListsAux(l s t , As , p r i o s) =
344 i f o f f Z e r o s l s t
345 then (rev As , rev pr i os , l s t)
346 else mkOffUListsAux(o f f S t e pL i s t l s t , FSMO l s t : : As , mkPrioOff

l s t : : p r i o s)
347
348 (∗ mkOffULists : (i n t ∗ i n t ∗ ’ a) l i s t −> (i n t l i s t ∗ ’ a l i s t l i s t)
349 ∗ Function f o r c r e a t i n g o f f s e t urgency l i s t s . I t t ake s a l i s t o f
350 ∗ e lements (o , p , e) where
351 ∗ o i s the o f f s e t , p i s t he per iod and e i s the e x t e rna l

r e p r e s en t a t i on
352 ∗ f o r a g i ven task
353 ∗)
354 fun mkOffULists opeL i s t = mkOffUListsAux(map (fn (o f f , p , e) => ((i f

o f f >0 then o f f else p) , o f f , p , e)) opeList , [] , [])
355
356 (∗ mkP: (i n t ∗ i n t ∗ i n t ∗ ’ a) −> (i n t ∗ i n t ∗ ’ a)
357 ∗ Function f o r making an element f o r the pe r i od i c l i s t from and

element
358 ∗ of the o f f s e t l i s t
359 ∗)
360 fun mkP (d , , p , e) = (d , p , e)
361
362 (∗ mkPList : (i n t ∗ i n t ∗ i n t ∗ ’ a) l i s t −> (i n t ∗ i n t ∗ ’ a) l i s t
363 ∗ Function f o r making the pe r i od i c l i s t from the o f f s e t l i s t
364 ∗)
365 fun mkPList l s t = map mkP l s t
366
367 local

368 (∗ wh : (’ a ∗ i n t ∗ ’ a l i s t) −> i n t
369 ∗ Function f i nd ing a placement o f an element in a l i s t
370 ∗)
371 fun wh (i , , []) = raise Empty
372 | wh (i , n , x : : xs) = i f i=x then n else wh(i , n+1, xs)
373 (∗ whList : i n t l i s t −> i n t l i s t −> i n t l i s t
374 ∗ Function f i nd ing the placements o f a l i s t o f e lements
375 ∗)
376 fun whList [] l s t = []
377 | whList (g : : gs) l s t = wh(g , 1 , l s t) : : whList gs l s t
378 (∗ t rans : i n t l i s t −> i n t l i s t l i s t
379 ∗ Function t r a n s l a t i n g a l i s t o f p r i o r i t i e s to t h e i r g l o b a l i d s
380 ∗)
381 fun t r ans g l pr = map (whList g l) pr
382 (∗ g l : ’ a l i s t −> ’ a −> i n t
383 ∗ Function f i nd ing the placement o f a g l o b a l i d in a p r i o r i t y

l i s t
384 ∗)
385 fun g l g l s s = wh(s , 1 , g l s)
386 in

387 (∗ t ransPLis t : ’ a l i s t l i s t ∗ ’ a l i s t −> i n t l i s t l i s t
388 ∗ Function t r a n s l a t i n g a l i s t o f p r i o r i t i e s in the e x t e rna l
389 ∗ r e p r e s en t a t i on to a l i s t o f g l o b a l i d s
390 ∗)

B.2 Model generator 177

391 fun t r ansPLi s t (pr i s , g l s) = trans (map (g l g l s) g l s) (map (map (g l
g l s)) p r i s)

392 end

393
394 (∗ mkBothULists : (i n t ∗ i n t ∗ ’ a) l i s t −>
395 ∗ (i n t l i s t ∗ i n t l i s t l i s t) ∗ (i n t l i s t ∗ i n t l i s t l i s t)
396 ∗ Function f o r making the o f f s e t urgency l i s t and the pe r i od i c
397 ∗ urgency l i s t from a l i s t o f 3− t up l e e lements (o , p , e) , where o
398 ∗ i s t he o f f s e t , p i s t he per iod and e i s the e x t e rna l
399 ∗ r e p r e s en t a t i on f o r each task
400 ∗)
401 fun mkBothULists opeL i s t g l s opt =
402 l et val (ots , ops , l s t) = mkOffULists opeL i s t
403 val (optts , optps) = sumOptULists (0 , (ots , ops) , opt)
404 val l a l i e = i f (L i s t . l ength optts >0) then L i s t . l a s t optts else

0
405 val p l s t = mkPList l s t
406 val up l s t = mkULists (p l s t)
407 val (perts , perps) = sumOptULists (l a l i e , upl st , opt)
408 val t p o l i s t = transPLi s t (optps , g l s)
409 val tpper = transPLi s t (perps , g l s)
410 in ((optts , t p o l i s t) , (perts , tpper))
411 end

412
413 fun i n t S t r i n gL i s t [] = raise EmptyList
414 | i n t S t r i n gL i s t [h] = Int . t oS t r i ng (h)
415 | i n t S t r i n gL i s t (h : : t) = Int . t oS t r i ng (h) ˆ” , ”ˆ i n t S t r i n gL i s t t
416
417 local

418 fun strRepT [] = ””
419 | strRepT [t] = Int . t oS t r i ng t
420 | strRepT (t : : t s) = Int . t oS t r i ng t ˆ ” , ” ˆ strRepT t s
421 fun strRepP [] = ””
422 | strRepP [p] = strRepT p
423 | strRepP (p : : ps) = strRepT p ˆ ” } ,{ ” ˆ strRepP ps
424 in

425 fun strRep ((ots , ops) , (pts , pps)) =
426 l et val mostep = i f (l ength ots >0) then L i s t . nth (ots , ((l ength

ots)−1)) else 0
427 val o f f s t e p s = i f (l ength ots >0) then strRepT ots else ”0”
428 val o f f p r i o s = i f (l ength ots >0) then strRepP ops else

i n t S t r i n gL i s t (hd pps)
429 val mxlstsz = i f (l ength ots>l ength pts) then l ength ots

else l ength pts
430 in

431 ” i n t [1 ,MN] p r i [MN] = {”ˆ i n t S t r i n g L i s t (i f (l ength ops>0)
then hd ops else hd pps) ˆ” } ; //EDF schedu l ing
p r i o r i t i e s \n\nconst i n t NRSteps=”ˆ Int . t oS t r i ng (l ength
pts) ˆ” , NROffSteps=”ˆ(i f (l ength ots >0) then Int .

t oS t r i ng (l ength ots) else ”1”) ˆ” , MAXOffStep=”ˆ Int .
t oS t r i ng (mostep) ˆ” , MAXStep=”ˆ Int . t oS t r i ng (L i s t . nth (
pts , (l ength (pts)−1))) ˆ” , MAXListSize=”ˆ Int . t oS t r i ng (
mxlstsz) ˆ” ;\n\nconst i n t [0 ,MAXOffStep] Of fSteps [
NROffSteps] = {” ˆ o f f s t e p s ˆ ” } ;\ nconst i n t [1 ,MN]
Of fPr i os [NROffSteps] [MN] = {{” ˆ o f f p r i o s ˆ ” }} ;\n\

178 Source Code for the MoVES Tool

nconst i n t [0 ,MAXStep] Steps [NRSteps] = {” ˆ strRepT
pts ˆ ” } ;\ nconst i n t [1 ,MN] Pr i os [NRSteps] [MN] = {{” ˆ
strRepP pps ˆ ” }} ;\n\n”

432 end

433 end

434
435 fun mkGlList [] = []
436 | mkGlList (t : : t s) = getTName t : : mkGlList ((t s))
437
438 fun mkOList ([]) = []
439 | mkOList (t : : t s) = (getO t , getPi t , getTName t) : : mkOList ((t s))
440
441 fun mkDynPri (app , opt) =
442 l et val g l i s t = mkGlList app
443 val o l i s t = mkOList app
444 val b l i s t s = mkBothULists o l i s t g l i s t opt
445 in

446 strRep b l i s t s
447 end

448
449 fun mxExe ([] ,m) = m
450 | mxExe (t : : r e s t ,m) = i f getWC t>m then mxExe(r es t , getWC t) else

mxExe(r es t ,m)
451
452 fun mxPi ([] ,m) = m
453 | mxPi (t : : r e s t ,m) = i f getPi t>m then mxPi (r es t , getPi t) else

mxPi (r es t ,m)
454
455 fun mkDeclText ((plat , app ,mp, dp) , opt) = ” const i n t M = ”ˆ Int .

