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Memristive regulatory-type networks are recently emerging as a potential successor to traditional complementary resistive switch
models. Qualitative analysis is useful in designing and synthesizingmemristive regulatory-type networks. In this paper, we propose
several succinct criteria to ensure global asymptotic stability and global asymptotic synchronization for a general class ofmemristive
regulatory-type networks. The experimental simulations also show the performance of theoretical results.

1. Introduction

Using memristive devices as synapses is a focus in mem-
ristive networks. To extract the benefits of high-efficiency
memristive memory, various memristive networks have been
reported to date [1–18]. Unlike conventional two-terminal
devices, memristive networks exhibit pinched memristor
hysteresis loop characteristics, making them particularly
suitable for linear-drift devices [10]. Moreover, as the mod-
ular compact model for memristors, memristive regulatory-
type networks are further broadened to memristive sys-
tems that exhibit the phenomenon of closed-form sneak
paths, which enable nanoscale geometries with short access
latencies. A memristive regulatory-type network contains
multiply-threshold synapses, which has been heralded as a
new paradigm in large-scale circuits. Compared with some
memristive systems, a memristive regulatory-type network
has the following advantages: (1) it is more biomimetic in
behaviors with simple system structure; (2) it simplifies the
structure and complication of circuits and is easy to realize.
With these coveted properties, memristive regulatory-type
networks have the potential of realizations in module-based
nanoscale neuromorphic computing systems.

The underlying physics mechanism of memristor models
is extremely complex. In order to explore the characteristics
and applications of memristive networks, several attempts
in [1–4, 6–18] have been made, using nonlinear system

theory, to develop behavioral models of memristors. An ideal
dynamic property is a critical requirement for the devel-
opment and validation of memristive networks. Evolutional
characteristics of memristive networks are an interesting
and prosperous research area. However, deploying nonlinear
analysis technology in memristive networks is challenging
because amemristive network is basically a switched network
cluster [13, 15]. Such switched network cluster thus possesses
the synaptic action, in which the synaptic weight can be
incrementally ameliorated by adjusting the charge or flux
through it. There are two major obstacles to analyze and
control the memristive networks, namely, high complexity
and switched hybridity [12, 13]. On the other hand, dynamical
analysis for memristive networks can explain carrier dynam-
ics and associated transients. Once the electronic properties
of memristive networks are revealed, then the circuit models
can be implemented based upon the underlying dynamic
nature. By tweaking physical structures and bias conditions,
system designer can optimize the circuit performance, and
then, numerous potential applications of thememristors have
been exploited, such as neuromorphic, digital, and quantum
computation.

In spite of having significant progress in the area of
nonlinear control systems [19–35], memristive regulatory-
type networks constituting switched network cluster have
received less attention. It has been reasoned that much
like neuroevolutionary systems, memristive regulatory-type
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networks could be responsible for different neuromorphic
architectures [36, 37]. To this end, we focus on the evolu-
tion of memristive regulatory-type networks. In this paper,
we study global asymptotic stability and global asymptotic
synchronization of a class of memristive regulatory-type net-
works. Based on𝑀-matrix theory, we develop less conserva-
tive global asymptotic stability results and global asymptotic
synchronization results for memristive regulatory-type net-
works. Such theoretical analysis can significantly help under-
stand and identify system performance, especially in neuro-
morphic computing era where stability or synchronization is
crucial. In fact, dynamic analysis of memristive regulatory-
type networks can provide an overview for optimizing the
circuit device and enhancing circuit performances.

The rest of this paper is organized as follows. Section 2
introduces model description and preliminaries. Section 3
gives main results. Section 4 discusses two numerical exam-
ples to demonstrate the effectiveness of theoretical results.
Finally, Section 5 concludes the paper with some remarks.

