73 research outputs found

    Finite-time Anti-synchronization of Memristive Stochastic BAM Neural Networks with Probabilistic Time-varying Delays

    Get PDF
    This paper investigates the drive-response finite-time anti-synchronization for memristive bidirectional associative memory neural networks (MBAMNNs). Firstly, a class of MBAMNNs with mixed probabilistic time-varying delays and stochastic perturbations is first formulated and analyzed in this paper. Secondly, an nonlinear control law is constructed and utilized to guarantee drive-response finite-time anti-synchronization of the neural networks. Thirdly, by employing some inequality technique and constructing an appropriate Lyapunov function, some anti-synchronization criteria are derived. Finally, a number simulation is provided to demonstrate the effectiveness of the proposed mechanism

    Synchronization of inertial memristive neural networks with time-varying delays via static or dynamic event-triggered control

    Get PDF
    Funding Information: This work was supported in part by the National Natural Science Foundation of China under Grant 61971185, the Major Research Project of the National Natural Science Foundation of China under Grant 91964108 and the Open Fund Project of Key Laboratory in Hunan Universities under Grant 18K010. Publisher Copyright: © 2020 Elsevier B.V.This paper investigates the synchronization problem of inertial memristive neural networks (IMNNs) with time-varying delays via event-triggered control (ETC) scheme and state feedback controller for the first time. First, two types of state feedback controllers are designed; the first type of controller is added to the transformational first-order system, and the second type of controller is added to the original second-order system. Next, based on each feedback controller, static event-triggered control (SETC) condition and dynamic event-triggered control (DETC) condition are presented to significantly reduce the update times of controller and decrease the computing cost. Then, some sufficient conditions are given such that synchronization of IMNNs with time-varying delays can be achieved under ETC schemes. Finally, a numerical simulation and some data analyses are given to verify the validity of the proposed results.Peer reviewe

    Exponential multistability of memristive Cohen-Grossberg neural networks with stochastic parameter perturbations

    Get PDF
    © 2020 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/.Due to instability being induced easily by parameter disturbances of network systems, this paper investigates the multistability of memristive Cohen-Grossberg neural networks (MCGNNs) under stochastic parameter perturbations. It is demonstrated that stable equilibrium points of MCGNNs can be flexibly located in the odd-sequence or even-sequence regions. Some sufficient conditions are derived to ensure the exponential multistability of MCGNNs under parameter perturbations. It is found that there exist at least (w+2) l (or (w+1) l) exponentially stable equilibrium points in the odd-sequence (or the even-sequence) regions. In the paper, two numerical examples are given to verify the correctness and effectiveness of the obtained results.Peer reviewe

    Almost periodic solutions of retarded SICNNs with functional response on piecewise constant argument

    Get PDF
    We consider a new model for shunting inhibitory cellular neural networks, retarded functional differential equations with piecewise constant argument. The existence and exponential stability of almost periodic solutions are investigated. An illustrative example is provided.Comment: 24 pages, 1 figur

    Robust Multimode Function Synchronization of Memristive Neural Networks with Parameter Perturbations and Time-Varying Delays

    Get PDF
    Publisher Copyright: IEEE Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Currently, some works on studying complete synchronization of dynamical systems are usually restricted to its two special cases: 1) power-rate synchronization and 2) exponential synchronization. Therefore, how to give a generalization of these types of complete synchronization by the mathematical expression is an open question that needs to be urgently solved. To begin with, this article proposes multimode function synchronization by the mathematical expression for the first time, which is a generalization of exponential synchronization, power-rate synchronization, logarithmical synchronization, and so on. Moreover, two adaptive controllers are designed to achieve robust multimode function synchronization of memristive neural networks (MNNs) with mismatched parameters and uncertain parameters. Each adaptive controller includes function r(t) and update gain σ. By choosing different types of r(t), multiple types of complete synchronization, including power-rate synchronization and exponential synchronization can be obtained. And update gain σ can be used to adjust the speed of synchronization. Therefore, our results enlarge and strengthen the existing results. Two examples are put forward to verify the validity of our results.Peer reviewedFinal Accepted Versio

    Synchronization in STDP-driven memristive neural networks with time-varying topology

    Full text link
    Synchronization is a widespread phenomenon in the brain. Despite numerous studies, the specific parameter configurations of the synaptic network structure and learning rules needed to achieve robust and enduring synchronization in neurons driven by spike-timing-dependent plasticity (STDP) and temporal networks subject to homeostatic structural plasticity (HSP) rules remain unclear. Here, we bridge this gap by determining the configurations required to achieve high and stable degrees of complete synchronization (CS) and phase synchronization (PS) in time-varying small-world and random neural networks driven by STDP and HSP. In particular, we found that decreasing PP (which enhances the strengthening effect of STDP on the average synaptic weight) and increasing FF (which speeds up the swapping rate of synapses between neurons) always lead to higher and more stable degrees of CS and PS in small-world and random networks, provided that the network parameters such as the synaptic time delay τc\tau_c, the average degree ⟨k⟩\langle k \rangle, and the rewiring probability β\beta have some appropriate values. When τc\tau_c, ⟨k⟩\langle k \rangle, and β\beta are not fixed at these appropriate values, the degree and stability of CS and PS may increase or decrease when FF increases, depending on the network topology. It is also found that the time delay τc\tau_c can induce intermittent CS and PS whose occurrence is independent FF. Our results could have applications in designing neuromorphic circuits for optimal information processing and transmission via synchronization phenomena.Comment: 28 pages, 86 references, 8 figures, 2 Table

    Asymptotic Stability and Asymptotic Synchronization of Memristive Regulatory-Type Networks

    Get PDF
    Memristive regulatory-type networks are recently emerging as a potential successor to traditional complementary resistive switch models. Qualitative analysis is useful in designing and synthesizing memristive regulatory-type networks. In this paper, we propose several succinct criteria to ensure global asymptotic stability and global asymptotic synchronization for a general class of memristive regulatory-type networks. The experimental simulations also show the performance of theoretical results

    Stability analysis for delayed quaternion-valued neural networks via nonlinear measure approach

    Get PDF
    In this paper, the existence and stability analysis of the quaternion-valued neural networks (QVNNs) with time delay are considered. Firstly, the QVNNs are equivalently transformed into four real-valued systems. Then, based on the Lyapunov theory, nonlinear measure approach, and inequality technique, some sufficient criteria are derived to ensure the existence and uniqueness of the equilibrium point as well as global stability of delayed QVNNs. In addition, the provided criteria are presented in the form of linear matrix inequality (LMI), which can be easily checked by LMI toolbox in MATLAB. Finally, two simulation examples are demonstrated to verify the effectiveness of obtained results. Moreover, the less conservatism of the obtained results is also showed by two comparison examples

    Exponential state estimation for competitive neural network via stochastic sampled-data control with packet losses

    Get PDF
    This paper investigates the exponential state estimation problem for competitive neural networks via stochastic sampled-data control with packet losses. Based on this strategy, a switched system model is used to describe packet dropouts for the error system. In addition, transmittal delays between neurons are also considered. Instead of the continuous measurement, the sampled measurement is used to estimate the neuron states, and a sampled-data estimator with probabilistic sampling in two sampling periods is proposed. Then the estimator is designed in terms of the solution to a set of linear matrix inequalities (LMIs), which can be solved by using available software. When the missing of control packet occurs, some sufficient conditions are obtained to guarantee that the exponentially stable of the error system by means of constructing an appropriate Lyapunov function and using the average dwell-time technique. Finally, a numerical example is given to show the effectiveness of the proposed method
    • …
    corecore