t oS t r i ng (l ength p l a t) ˆ” ;\ nconst i n t N = ”ˆ Int . t oS t r i ng (maxTonP(
plat , app ,mp, dp)) ˆ” ;\ nconst i n t MN = ”ˆ Int . t oS t r i ng (l ength app) ˆ
” ;\n\nconst i n t [FP,EDF] proces sorSchedu l ing [M] = {” ˆ(mkProcSch
p l a t) ˆ” } ;\ nconst i n t [0 ,MN] onPE [M] [N] = ”ˆmkOnPEText(plat , app ,
mp, dp) ˆ” const i n t f p r i s [MN] = {”ˆmkFPris (1 , app) ˆ” } ;\ nconst i n t
p i [MN] = {”ˆmkPi appˆ” } ;\ nconst i n t o f f s e t [MN] = {”ˆmkO appˆ”
} ;\n\nconst bool or i gdep [MN] [MN] = ”ˆmkDepend(app , dp) ˆ”\nbool
depend [MN] [MN] = ”ˆmkDepend(app , dp) ˆ”\n”ˆmkDynPri (app , opt) ˆ”
const i n t MaxExe=”ˆ Int . t oS t r i ng (mxExe(app , 0)) ˆ” ;\ nconst i n t
MaxPi=”ˆ Int . t oS t r i ng (mxPi(app , 0)) ˆ” ;\n\n”

456
457 fun extractTs [] = []
458 | extractTs (t : : r e s t) = getTName t : : extractTs (r e s t)
459
460 fun mkSysDeclP(, []) = ””
461 | mkSysDeclP(i , p : : r e s t) = ”Con”ˆ Int . t oS t r i ng (i) ˆ” = Control (”ˆ Int

. t oS t r i ng (i) ˆ”) ;\ nSyn”ˆ Int . t oS t r i ng (i) ˆ” = Synchronizer (”ˆ Int

. t oS t r i ng (i) ˆ”) ;\ nSch”ˆ Int . t oS t r i ng (i) ˆ” = Scheduler (”ˆ Int .
t oS t r i ng (i) ˆ”) ;\n\n”ˆmkSysDeclP(i +1, r e s t)

462
463 fun mkSysDeclPInit (p l a t) = mkSysDeclP(1 , p l a t)
464
465
466 fun mkSysDeclA (, [] , ,) = ”\n”
467 | mkSysDeclA (i , t : : r e s t , (mp: mapping) , p l a t) = getTName(t) ˆ” = Task (

”ˆ Int . t oS t r i ng (getPIndex (1 , (getPforT (getTName t ,mp)) , p l a t)) ˆ”

B.2 Model generator 179

, ”ˆ Int . t oS t r i ng (i) ˆ” , ”ˆ Int . t oS t r i ng (getBC t) ˆ” , ”ˆ Int .
t oS t r i ng (getWC t) ˆ”) ;\n”ˆmkSysDeclA (i +1, r e s t ,mp, p l a t)

468
469 fun mkSysDeclAInit (app ,mp, p l a t) = mkSysDeclA (1 , app ,mp, p l a t)
470
471 fun mkSysDeclEndA (, [] , sym) = ””
472 | mkSysDeclEndA (i , t : : r e s t , sym) = getTName(t) ˆ” ”ˆsymˆ” ”ˆ

mkSysDeclEndA (i +1, r e s t , sym)
473
474 fun mkSysDeclEndP(, [] , sym) = ””
475 | mkSysDeclEndP(i , p : : r e s t , sym) = ”Con”ˆ Int . t oS t r i ng (i) ˆ” ”ˆsymˆ”

”ˆ”Syn”ˆ Int . t oS t r i ng (i) ˆ” ”ˆsymˆ” ”ˆ”Sch”ˆ Int . t oS t r i ng (i) ˆ” ”
ˆsymˆ” ”ˆmkSysDeclEndP(i +1, r e s t , sym)

476
477 fun mkSysDeclEnd (app , plat , sym) = ”system ”ˆ mkSysDeclEndA (1 , app , sym

) ˆ mkSysDeclEndP(1 , plat , sym) ˆ ”DynPri ;\n”
478
479 fun mkFullSysDecl ((plat , app ,mp, dp) , sym) = mkSysDeclPInit (p l a t) ˆ

mkSysDeclAInit (app ,mp, p l a t) ˆ mkSysDeclEnd (app , plat , sym)
480
481 fun c o l l e c tP r e (i s) = l et val l i n e = TextIO . inputLine i s
482 in i f (l i n e=”//System−Dependent Decl\n”) then ”

” else l i n e ˆ”\n”ˆ c o l l e c tP r e i s
483 end

484
485 fun co l l ec tRea lMid (i s) = l et val l i n e = TextIO . inputLine i s
486 in i f (l i n e=”//System−Dependent In s t \n”)

then ”” else l i n e ˆ co l l ec tRea lMid i s
487 end

488
489 fun co l l ec tMid (i s) = l et val l i n e = TextIO . inputLine i s
490 in i f (l i n e=”//System−Independent Decl\n”) then

co l l ec tRea lMid (i s) else co l l ec tMid (i s)
491 end

492
493 fun co l l ec tRea lEnd (i s) = l et val l i n e = TextIO . inputLine i s
494 in i f (TextIO . endOfStream i s) then l i n e

else l i n e ˆ co l l ec tRea lEnd i s
495 end

496
497 fun co l l ec tEnd (i s) = l et val l i n e = TextIO . inputLine i s
498 in i f (l i n e=”//System−Independent In s t \n”) then

co l l ec tRea lEnd (i s) else co l l ec tEnd (i s)
499 end

500
501 fun readModel (f i l ename) = l et val i s = TextIO . openIn f i l ename
502 val pre = co l l e c tP r e (i s)
503 val middle = co l l ec tMid (i s)
504 val ending = co l l ec tEnd (i s)
505 in (pre , middle , ending)
506 end

507
508 fun co l l e c tFu l lMode l (f i l ename , S sys , opt , sym) =
509 l et val (pre , middle , ending) = readModel f i l ename

180 Source Code for the MoVES Tool

510 in pre ˆ ”//System−Dependent Decl\n” ˆ mkDeclText (sys , opt) ˆ ”
//System−Independent Decl\n” ˆ middle ˆ ”//System−Dependent
In s t \n” ˆ mkFullSysDecl (sys , sym) ˆ ”//System−Independent

In s t \n” ˆ ending
511 end

512
513 fun mkFullModel (i n f i l e , sys , o u t f i l e , opt , sym) =
514 l et val os = TextIO . openOut o u t f i l e
515 in (TextIO . output (os , c o l l e c tFu l lMode l (i n f i l e , sys , opt , sym)) ;

TextIO . f lushOut os)
516 end

517
518 fun getBusName (B(n , ,)) = n
519
520 fun getBusSpeed (B(, , s)) = s
521
522 fun transBustoP (B(n , a , s)) = P(n ,FP)
523
524 fun tMtoPplat (pes , bus) = transBustoP bus : : pes
525
526 fun f indCet (, , []) = raise mappingError
527 | f indCet (t , p , (tn , pn , bc ,wc) : : r e s t) = i f t=tn andalso p=pn
528 then (bc , wc)
529 else f indCet (t , p , r e s t)
530
531 fun f i n d e t (, [] ,) = raise noSuchT
532 | f i n d e t (n , (t , p) : : r e s t , chr) = i f n=t
533 then f indCet (t , p , chr)
534 else f i n d e t (n , r e s t , chr)
535
536 fun tMtoPtask (MT(n , p , o f f) ,m, chr s) = l et val (bc , wc) = f i n d e t (n ,m,

chr s)
537 in T(n , bc ,wc , p , o f f)
538 end

539
540 fun findMT(, []) = raise noSuchT
541 | findMT(tn ,MT(n , p , o f f) : : r e s t) = i f tn=n then MT(n , p , o f f) else

findMT(tn , r e s t)
542
543 fun getPer forT (tn ,mapp) = l et val MT(, p ,) = findMT(tn ,mapp)
544 in p
545 end