2. Model Description and Preliminaries

Consider a general class of memristive regulatory-type net-
works described by the following delay differential equations:
for 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀,

𝑝̇𝑖 (𝑡) = −𝑎𝑖𝑝𝑖 (𝑡) + 𝑀∑
𝑗=1

𝑏𝑖𝑗 (𝑞𝑗 (𝑡)) 𝑓𝑗 (𝑞𝑗 (𝑡 − 𝜌𝑖𝑗)) ,
𝑞̇𝑗 (𝑡) = −𝑐𝑗𝑞𝑗 (𝑡) + 𝑁∑

𝑖=1

𝑑𝑗𝑖𝑝𝑖 (𝑡 − 󰜚𝑗𝑖) , (1)

where 𝑝𝑖(𝑡) and 𝑞𝑗(𝑡) represent the concentration variations
of memristive messenger gene 𝑖 and affiliated organic com-
pound 𝑗, respectively, 𝑎𝑖 > 0 and 𝑐𝑗 > 0 denote the
degradation rates of memristive messenger gene 𝑖 and affil-
iated organic compound 𝑗, respectively, 𝑑𝑗𝑖 ≥ 0 represents
the translating rate, nonlinear function 𝑓𝑗(⋅) is bounded and𝑓𝑗(0) = 0, 0 ≤ 𝜌𝑖𝑗 ≤ 𝜏 and 0 ≤ 󰜚𝑗𝑖 ≤ 𝜏 (𝜏 ≥ 0 is
a constant) denote the regulating delay and the translating
delay, respectively, and 𝑏𝑖𝑗(𝑞𝑗(𝑡)) represents regulatory rela-
tionship of the network, which is defined as

𝑏𝑖𝑗 (𝑞𝑗 (𝑡)) = {{{𝑏𝑖𝑗, 𝑞𝑗 (𝑡) < 0,𝑏̌𝑖𝑗, 𝑞𝑗 (𝑡) > 0, (2)

where 𝑏𝑖𝑗 and 𝑏̌𝑖𝑗 are constants.
The initial conditions of system (1) are assumed to be𝑝𝑖 (𝑠) = 𝜙𝑖 (𝑠) ,𝑞𝑗 (𝑠) = 𝜑𝑗 (𝑠) ,𝑠 ∈ [−𝜏, 0] , 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀, (3)

where 𝜙𝑖(𝑠) and 𝜑𝑗(𝑠) are both continuous functions defined
on [−𝜏, 0].

In addition, we also assume that the nonlinear function𝑓𝑗(⋅) (𝑗 = 1, 2, . . . ,𝑀) satisfies the Lipschitz condition with
the Lipschitz constant 𝑙𝑗 > 0; that is,󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (𝜒) − 𝑓𝑗 (𝜒̂)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑙𝑗 󵄨󵄨󵄨󵄨𝜒 − 𝜒̂󵄨󵄨󵄨󵄨 ,𝑗 = 1, 2, . . . ,𝑀, ∀𝜒, 𝜒̂ ∈ R. (4)

In this paper, solutions of all the systems considered in
the following are in Filippov’s sense. 𝐾(P) denotes closure
of the convex hull of set P. co{Π̃, Π̂} denotes closure of the
convex hull generated by real numbers Π̃ and Π̂. Let 𝑏𝑖𝑗 =
max{𝑏̂𝑖𝑗, 𝑏̌𝑖𝑗}, 𝑏𝑖𝑗 = min{𝑏̂𝑖𝑗, 𝑏̌𝑖𝑗}, and 𝑏𝑖𝑗 = max{|𝑏̂𝑖𝑗|, |𝑏̌𝑖𝑗|}, for𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀.