546
547 fun getOf f f o rT (tn ,mapp) = l et val MT(, , o f f) = findMT(tn ,mapp)
548 in o f f
549 end

550
551 fun tMdep (, [] , ,) = []
552 | tMdep (mapp , (t1 , t2 , d) : : r e s t ,m, (x , b)) = i f d=0 orelse getPforT (

t1 ,m)=getPforT (t2 ,m) then (tMdep(mapp , r es t ,m, (x , b))) else T(
t1 ˆ” ”ˆt2 , d div (getBusSpeed b) ,d div (getBusSpeed b) ,
getPer forT (t1 ,mapp) , getOf f f o rT (t1 ,mapp)) : : tMdep(mapp , r es t ,m, (
x , b))

553
554 fun tMmap ([] , ,) = []

B.2 Model generator 181

555 | tMmap ((t1 , t2 , d) : : r e s t ,m, (x , b)) = i f d=0 orelse getPforT (t1 ,m)=
getPforT (t2 ,m) then tMmap(r es t ,m, (x , b)) else (t1 ˆ” ”ˆ t2 ,
getBusName b) : : tMmap(r es t ,m, (x , b))

556
557 fun tMtoPapp ([] , ,) = []
558 | tMtoPapp (t : : r e s t ,m, chr s) = (tMtoPtask (t ,m, chr s) : : tMtoPapp (r es t

,m, chr s))
559
560 fun tMtoPdep ([] ,) = []
561 | tMtoPdep ((t1 , t2 , d) : : r e s t ,m) = i f d=0 orelse getPforT (t1 ,m)=

getPforT (t2 ,m) then (t1 , t2) : : tMtoPdep (r es t ,m) else (t1 , t1 ˆ” ”
ˆ t2) : : (t1 ˆ” ”ˆt2 , t2) : : tMtoPdep (r es t ,m)

562
563 fun transMtoS (M(mpl , (mapp ,mdep) ,m, chrs , prop)) =
564 l et val p = tMtoPplat mpl
565 val a = tMtoPapp (mapp ,m, chr s)@tMdep(mapp ,mdep ,m, mpl)
566 val d = tMtoPdep (mdep ,m)
567 val ms = m @ tMmap(mdep ,m,mpl)
568 in (S(p , a ,ms , d) , prop)
569 end

570
571 fun mkModelFromFile (i n f i l e , s y s t em f i l e , o u t f i l e , opt , sym) =
572 l et val os = TextIO . openOut o u t f i l e
573 val (psys ,) = transMtoS (pa r s e f s y s t em f i l e)
574 val cfm = co l l e c tFu l lMode l (i n f i l e , psys , opt , sym)
575 in (TextIO . output (os , cfm) ; TextIO . f lushOut os)
576 end

577
578 fun mkQuery (qu e r y f i l e , s y s t em f i l e) =
579 l et val os = TextIO . openOut q u e r y f i l e
580 val (, prop) = transMtoS (pa r s e f s y s t em f i l e)
581 in

582 case prop of

583 Schedule => (TextIO . output (os , ”A [] ! missedDeadl ine ”) ;
TextIO . f lushOut os)

584 | Trace => (TextIO . output (os , ”E<>missedDeadl ine”) ; TextIO
. f lushOut os)

585 end

586
587 fun pr intFul lModel (i n f i l e , sys , opt , sym) = pr i n t (co l l e c tFu l lMode l (

i n f i l e , sys , opt , sym)) ;
588
589
590 (∗ f unc t ion hande l ing arguments ∗)
591 fun main () =
592 case CommandLine . arguments () of

593 (arg1 : : arg2 : : arg3 : : arg4 : : l) =>
594 l et val pre = i f ((s i z e (arg3)>4) andalso s ub s t r i ng (arg3 , s i z e (arg3

) −4 ,4)=” . xml”) then s ub s t r i ng (arg3 , 0 , s i z e (arg3)−4) else arg3
595 in

596 i f (arg4=”nt”)
597 then (mkModelFromFile (arg2 , arg1 , pre ˆ” . xml” , ”U” , ”&l t ; ”) ; mkQuery

(pre ˆ” . q” , arg1))
598 else pr i n t ”Usage : modelgen input system system template

output f i l ename [nt]) \n\n”

182 Source Code for the MoVES Tool

599 end

600 | (arg1 : : arg2 : : arg3 : : l) =>
601 l et val pre = i f ((s i z e (arg3)>4) andalso s ub s t r i ng (arg3 , s i z e (arg3

) −4 ,4)=” . xml”) then s ub s t r i ng (arg3 , 0 , s i z e (arg3)−4) else arg3
602 in

603 (mkModelFromFile (arg2 , arg1 , pre ˆ” . xml” , ”U” , ” , ”) ; mkQuery (pre ˆ” . q
” , arg1))

604 end

605 | => pr i n t ”Usage : modelgen input system system template
output f i l ename [nt]) \n\n”

606
607 val = main () ;

B.3 Trace generator 183

B.3 Trace generator

Here is the abstract syntax used for trace generation, the lexer and parser defi-
nitions and the SML functions that make up the trace generator.

B.3.1 Abstract syntax

1 (∗ Absyn . sml : Abs t rac t syntax f o r the MoVES trace generator
2 Aske Brek l ing 13/5/2008
3 ∗)
4
5 type t r a = s t r i n g ∗ s t r i n g ∗ s t r i n g
6 type t r a n s i = tra l i s t
7 type cont = s t r i n g ∗ i n t
8 type s t a tu s = (s t r i n g ∗ s t r i n g) l i s t
9 type s t a t e = s ta tu s ∗(cont l i s t)

10 type s t t = s ta t e ∗ t r a n s i
11 type t r a c e = s t t l i s t

B.3.2 Lexer (lex)

1 {
2 (∗ MoVESlex . l e x : l e x e r s p e c i f i c a t i o n f o r MoVES trace generator
3 Aske Brek l ing 19/10/2009
4 ∗)
5
6 open Lexing tMoVESpar ;
7
8 exception Lex i ca lE r r o r of s t r i n g ∗ i n t ∗ i n t (∗ (message , loc1 ,

loc2) ∗)
9

10 fun l e x e rE r r o r l exbuf s =
11 raise Lex i ca lE r r o r (s , getLexemeStart l exbuf , getLexemeEnd

l exbuf) ;
12
13 }
14
15 ru l e Token = parse
16 [‘ ‘ ‘\ t ‘ ‘\n ‘ ‘\ r ‘] { Token l exbuf }
17 | ” State : ” { STATE }
18 | ” Tran s i t i on s : ” { TRANS }
19 | ”Delay : ” { DELAY }
20 | ”{” { LBRACE }
21 | ”}” { RBRACE }
22 | ” (” { LPAR }
23 | ”) ” { RPAR }
24 | ”=” { EQL }
25 | ”−>” { PREC }
26 | ”−” { MINUS }

184 Source Code for the MoVES Tool

27 | ”%” { PCT }
28 | ”&” { AMP }
29 | ” | ” { PIPE }
30 | ” . ” { DOT }
31
32 | [‘ 0 ‘ − ‘ 9 ‘ ‘ − ‘] [‘ 0 ‘ − ‘ 9 ‘]∗ { case Int . f romStr ing (getLexeme l exbuf)

of

33 NONE => l e x e rE r r o r l exbuf ”
i n t e r n a l e r r o r ”

34 | SOME i => INT i
35 }
36 | [‘ a ‘− ‘ z ‘ ‘A‘− ‘Z ‘ ‘ ! ‘ ‘ , ‘ ‘ [‘ ‘] ‘ ‘ < ‘ ‘ ∗ ‘ ‘ + ‘ ‘ ‘ ‘ : ‘ ‘ > ‘ ‘ ? ‘ ‘# ‘] [‘ a ‘− ‘ z ‘ ‘A

‘− ‘Z ‘ ‘ 0 ‘ − ‘ 9 ‘ ‘ ‘ ‘ [‘ ‘] ‘ ‘ > ‘ ‘ , ‘ ‘ : ‘ ‘ + ‘ ‘ ! ‘ ‘ ? ‘ ‘ | ‘ ‘ & ‘ ‘# ‘] ∗
37 { NAME (getLexeme l exbuf) }
38 | eo f { EOF }
39 | { l e x e rE r r o r l exbuf ” I l l e g a l symbol in

input ” }
40 and SkipToEndLine = parse
41 [‘ \n ‘ ‘\ r ‘] { () }
42 | (eo f | ‘\ˆZ ‘) { () }
43 | { SkipToEndLine l exbuf }
44 ;

B.3.3 Parser (yacc)

1 %{
2 (∗ tMoVESpar . grm : parser s p e c i f i c a t i o n f o r MoVES trace generator
3 Aske Brek l ing 19/10/2009
4 ∗)
5
6 open tAbsyn ;
7 %}
8
9 %token <int> INT // Accepting numbers

10 %token <s t r i ng> NAME // Accepting names
11 %token STATE TRANS DELAY // Tokens f o r system

keywords
12 %token LBRACE RBRACE LPAR RPAR // Tokens f o r app l i c a t i on

keywords
13 %token EQL MINUS PREC PCT AMP PIPE DOT // Tokens f o r app l i c a t i on

keywords
14 %token EOF // Token f o r end of f i l e
15
16
17 %s t a r t Main
18
19 %type <tAbsyn . trace> Main s t l i s t
20 %type <tAbsyn . s t t> s t
21 %type <tAbsyn . s tate> s t a t
22 %type <tAbsyn . s tatus> s t a tu s
23 %type <tAbsyn . t r an s i> t r a n s i t i o n s
24 %type <tAbsyn . tra> t r ans
25 %type <s t r i ng> ex t r a s

B.3 Trace generator 185

26 %type <s t r i ng> extra
27 %type <s t r i ng> c ex t r a s
28 %type <s t r i ng> cextra
29 %type <tAbsyn . cont l i s t > content
30 %%
31
32 // The main program
33 Main :
34 s t l i s t EOF { $1 }
35 | EOF { [] }
36 ;
37
38 s t l i s t :
39 s t { ([$1]) }
40 | s t s t l i s t { $1 : : $2 }
41 ;
42
43 s t :
44 STATE s ta t { ($2 , []) }
45 | STATE s ta t TRANS t r a n s i t i o n s { ($2 , $4) }
46 | STATE s ta t DELAY INT { ($2 , []) }
47 | STATE s ta t DELAY INT DOT INT { ($2 , []) }
48 ;
49
50 s ta t :
51 LPAR s ta tu s RPAR content { ($2 , $4) }
52 ;
53
54 s ta tu s :
55 /∗ empty ∗/ { [] }
56 | NAME DOT NAME sta tu s { ($1 , $3) : : $4 }
57 ;
58
59 content :
60 { [] }
61 | c ex t r a s EQL INT content { ($1 , $3) : : $4 }
62 | c ex t r a s EQL INT DOT INT content { ($1 , $3) : : $6 }
63 | c ex t r a s EQL MINUS INT content { ($1 , $4) : : $5 }
64 ;
65
66 cex t r a s :
67 { ”” }
68 | cextra c ex t r a s { $1ˆ$2 }
69 ;
70
71 cextra :
72 NAME { $1 }
73 | DOT { ” . ” }
74 ;
75
76 t r a n s i t i o n s :
77 trans { [$1] }
78 | t r ans t r a n s i t i o n s { $1 : : $2 }
79 ;
80

186 Source Code for the MoVES Tool

81 trans :
82 c ex t r a s PREC cex t r a s LBRACE ext r a s RBRACE { ($1 , $3 , $5) }
83 ;
84
85 ex t r a s :
86 { ”” }
87 | extra ex t r a s { $1ˆ$2 }
88 ;
89
90 extra :
91 NAME { $1 }
92 | INT { Int . t oS t r i ng ($1) }
93 | LPAR { ” (” }
94 | RPAR { ”) ” }
95 | EQL { ”=” }
96 | MINUS { ”−” }
97 | PCT { ”%” }
98 | AMP { ”&” }
99 | PIPE { ” | ” }

100 | DOT { ” . ” }
101 ;

B.3.4 Auxiliary functions for the lexer/parser of the trace
generator

1 (∗ Lexer and parser f o r the MoVES trace generator using mosmllex
and mosmlyac

2 Aske Brek l ing 13/5/2008
3 ∗)
4 open tAbsyn ;
5
6 (∗ Plain pars ing from a s t r i n g , wi th poor error r e por t i n g ∗)
7
8 fun parse s t r =
9 l et val l exbuf = Lexing . c r ea t eLexe r S t r i ng s t r

10 val expr = tMoVESpar .Main tMoVESlex . Token l exbuf
11 in

12 Pars ing . c l e a rPa r s e r () ;
13 expr
14 end

15 handle exn => (Pars ing . c l e a rPa r s e r () ; raise exn) ;
16
17
18 (∗ Fancy pars ing from a f i l e ; show the o f f end ing program piece on

error ∗)
19
20 fun parseExprReport f i l e stream lexbuf =
21 l et val expr =
22 tMoVESpar .Main tMoVESlex . Token l exbuf
23 handle

24 Pars ing . ParseError f =>
25 l et val pos1 = Lexing . getLexemeStart l exbuf
26 val pos2 = Lexing . getLexemeEnd l exbuf

B.3 Trace generator 187

27 in

28 Location . errMsg (f i l e , stream , l exbuf)
29 (Location . Loc (pos1 , pos2))
30 ”Syntax e r r o r . ”
31 end

32 | tMoVESlex . Lex i ca lE r r o r (msg , pos1 , pos2) =>
33 i f pos1 >= 0 andalso pos2 >= 0 then

34 Location . errMsg (f i l e , stream , l exbuf)
35 (Location . Loc (pos1 , pos2))
36 (” Lex i ca l e r r o r : ” ˆ msg)
37 else

38 (Location . errPrompt (” Lex i ca l e r r o r : ” ˆ msg
ˆ ”\n\n”) ;

39 raise Fa i l ” Lex i ca l e r r o r ”) ;
40 in

41 Pars ing . c l e a rPa r s e r () ;
42 expr
43 end

44 handle exn => (Pars ing . c l e a rPa r s e r () ; raise exn) ;
45
46 (∗ Parse a program from a s t r i n g , wi th error r e por t i n g ∗)
47
48 fun par ses s t r =
49 parseExprReport ”” (BasicIO . s t d i n) (Lexing . c r ea t eLexe r S t r i ng

s t r) ;
50
51 (∗ Create l e x e r from instream ∗)
52
53 fun createLexerStream (i s : BasicIO . instream) =
54 Lexing . c r eateLexer (fn bu f f => fn n => Nonstdio . bu f f i npu t i s

bu f f 0 n)
55
56 (∗ Parse a program from a f i l e , wi th error r e por t i n g ∗)
57
58 fun pa r s e f f i l e =
59 l et val i s = Nonstdio . open in b in f i l e
60 val expr = parseExprReport f i l e i s (createLexerStream i s)
61 handle exn => (BasicIO . c l o s e i n i s ; raise exn)
62 in

63 BasicIO . c l o s e i n i s ;
64 expr
65 end ;

B.3.5 MoVES trace generator

Interesting signature (based on types from the abstract syntax):

mkTrace: trace -> Unit

(* Prints the MoVES trace to the user with the built-in function

print. *)

188 Source Code for the MoVES Tool

1 open tpa r s e r ;
2 exception mixedLists
3 exception noSuchT
4
5 fun g e tF i r s t (s , t) = s
6 fun getSecond (s , t) = t
7
8 fun ge tS ta t e s (s : t r a c e) = map g e tF i r s t s
9

10 fun f i l t e r T [] = []
11 | f i l t e r T ((s , t) : : r e s t) = i f s i z e (s)<4 then (s , t) : : f i l t e rT r e s t

else (i f s ub s t r i ng (s , 0 , 3)=”Con” orelse s ub s t r i ng (s , 0 , 3)=”Syn”
orelse s ub s t r i ng (s , 0 , 3)=”Sch” then f i l t e r T r e s t else (i f

s i z e (s) < 6 then (s , t) : : f i l t e r T r e s t else (i f s ub s t r i ng (s
, 0 , 6)=”DynPri” then f i l t e r T r e s t else (s , t) : : f i l t e r T r e s t)))