When considering memristive regulatory-type networks
(1), throughout this paper, let us define the set-valued maps
as follows:

𝐾(𝑏𝑖𝑗 (𝑞𝑗 (𝑡))) = {{{{{{{{{
𝑏𝑖𝑗, 𝑞𝑗 (𝑡) < 0,
co {𝑏̂𝑖𝑗, 𝑏̌𝑖𝑗} , 𝑞𝑗 (𝑡) = 0,𝑏̌𝑖𝑗, 𝑞𝑗 (𝑡) > 0. (5)

Obviously, for 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀,

co {𝑏𝑖𝑗, 𝑏̌𝑖𝑗} = [𝑏𝑖𝑗, 𝑏𝑖𝑗] . (6)

By the theory of differential inclusions, from (1), then for𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀,𝑝̇𝑖 (𝑡) ∈ −𝑎𝑖𝑝𝑖 (𝑡) + 𝑀∑
𝑗=1

𝐾(𝑏𝑖𝑗 (𝑞𝑗 (𝑡))) 𝑓𝑗 (𝑞𝑗 (𝑡 − 𝜌𝑖𝑗)) ,
𝑞̇𝑗 (𝑡) = −𝑐𝑗𝑞𝑗 (𝑡) + 𝑁∑

𝑖=1

𝑑𝑗𝑖𝑝𝑖 (𝑡 − 󰜚𝑗𝑖) . (7)

A solution 𝑝(𝑡) = (𝑝1(𝑡), 𝑝2(𝑡), . . . , 𝑝𝑁(𝑡))𝑇, 𝑞(𝑡) = (𝑞1(𝑡),𝑞2(𝑡), . . . , 𝑞𝑀(𝑡))𝑇 in the sense of Filippov of system (1) with
initial conditions 𝑝𝑖(𝑠) = 𝜙𝑖(𝑠), 𝑞𝑗(𝑠) = 𝜑𝑗(𝑠), and 𝑠 ∈ [−𝜏, 0],𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀, is absolutely continuous on
any compact interval of [0, +∞), and𝑝̇𝑖 (𝑡) ∈ −𝑎𝑖𝑝𝑖 (𝑡) + 𝑀∑

𝑗=1

𝐾(𝑏𝑖𝑗 (𝑞𝑗 (𝑡))) 𝑓𝑗 (𝑞𝑗 (𝑡 − 𝜌𝑖𝑗)) ,
𝑞̇𝑗 (𝑡) = −𝑐𝑗𝑞𝑗 (𝑡) + 𝑁∑

𝑖=1

𝑑𝑗𝑖𝑝𝑖 (𝑡 − 󰜚𝑗𝑖) . (8)

Definition 1. The constant vectors 𝑝∗ = (𝑝∗1 , 𝑝∗2 , . . . , 𝑝∗𝑁)𝑇
and 𝑞∗ = (𝑞∗1 , 𝑞∗2 , . . . , 𝑞∗𝑀)𝑇 are called an equilibrium point
of system (1), if for 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀,0 ∈ −𝑎𝑖𝑝∗𝑖 + 𝑀∑

𝑗=1

𝐾(𝑏𝑖𝑗 (𝑞∗𝑗 )) 𝑓𝑗 (𝑞∗𝑗 ) ,
0 = −𝑐𝑗𝑞∗𝑗 + 𝑁∑

𝑖=1

𝑑𝑗𝑖𝑝∗𝑖 . (9)
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Definition 2. The equilibrium point of system (1) is said to be
globally asymptotically stable if it is locally stable in sense of
Lyapunov and globally attractive.

According to Lyapunov directmethod, fromDefinition 2,
as we know, if there exists an appropriate Lyapunov function𝑉which is positive definite and radially unbounded, such that
the time-derivative of 𝑉 along the trajectory of system (1) is
negative definite, then the equilibrium point of system (1) is
globally asymptotically stable.

Definition 3. For drive system Ẋ(𝑡) = F(𝑡,X), X ∈ R𝑛,
response system Ẏ(𝑡) = G(𝑡,Y, 𝑈), Y ∈ R𝑛, and 𝑈 ∈ R𝑛,
define the synchronization error signal E(𝑡) = X(𝑡) −Y(𝑡),
E ∈ R𝑛; then the error dynamics can be expressed by the
following form:

Ė (𝑡) = F (𝑡,X) −G (𝑡,Y, 𝑈) , (10)
and we say that the response system can be globally asymp-
totically synchronized with the drive system if the zero
solution of error system is globally asymptotically stable.