12
13 fun getSt (s : t r a c e) = map g e tF i r s t (g e tS ta t e s s)
14 fun getTSt (s : t r a c e) = map f i l t e r T (getSt s)
15
16 fun getCont (s : t r a c e) = map getSecond (ge tS ta t e s s)
17
18 fun exTM [] = 0
19 | exTM((s , i) : : r e s t) = i f s=”TM” then i else exTM r e s t
20
21 fun exTMs c = map exTM c
22
23 fun getLastSame ([a] , b : : r e s t) = [(a , b)]
24 | getLastSame (a1 : : a2 : : a r e s t , b1 : : b2 : : b r e s t) = i f a1=a2 then

getLastSame (a2 : : a r es t , b2 : : b r e s t) else (a1 , b1) : : getLastSame (a2
: : a r es t , b2 : : b r e s t)

25 | getLastSame = raise mixedLists
26
27 fun maxS(i , []) = i
28 | maxS (i , (t ,) : : r e s t) = i f (s i z e t>i) then maxS(s i z e t , r e s t)

else maxS(i , r e s t)
29
30 fun getMaxT (s : t r a c e) = L i s t . l a s t (exTMs(getCont s))
31 fun getMaxS (s : t r a c e) = maxS(0 , hd (getTSt s))
32
33 fun space 0 = ””
34 | space n = ” ”ˆ space (n−1)
35
36 fun t imes (i , j) = i f i=j then Int . t oS t r i ng (i mod 10) else

37 (i f i mod 2=0 then Int . t oS t r i ng (i mod 10) else ” ”
) ˆ t imes (i +1, j)

38
39 fun mkTime (s : t r a c e) = space (getMaxS s) ˆ” | ”ˆ times (0 , getMaxT s)
40
41 fun getSforT ”Done” = ” ”
42 | getSforT ”DoneU” = ” ”
43 | getSforT ”Running” = ”+”
44 | getSforT ”RunningU” = ”+”
45 | getSforT ”RunningA” = ”+”
46 | getSforT ”Released ” = ”O”
47 | getSforT ”Of f s e t ” = ” ”

B.3 Trace generator 189

48 | getSforT ”OffsetU ” = ” ”
49 | getSforT ”Dmiss” = ”X”
50 | getSforT = ”P”
51
52 fun f indTforT(, []) = raise noSuchT
53 | f indTforT(ts , (t , s) : : r e s t) = i f t s=t then (getSforT s) else

f indTforT(ts , r e s t)
54
55 fun tmln (, , , []) = ””
56 | tmln (n , sym , ts , (i , s t) : : r e s t) = i f n=i then f indTforT(ts , s t) ˆtmln

(n+1, f indTforT(ts , s t) , ts , r e s t) else symˆtmln (n+1,sym , ts , (i , s t
) : : r e s t)

57
58 fun mkTimeT(ts , s : t r a c e) = t s ˆ space (getMaxS s−s i z e t s) ˆ ” | ”ˆtmln

(0 , ” ” , ts , getLastSame (exTMs(getCont s) , getTSt s))
59
60 fun mkTimeTs ([] ,) = ””
61 | mkTimeTs (t : : ts , s) = mkTimeT(t , s) ˆ”\n”ˆmkTimeTs (ts , s)
62
63
64 fun getTfromS (s : t r a c e) = map (fn (a , b)=>a) (hd (getTSt s))
65
66 fun mkTrace [] = ””
67 | mkTrace (s : t r a c e) = mkTime(s) ˆ”\n”ˆmkTimeTs (getTfromS s , s)
68
69
70
71 (∗ f unc t ion hande l l i n g arguments ∗)
72 fun main () =
73 case CommandLine . arguments () of

74 (arg1 : : l) =>
75 p r i n t (mkTrace (pa r s e f arg1))
76 | => pr i n t ”Usage : t r acegen trace− f i l e \n\n”
77
78 val = main () ;

190 Source Code for the MoVES Tool

Appendix C

Batch Scripts for MoVES

This appendix gives the batch scripts used to invoke the different parts of the
MoVES framework. There is one for Windows users and another for Linux
users.

C.1 For Windows Users

1 @echo o f f
2 set NrArgs=0
3 for %%a in (%∗) do set /a NrArgs+=1
4 i f / i %NrArgs% == 0 (
5 ECHO Not enough arguments ! type ’moves −help ’ for i n s t r u c t i o n s
6 GoTo : End Of Batch
7)
8 i f / i %1 == −help (
9 echo usage : moves [v e r i f i c a t i o n o p t i o n s] system− f i l e

10 echo v e r i f i c a t i o n o p t i o n s :
11 echo −sw ’ stop watch automata v e r i f i c a t i o n ’
12 echo −drt ’ d i s c r e t i z a t i o n o f running time v e r i f i c a t i o n ’
13 echo −nc ’ no c l o ck s v e r i f i c a t i o n ’
14 echo .
15 echo each o f these opt i ons can be f o l l owed by −nt for no t r a c e

generat i on
16 echo .
17 echo examples :

192 Batch Scripts for MoVES

18 echo −−−−− Defau l t Options − ’ no c l ocks ’ −−−−−
19 echo moves a
20 echo system− f i l e : a
21 echo v−s t r u c tu r e : testTemplate . xml
22 echo .
23 echo −−−−− Stop−Watch Options −−−−−
24 echo moves −sw a
25 echo system− f i l e : a
26 echo v−s t r u c tu r e : testTemplateSW . xml
27 echo v e r i f i c a t i o n engine : v e r i f y ta−sw
28 echo .
29 echo −−−−− D i s c r e t i z a t i o n Options −−−−−
30 echo moves −drt a
31 echo system− f i l e : a
32 echo v−s t r u c tu r e : testTemplateDRT . xml
33 echo v e r i f i c a t i o n engine : v e r i f y t a
34 echo .
35 echo −−−−− No−Clocks Options ’ de f au l t ’ −−−−−
36 echo moves −nc a
37 echo system− f i l e : a
38 echo v−s t r u c tu r e : testTemplateDRT . xml
39 echo v e r i f i c a t i o n engine : v e r i f y t a
40 echo .
41 echo −−−−− Stop−Watch and no−t r a c e Options −−−−−
42 echo moves −sw−nt a
43 echo system− f i l e : a
44 echo v−s t r u c tu r e : testTemplateSW . xml
45 echo v e r i f i c a t i o n engine : v e r i f y ta−sw
46 echo ∗no t r a c e w i l l be generated
47 echo .
48 echo −−−−− D i s c r e t i z a t i o n and no−t r a c e Options −−−−−
49 echo moves −drt−nt a
50 echo system− f i l e : a
51 echo v−s t r u c tu r e : testTemplateDRT . xml
52 echo v e r i f i c a t i o n engine : v e r i f y t a
53 echo ∗no t r a c e w i l l be generated
54 echo .
55 echo −−−−− No−Clocks and no−t r a c e Options −−−−−
56 echo moves −nc−nt a
57 echo system− f i l e : a
58 echo v−s t r u c tu r e : testTemplateDRT . xml
59 echo v e r i f i c a t i o n engine : v e r i f y t a
60 echo ∗no t r a c e w i l l be generated
61 GoTo : End Of Batch
62)
63 i f / i %NrArgs% == 1 i f e x i s t ”%1” (
64 modelgen %1 testTemplate . xml %1
65 v e r i f y t a %1.xml %1.q −qs t 1 2> %1. t r a c e
66 tracegen %1. t r a c e
67 GoTo : End Of Batch
68)
69 i f / i %NrArgs% == 1 i f not e x i s t ”%1” (
70 echo F i l e : ’%1 ’ does not e x i s t
71 Goto : End Of Batch
72)

C.2 For Linux Users 193

73 i f / i %NrArgs% GTR 2 (
74 echo Too many arguments ! type ’moves −help ’ for i n s t r u c t i o n s
75 GoTo : End Of Batch
76)
77 i f / i %1 == −sw i f e x i s t ”%2” (
78 modelgen %2 testTemplateSW . xml %2
79 ve r i f y ta−sw %2.xml %2.q −qs t 1 2> %2. t r a c e
80 tracegen %2. t r a c e
81 GoTo : End Of Batch
82
83)
84 i f / i %1 == −drt i f e x i s t ”%2” (
85 modelgen %2 testTemplateDRT . xml %2
86 v e r i f y t a %2.xml %2.q −qs t 1 2> %2. t r a c e
87 tracegen %2. t r a c e
88 GoTo : End Of Batch
89)
90 i f / i %1 == −nc i f e x i s t ”%2” (
91 modelgen %2 testTemplate . xml %2
92 v e r i f y t a %2.xml %2.q −qs t 1 2> %2. t r a c e
93 tracegen %2. t r a c e
94 GoTo : End Of Batch
95)
96 i f / i %1 == −sw−nt i f e x i s t ”%2” (
97 modelgen %2 testTemplateSW . xml %2 nt
98 ve r i f y ta−sw %2.xml %2.q −qs
99 GoTo : End Of Batch

100
101)
102 i f / i %1 == −drt−nt i f e x i s t ”%2” (
103 modelgen %2 testTemplateDRT . xml %2 nt
104 v e r i f y t a %2.xml %2.q −qs
105 GoTo : End Of Batch
106)
107 i f / i %1 == −nc−nt i f e x i s t ”%2” (
108 modelgen %2 testTemplate . xml %2 nt
109 v e r i f y t a %2.xml %2.q −qs
110 GoTo : End Of Batch
111)
112 i f / i %NrArgs% == 2 i f not e x i s t ”%2” (
113 echo F i l e : ’%2 ’ does not e x i s t
114 Goto : End Of Batch
115)
116 echo Option : %1 not r ecogn i zed
117
118 : End Of Batch

C.2 For Linux Users

1 #!/ bin /sh
2
3 i f [$# −eq 1] ;
4 then

194 Batch Scripts for MoVES

5 i f [$1 = ”−help ”]
6 then

7 echo −e ”usage : moves [v e r i f i c a t i o n o p t i o n s] f i l e −p r e f i x \
n v e r i f i c a t i o n o p t i o n s :\n −sw ’ stop watch automata
v e r i f i c a t i o n ’\n −drt ’ d i s c r e t i z a t i o n o f running time
v e r i f i c a t i o n ’\n −nc ’ no c l o ck s v e r i f i c a t i o n ’\n\n examples
:\n −−−−− Defau l t Options − ’ no c l ocks ’ −−−−−\n moves a\n

f i l e −p r e f i x : a \n v−s t r u c tu r e : testTemplate . xml\n\n
−−−−− Stop−Watch Options −−−−−\n moves −sw a\n f i l e −
p r e f i x : a\n v−s t r u c tu r e : testTemplateSW . xml\n
v e r i f i c a t i o n engine : v e r i f y ta−sw \n\n −−−−− D i s c r e t i z a t i o n
Options −−−−−\n moves −drt a\n f i l e −p r e f i x : a\n v−
s t r u c tu r e : testTemplateDRT . xml\n v e r i f i c a t i o n engine :
v e r i f y t a \n\n −−−−− No−Clocks Options ’ de f au l t ’ −−−−−\n
moves −nc a\n f i l e −p r e f i x : a\n v−s t r u c tu r e :
testTemplateDRT . xml\n v e r i f i c a t i o n engine : v e r i f y t a \n\n
−−−−− Stop−Watch and no−t r a c e Options −−−−−\n moves −sw−nt
a\n f i l e −p r e f i x : a\n v−s t r u c tu r e : testTemplateSW . xml\n

v e r i f i c a t i o n engine : v e r i f y ta−sw\n ∗no t r a c e w i l l be
generated \n\n −−−−− D i s c r e t i z a t i o n and no−t r a c e Options
−−−−−\n moves −drt−nt a\n f i l e −p r e f i x : a\n v−s t r u c tu r e
: testTemplateDRT . xml\n v e r i f i c a t i o n engine : v e r i f y t a \n
∗no t r a c e w i l l be generated \n\n −−−−− No−Clocks and no−
t r a c e Options −−−−−\n moves −nc−nt a\n f i l e −p r e f i x : a\n

v−s t r u c tu r e : testTemplateDRT . xml\n v e r i f i c a t i o n engine :
v e r i f y t a \n ∗no t r a c e w i l l be generated ”

8 else

9 i f [−f $1] ;
10 then

11 modelgen $1 testTemplate . xml $1
12 v e r i f y t a $1 . xml $1 . q −qs t 1 2> $1 . t r a c e
13 tracegen $1 . t r a c e
14 else

15 echo ” F i l e : ” $1 ” does not e x i s t ”
16 f i

17 f i

18 else

19 i f [$# −eq 2] ;
20 then

21 i f [$1 = ”−sw”] ;
22 then

23 i f [− f $2] ;
24 then

25 modelgen $2 testTemplateSW . xml $2
26 ve r i f y ta−sw $2 . xml $2 . q −qs t 1 2> $2 . t r a c e
27 tracegen $2 . t r a c e
28 else

29 echo ” F i l e : ” $2 ” does not e x i s t ”
30 f i

31 else

32 i f [$1 = ”−drt ”] ;
33 then

34 i f [− f $2] ;
35 then

36 modelgen $2 testTemplateDRT . xml $2

C.2 For Linux Users 195

37 v e r i f y t a $2 . xml $2 . q −qs t 1 2> $2 . t r a c e
38 tracegen $2 . t r a c e
39 else

40 echo ” F i l e : ” $2 ” does not e x i s t ”
41 f i

42 else

43 i f [$1 = ”−nc”] ;
44 then

45 i f [−f $2] ;
46 then

47 modelgen $2 testTemplate . xml $2
48 v e r i f y t a $2 . xml $2 . q −qs t 1 2> $2 . t r a c e
49 tracegen $2 . t r a c e
50 else

51 echo ” F i l e : ” $2 ” does not e x i s t ”
52 f i

53 else

54 i f [$1 = ”−nc−nt ”] ;
55 then

56 i f [−f $2] ;
57 then

58 modelgen $2 testTemplate . xml $2 nt
59 v e r i f y t a $2 . xml $2 . q −qs
60 else

61 echo ” F i l e : ” $2 ” does not e x i s t ”
62 f i

63 else

64 i f [$1 = ”−sw−nt”] ;
65 then

66 i f [−f $2] ;
67 then

68 modelgen $2 testTemplateSW . xml $2
69 ve r i f y ta−sw $2 . xml $2 . q −qs
70 else

71 echo ” F i l e : ” $2 ” does not e x i s t ”
72 f i

73 else

74 i f [$1 = ”−drt−nt”] ;
75 then

76 i f [−f $2] ;
77 then

78 modelgen $2 testTemplateDRT . xml $2 nt
79 v e r i f y t a $2 . xml $2 . q −qs
80 else

81 echo ” F i l e : ” $2 ” does not e x i s t ”
82 f i

83 else

84 echo ”Option : ”$1” not r ecogn i zed ”
85 f i

86 f i

87 f i

88 f i

89 f i

90 f i

91 else

196 Batch Scripts for MoVES

92 echo ”Wrong number o f arguments ! type ’moves −help ’ f o r
i n s t r u c t i o n s ”

93 f i

94 f i

Bibliography

[1] Yasmina Abdeddäım, Eugene Asarin, and Oded Maler. Scheduling with
Timed Automata. Theoretical Computer Science, 354(2):272–300, 2006.

[2] Yasmina Abdeddäım and Oded Maler. Job-Shop Scheduling Using Timed
Automata. In Procedings of the 13th International Conference on Computer
Aided Verification (CAV’01), volume 2102, pages 478–492. Springer Berlin
/ Heidelberg, 2001.

[3] Karine Altisen and Stavris Tripakis. Implementation of Timed Automata:
An Issue of Semantics or Modeling? In Paul Pettersson and Wang Yi,
editors, Formal Modeling and Analysis of Timed Systems, volume 3829
of Lecture Notes in Computer Science, pages 273–288. Springer Berlin /
Heidelberg, 2005.