3. Main Results

In this section, we will first give two lemmas, which play
important role in the analysis and synthesis of memristive
regulatory-type networks (1).

Lemma 4. In system (1) at least one equilibrium point exists:𝑝∗ = (𝑝∗1 , 𝑝∗2 , . . . , 𝑝∗𝑁)𝑇; 𝑞∗ = (𝑞∗1 , 𝑞∗2 , . . . , 𝑞∗𝑀)𝑇.
Lemma 5. For system (1), we have󵄨󵄨󵄨󵄨󵄨𝐾 (𝑏𝑖𝑗 (X𝑗)) 𝑓𝑗 (X𝑗) − 𝐾 (𝑏𝑖𝑗 (Y𝑗)) 𝑓𝑗 (Y𝑗)󵄨󵄨󵄨󵄨󵄨≤ 𝑏𝑖𝑗𝑙𝑗 󵄨󵄨󵄨󵄨󵄨X𝑗 −Y𝑗

󵄨󵄨󵄨󵄨󵄨 ,∀𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀, ∀X𝑗,Y𝑗 ∈ R, (11)

where𝐾(𝑏𝑖𝑗(X𝑗)) and 𝐾(𝑏𝑖𝑗(Y𝑗)) are defined as those in (5).

Using standard arguments as Lemmas 1 and 2 in [15],
Lemmas 4 and 5 of this paper can be proved, respectively.

3.1. Global Asymptotic Stability. According to Lemma4,mem-
ristive regulatory-type networks (1) have the equilibrium
points 𝑝∗ = (𝑝∗1 , 𝑝∗2 , . . . , 𝑝∗𝑁)𝑇 and 𝑞∗ = (𝑞∗1 , 𝑞∗2 , . . . , 𝑞∗𝑀)𝑇;
we shift the equilibrium points 𝑝∗ = (𝑝∗1 , 𝑝∗2 , . . . , 𝑝∗𝑁)𝑇 and𝑞∗ = (𝑞∗1 , 𝑞∗2 , . . . , 𝑞∗𝑀)𝑇 to the origin by the translation 𝑥𝑖(𝑡) =𝑝𝑖(𝑡) − 𝑝∗𝑖 and 𝑦𝑗(𝑡) = 𝑞𝑗(𝑡) − 𝑞∗𝑗 in the differential inclusion
(7), which results in𝑥̇𝑖 (𝑡) ∈ −𝑎𝑖𝑥𝑖 (𝑡)+ 𝑀∑

𝑗=1

𝐾(𝑏𝑖𝑗 (𝑦𝑗 (𝑡))) 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜌𝑖𝑗)) ,
𝑦̇𝑗 (𝑡) = −𝑐𝑗𝑦𝑗 (𝑡) + 𝑁∑

𝑖=1

𝑑𝑗𝑖𝑥𝑖 (𝑡 − 󰜚𝑗𝑖) ,
(12)

where𝐾(𝑏𝑖𝑗 (𝑦𝑗 (𝑡))) 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜌𝑖𝑗))= 𝐾 (𝑏𝑖𝑗 (𝑦𝑗 (𝑡) + 𝑞∗𝑗 )) 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜌𝑖𝑗) + 𝑞∗𝑗 )− 𝐾 (𝑏𝑖𝑗 (𝑞∗𝑗 )) 𝑓𝑗 (𝑞∗𝑗 ) . (13)

According to Lemma 5,󵄨󵄨󵄨󵄨󵄨𝐾 (𝑏𝑖𝑗 (𝑦𝑗 (𝑡))) 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜌𝑖𝑗))󵄨󵄨󵄨󵄨󵄨 ≤ 𝑏̃𝑖𝑗𝑙𝑗 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡 − 𝜌𝑖𝑗)󵄨󵄨󵄨󵄨󵄨 . (14)