[4] Rajeev Alur, Costas A. Courcoubetis, Nicolas Halbwachs, Thomas A. Hen-
zinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and
Sergio Yovine. The Algorithmic Analysis of Hybrid Systems. Theoretical
Computer Science, 138:3–34, 1995.

[5] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[6] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and
Wang Yi. Times - A Tool for Modelling and Implementation of Embedded
Systems. Lecture Notes in Computer Science, 2280:460–464, 2002.

[7] Neil C. Audsley, Alan Burns, Robert I. Davis, Ken W. Tindell, and Andy J.
Wellings. Fixed Priority Pre-emptive Scheduling: An Historical Perspec-
tive. Real-Time Syst., 8(2-3):173–198, 1995.

198 BIBLIOGRAPHY

[8] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on
Uppaal. Lecture Notes in Computer Science, 3185:200–236, 2004.

[9] Aske Brekling, Michael R. Hansen, and Jan Madsen. Models and For-
mal Verification of Multiprocessor System-on-Chips. Journal of Logic and
Algebraic Programming, 77(1-2):1 – 19, 2008.

[10] Aske W. Brekling, Michael R. Hansen, and Jan Madsen. A Timed-
Automata Semantics for a System-Level MPSoC Model. In proceedings of
the 18th Nordic Workshop on Programming Theory (NWPT 2006), 2006.

[11] Aske W. Brekling, Michael R. Hansen, and Jan Madsen. Analysis of Quan-
titative Properties of Hardware Specifications. In proceedings of the 21st
Nordic Workshop on Programming Theory (NWPT 2009), pages 92–95,
2009.

[12] Aske W. Brekling, Michael R. Hansen, and Jan Madsen. MoVES - A
Framework for Modelling and Verifying Embedded Systems. In 2009 Inter-
national Conference on Microelectronics, pages 143–146. IEEE Computer
Society, 2009.

[13] Alan Burns and Andy J. Wellings. Real-Time Systems and Programming
Languages. Addison Wesley Longman, Redwood City, CA, USA, 3 edition,
2001.

[14] Alan Burns and Andy J. Wellings. Delivering Real-Time Behaviour. In
Domain Modeling and the Duration Calculus, pages 1–50, 2007.

[15] Anton Cervin and Karl-Erik Årzén. TrueTime: Simulation tool for perfor-
mance analysis of real-time embedded systems. In Gabriela Nicolescu and
Pieter J. Mosterman, editors, Model-Based Design for Embedded Systems.
CRC Press, November 2009.

[16] Computers and Real-Time Group University of Cantabria (Spain). MAST
- Modeling and Analysis Suite for Real-Time Applications. Project website.
http://mast.unican.es, 2008.

[17] Rene L. Cruz. A Calculus for Network Delay. IEEE Transactions on
Information Theory, 37(1):114–141, 1991.

[18] Raymond A. Cunninghame-Greene. Minimax Algebra. Lecture Notes in
Economics and Mathematical Systems, 166, 1979.

[19] Alexandre David, Jacob Illum, Kim G. Larsen, and Arne Skou. Model-
Based Framework for Schedulability Analysis Using Uppaal 4.1. In Gabriela
Nicolescu and Pieter J. Mosterman, editors, Model-Based Design for Em-
bedded Systems, pages 93–119. CRC Press, 2010.

http://mast.unican.es

BIBLIOGRAPHY 199

[20] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. Kro-
nos.
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/, 2002.

[21] Design and Sweden Analysis of Real-Time Systems, Uppsala University.
Times - A Tool for Modeling and Implementation of Embedded Systems.
Project website. http://www.timestool.com/, 2007.

[22] Elena Fersman, Pavel Krcal, Paul Pettersson, and Wang Yi. Task Au-
tomata: Schedulability, Decidability and Undecidability. Information and
Computation, 205(8):1149–1172, 2007.

[23] Elena Fersman, Paul Pettersson, and Wang Yi. Timed Automata with
Asynchronous Processes: Schedulability and Decidability. Lecture Notes in
Computer Science, 2280:67–82, 2002.

[24] J. Carlos Palencia Guitérrez, J. Javier Gutiérrez Garćıa, and
Michael González Harbour. On the Schedulability Analysis for Distributed
Hard Real-Time Systems. In Proceedings of the 9th Euromicro Workshop
on Real-Time Systems, Toledo, Spain, pages 136–143, 1997.

[25] J. Carlos Palencia Guitérrez and Michael González Harbour. Schedulability
Analysis for Tasks with Static and Dynamic Offsets. In Proceedings of the
IEEE Real-Time Systems Symposium, 1998.

[26] Lone Halkjaer, Karen Haervi, and Anna Ingolfsdottir. Verification of the
LegOS Scheduler using Uppaal. Electronic Notes in Theoretical Computer
Science, 39(3):273–292, 2000.

[27] Michael R. Hansen, Jan Madsen, and Aske Brekling. Semantics and Verifi-
cation of a Language for Modelling Hardware Architectures. In Cliff Jones,
Zhiming Liu, and JimWoodcock, editors, Formal Methods and Hybrid Real-
Time Systems, volume 4700 of Lecture Notes in Computer Science, pages
300–319. Springer Berlin / Heidelberg, 2007.

[28] Michael R. Hansen and Hans Rischel. Introduction to Programming using
SML. Addison Wesley Longman, 1999.

[29] Michael González Harbour, J. Javier Gutiérrez Garćıa, J. Carlos Palencia
Guitérrez, and José Maria Drake Moyano. MAST: Modeling and Analysis
Suite for Real Time Applications. In Proceedings of the 13th Euromicro
Conference on Real-Time Systems, pages 125–134, 2001.

[30] Christian Haubelt, Joachim Falk, Joachim Keinert, Thomas Schlichter,
Martin Streubühr, Andreas Deyhle, Andreas Hadert, and Jürgen Teich.
A SystemC-Based Design Methodology for Digital Signal Processing Sys-
tems. EURASIP Journal on Embedded Systems, 2007(1):15–15, 2007.

http://www.timestool.com/

200 BIBLIOGRAPHY

[31] Martijn Hendriks and Marcel Verhoef. Timed Automata Based Analysis of
Embedded System Architectures. In Procedings of the 20th International
Parallel and Distributed Processing Symposium, page 8 pp. IEEE Computer
Society, 2006.

[32] Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu, Kai Richter, and
Rolf Ernst. System Level Performance Analysis - the SymTA/S Approach.
In Proceedings of IEE Computers and Digital Techniques, volume 152, pages
148–166. IEE, 2005.

[33] Fabiano Hessel, Vitor M. da Rosa, Igor M. Reis, Ricardo Planner, Cesar
A. M. Marcon, and Altamiro A. Susin. Abstract RTOS Modeling for Em-
bedded Systems. In Proceedings of the 15th IEEE International Workshop
on Rapid System Prototyping (RSP’04), pages 210–216. IEEE Computer
Society, 2004.

[34] C.A.R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice
Hall International Series in Computer Science, 1998.

[35] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley, 2003.

[36] Ieee. Std 1076-2000: IEEE Standard VHDL Language Reference Manual.
IEEE, 2000.

[37] AVACS H1/2 iSAT Developer Team. iSAT... Tight Integra-
tion of Satisfiability & Constraint Solving. Project website.
http://isat.gforge.avacs.org/, 2010.

[38] Torsten Kempf, Malte Doerper, Rainer Leupers, Gerd Ascheid, Heinrich
Meyr, Tim Kogel, and Bart Vanthournout. A Modular Simulation Frame-
work for Spatial and Temporal Task Mapping onto Multi-Processor SoC
Platforms. In Proceedings of the Conference on Design, Automation and
Test in Europe (DATE’05), volume 2, pages 876–881. IEEE Computer So-
ciety, 2005.

[39] Pavel Krcál and Wang Yi. Decidable and Undecidable Problems in Schedu-
lability Analysis Using Timed Automata. In In proceedings of 10th Interna-
tional Conference, TACAS’04 LNCS, volume 2988, pages 236–250. Springer
Berlin / Heidelberg, 2004.

[40] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. In-
ternational Journal on Software Tools for Technology Transfer, 1(1-2):134–
152, 1997.