From (12)–(14), for 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀,󵄨󵄨󵄨󵄨𝑥̇𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ −𝑎𝑖 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑀∑
𝑗=1

𝑏𝑖𝑗𝑙𝑗 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡 − 𝜌𝑖𝑗)󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨𝑦̇𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 = −𝑐𝑗 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑁∑
𝑖=1

𝑑𝑗𝑖 󵄨󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡 − 󰜚𝑗𝑖)󵄨󵄨󵄨󵄨󵄨 . (15)

Theorem 6. The equilibrium points 𝑝∗ = (𝑝∗1 , 𝑝∗2 , . . . , 𝑝∗𝑁)𝑇
and 𝑞∗ = (𝑞∗1 , 𝑞∗2 , . . . , 𝑞∗𝑀)𝑇 of system (1) is globally asymptoti-
cally stable, if the following matrix

W = ( A −B−D C
)
(𝑁+𝑀)×(𝑁+𝑀)

(16)

is a nonsingular 𝑀-matrix, where A = diag(𝑎1, 𝑎2, . . . , 𝑎𝑁),
B = (𝑏̃𝑖𝑗𝑙𝑗)𝑁×𝑀,C = diag(𝑐1, 𝑐2, . . . , 𝑐𝑀), andD = (𝑑𝑗𝑖)𝑀×𝑁.
Proof. Since matrixW is a nonsingular𝑀-matrix, by the𝑀-
matrix theory, it follows thatW𝑇 is a nonsingular𝑀-matrix.
Based on the fact that W𝑇 is a nonsingular 𝑀-matrix, then
there exists an (𝑁 + 𝑀)-dimensional vector 𝜂 > 0 such that
W𝑇𝜂 > 0; that is,

𝑎𝑖𝜂𝑖 − 𝑀∑
𝑗=1

𝑑𝑗𝑖𝜂𝑁+𝑗 > 0, for 𝑖 = 1, 2, . . . , 𝑁,
𝑐𝑗𝜂𝑁+𝑗 − 𝑁∑

𝑖=1

𝑏𝑖𝑗𝑙𝑗𝜂𝑖 > 0, for 𝑗 = 1, 2, . . . ,𝑀. (17)

Choose

𝜗1 = min
1≤𝑖≤𝑁

{{{𝑎𝑖𝜂𝑖 − 𝑀∑
𝑗=1

𝑑𝑗𝑖𝜂𝑁+𝑗}}} ,
𝜗2 = min
1≤𝑗≤𝑀

{𝑐𝑗𝜂𝑁+𝑗 − 𝑁∑
𝑖=1

𝑏̃𝑖𝑗𝑙𝑗𝜂𝑖} , (18)

and then we get 𝜗 = min {𝜗1, 𝜗2} > 0. (19)
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Consider the following positive definite and radially un-
bounded Lyapunov function:

𝑉 (𝑥 (𝑡) , 𝑦 (𝑡)) = 𝑁∑
𝑖=1

𝜂𝑖 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑀∑
𝑗=1

𝜂𝑁+𝑗 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑀∑
𝑗=1

𝜂𝑁+𝑗 𝑁∑
𝑖=1

𝑑𝑗𝑖 ∫𝑡
𝑡−󰜚𝑗𝑖

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑠)󵄨󵄨󵄨󵄨 d𝑠
+ 𝑁∑
𝑖=1

𝜂𝑖 𝑀∑
𝑗=1

𝑏̃𝑖𝑗𝑙𝑗 ∫𝑡
𝑡−𝜌𝑖𝑗

󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨 d𝑠.
(20)

Calculating the upper right Dini derivative of 𝑉(𝑥(𝑡),𝑦(𝑡)) along the trajectory of system (12) yields𝐷+𝑉 (𝑥 (𝑡) , 𝑦 (𝑡))
≤ 𝑁∑
𝑖=1