[41] Thorsten Grötkerand Stan Liao, Grant Martin, and Stuart Swan. System
Design with SystemC. Kluwer Academic Publishers, 2002.

http://isat.gforge.avacs.org/

BIBLIOGRAPHY 201

[42] Chang L. Liu and James W. Layland. Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time environment. Journal of the Association
for Computing Machinery, 20(1):46–61, 1973.

[43] Jane W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

[44] Mirko Loghi, Federico Angiolini, Davide Bertozzi, Luca Benini, and
Roberto Zafalon. Analyzing On-Chip Communication in a MPSoC En-
vironment. In Proceedings of the Conference on Design, Automation and
Test in Europe (DATE’04), pages 752–757. IEEE Computer Society, 2004.

[45] Jan Madsen, Michael R. Hansen, and Aske W. Brekling. A Modelling and
Analysis Framework for Embedded Systems. In Gabriela Nicolescu and
Pieter J. Mosterman, editors, Model-Based Design for Embedded Systems,
pages 121–143. CRC Press, 2010.

[46] Jan Madsen, Michael R. Hansen, Kristian S. Knudsen, Jens E. Nielsen,
and Aske W. Brekling. System-level Verification of Multi-Core Embedded
Systems using Timed-Automata. In Proceedings of the 17th International
Federation of Automatic Control World Congress (IFAC’08), 2008.

[47] Jan Madsen, Shankar Mahadevan, and Kashif Virk. Network-Centric
System-Level Model for Multiprocessor SoC Simulation. In Interconnect-
Centric Design for Advanced SoC and NoC, pages 341–365. Kluwer Aca-
demic, 2004.

[48] Jan Madsen, Kashif Virk, and Mercury J. Gonzalez. A SystemC-Based
Abstract Real-Time Operating System Model for Multiprocessor System-
on-Chip. In Multiprocessor System-on-Chip, pages 283–312. Morgan Kauf-
mann, 2004.

[49] Shankar Mahadevan, Michael Storgaard, Jan Madsen, and Kashif Virk.
ARTS: A System-Level Framework for Modeling MPSoC Components and
Analysis of their Causality. In Proceedings of the 13th IEEE Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS’05), pages 480–483. IEEE Com-
puter Society, 2005.

[50] Shankar Mahadevan, Kashif Virk, and Jan Madsen. ARTS: A SystemC-
based Framework for Multiprocessor Systems-on-Chip Modelling. Design
Automation for Embedded Systems, 11(4):285–311, 2007.

[51] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, Cambridge, MA, USA, 1990.

[52] R. Le Moigne, Oliver Pasquier, and Jean Paul Calvez. A Generic RTOS
Model for Real-Time Systems Simulation with SystemC. In Proceedings

202 BIBLIOGRAPHY

of the Conference on Design, Automation and Test in Europe (DATE’04),
volume 3, pages 82–87. IEEE Computer Society, 2004.

[53] Gabriela Nicolescu and Pieter J. Mosterman. Model-Based Design for Em-
bedded Systems. CRC Press, 2010.

[54] Tolga Ovatman, Aske W. Brekling, and Michael R. Hansen. Analysis of
Costs of Embedded Systems: Experiments with Priced Timed Automata.
In Formal Foundations of Embedded Software and Component-Based Soft-
ware Architectures, FESCA@ETAPS, pages 1–14, 2008.

[55] Denmark Peter Sestoft, IT University of Copenhagen. Moscow ML. Project
website. http://www.itu.dk/people/sestoft/mosml.html, 1995.

[56] Andy D. Pimentel, Cagkan Erbas, and Simon Polstra. A Systematic Ap-
proach to Exploring Embedded System Architectures at Multiple Abstrac-
tion Levels. IEEE Transactions on Computers, 55(2):99–112, 2006.

[57] Andy D. Pimentel, Louis O. Hertzberger, Paul Lieverse, Pieter van derWolf,
and Ed F. Deprettere. Exploring Embedded-Systems Architectures with
Artemis. IEEE Computer, 34(11):57–63, 2001.

[58] Paul Pop, Petru Eles, and Zebo Peng. Schedulability-Driven Communica-
tion Synthesis for Time Triggered Embedded Systems. Real-Time Systems,
26:297–325, 2004.

[59] Patrick Schaumont and Ingrid Verbauwhede. Domain Specific Tools and
Methods for Application in Security Processor Design. Design Automation
for Embedded Systems 7, pages 365–383, 2002.

[60] Marcus T. Schmitz, Bashir M. Al-Hashimi, and Petru Eles. System-Level
Design Techniques for Energy-Efficient Embedded Systems. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2004.

[61] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-Time Cal-
culus for Scheduling Hard Real-Time Systems. In Proceedings of IEEE In-
ternational Symposium on Circuits and Systems (ISCAS 2000), volume 4,
pages 101–104, Geneva, Switzerland, 2000.

[62] Donald E. Thomas and Philip R. Moorby. The VERILOG Hardware De-
scription Language. Kluwer Academic Publishers, Norwell, MA, USA, 1991.

[63] Ken Tindell. Adding Time-Offsets to Schedulability Analysis. Technical
Report YCS 221, 1994.

[64] Ken Tindell, Alan Burns, and Andy J. Wellings. An Extendible Approach
for Analysing Fixed Priority Hard-Real-Time tasks. Real-Time Systems,
6(2):133–151, 1994.

http://www.itu.dk/people/sestoft/mosml.html

BIBLIOGRAPHY 203

[65] Ken Tindell and John Clark. Holistic Schedulability Analysis for Hard Real-
Time Systems. Microprocessing and Microprogramming, 40(2-3):117–134,
1994.

[66] Aalborg University and Uppsala University. Uppaal.
http://www.uppaal.com, 2009.

[67] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

[68] Sergio Yovine. Kronos: A Verification Tool for Real-Time Systems. In-
ternational Journal of Software Tools for Technology Transfer, 1(1/2):123–
133, 1997.

	Summary
	Resumé
	Preface
	Acknowledgements
	1 Introduction
	1.1 Different Approaches for Analysis of Embedded Systems
	1.2 Motivation
	1.3 Purpose of this Project
	1.4 The Structure of the Dissertation

	2 ARTS Concepts and Informal Model
	2.1 Application
	2.2 Execution Platform
	2.3 Mapping
	2.4 Schedulability
	2.5 Simulation
	2.6 Summary

	3 The MoVES Language
	3.1 Concrete Syntax for the MoVES Language
	3.2 Summary

	4 Semantics for MoVES
	4.1 Semantical Concepts Explained Informally
	4.2 Application Model
	4.3 Model of the Execution Platform
	4.4 Mapping (System Model)
	4.5 Scheduling of Tasks
	4.6 Model of Computation
	4.7 Decidability
	4.8 Summary

	5 MoVES Analyses using Timed Automata
	5.1 Modelling MoVES Using Timed Automata
	5.2 Non-Determinism in MoVES vs. Timed-Automata Models
	5.3 Analyses using Timed-Automata Models and Uppaal
	5.4 Summary

	6 The MoVES Tool
	6.1 A User's Perspective of the MoVES Tool
	6.2 The MoVES Framework
	6.3 Integrating the Pieces
	6.4 The MoVES Tool Available Online
	6.5 Summary

	7 Examples
	7.1 The Windmill Control System
	7.2 MP3 Decoder
	7.3 Multiprocessor Anomalies
	7.4 Very Late Deadline Miss
	7.5 Systems with Large Hyper-Periods
	7.6 Summary

	8 Perspective
	8.1 Verification Structures and Backends
	8.2 Purely Deterministic Systems
	8.3 Analysis of Resource Usage
	8.4 Hardware Specifications and Tasks in MoVES
	8.5 Ideal Assumptions
	8.6 MoVES in the Context of Networked Embedded Control Systems
	8.7 MoVES in a Greater Development Process

	9 Conclusion
	9.1 Final Remarks

	Appendix
	A Timed-Automata Templates for Verification Structures
	A.1 Stop-watch automata model
	A.2 Alternative stop-watch automata model
	A.3 Model with discretization of the running time
	A.4 Genuine discrete model

	B Source Code for the MoVES Tool
	B.1 Frontend
	B.2 Model generator
	B.3 Trace generator

	C Batch Scripts for MoVES
	C.1 For Windows Users
	C.2 For Linux Users