𝜂𝑖 [[−𝑎𝑖 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑀∑𝑗=1𝑏𝑖𝑗𝑙𝑗 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡 − 𝜌𝑖𝑗)󵄨󵄨󵄨󵄨󵄨]]+ 𝑀∑
𝑗=1

𝜂𝑁+𝑗 [−𝑐𝑗 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑁∑
𝑖=1

𝑑𝑗𝑖 󵄨󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡 − 󰜚𝑗𝑖)󵄨󵄨󵄨󵄨󵄨]
+ 𝑀∑
𝑗=1

𝜂𝑁+𝑗 𝑁∑
𝑖=1

𝑑𝑗𝑖 [󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡 − 󰜚𝑗𝑖)󵄨󵄨󵄨󵄨󵄨]
+ 𝑁∑
𝑖=1

𝜂𝑖 𝑀∑
𝑗=1

𝑏𝑖𝑗𝑙𝑗 [󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡 − 𝜌𝑖𝑗)󵄨󵄨󵄨󵄨󵄨]
= − 𝑁∑
𝑖=1

𝜂𝑖𝑎𝑖 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 − 𝑀∑
𝑗=1

𝜂𝑁+𝑗𝑐𝑗 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑀∑
𝑗=1

𝜂𝑁+𝑗 𝑁∑
𝑖=1

𝑑𝑗𝑖 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑁∑
𝑖=1

𝜂𝑖 𝑀∑
𝑗=1

𝑏𝑖𝑗𝑙𝑗 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
= 𝑁∑
𝑖=1

[[−𝜂𝑖𝑎i + 𝑀∑𝑗=1𝜂𝑁+𝑗𝑑𝑗𝑖]] 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨
+ 𝑀∑
𝑗=1

[−𝜂𝑁+𝑗𝑐𝑗 + 𝑁∑
𝑖=1

𝜂𝑖𝑏̃𝑖𝑗𝑙𝑗] 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
≤ −𝜗[[ 𝑁∑𝑖=1 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑀∑𝑗=1 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨]] .

(21)

By Lyapunov global asymptotic stability theory, we can
conclude system (12) is globally asymptotically stable. Thus,
the equilibrium points 𝑝∗ = (𝑝∗1 , 𝑝∗2 , . . . , 𝑝∗𝑁)𝑇 and 𝑞∗ =(𝑞∗1 , 𝑞∗2 , . . . , 𝑞∗𝑀)𝑇 of system (1) are globally asymptotically
stable. The proof is completed.

Next we extendTheorem 6 to other possible cases.

Corollary 7. The equilibrium points 𝑝∗ = (𝑝∗1 , 𝑝∗2 , . . . , 𝑝∗𝑁)𝑇
and 𝑞∗ = (𝑞∗1 , 𝑞∗2 , . . . , 𝑞∗𝑀)𝑇 of system (1) are globally asymp-
totically stable, if𝑎𝑖 > 𝑀∑

𝑗=1

𝑑𝑗𝑖, for 𝑖 = 1, 2, . . . , 𝑁,
𝑐𝑗 > 𝑁∑
𝑖=1

𝑏𝑖𝑗𝑙𝑗, for 𝑗 = 1, 2, . . . ,𝑀. (22)

Proof. Select the (𝑁 + 𝑀)-dimensional unit vector as 𝜂 in
the proof of Theorem 6, from (22); it follows that (17) hold.
Therefore, the conclusion of Corollary 7 is obvious.

Corollary 8. When 𝑀 = 𝑁, the equilibrium points 𝑝∗ =(𝑝∗1 , 𝑝∗2 , . . . , 𝑝∗𝑁)𝑇 and 𝑞∗ = (𝑞∗1 , 𝑞∗2 , . . . , 𝑞∗𝑀)𝑇 of system (1) are
globally asymptotically stable, if the matrix

W = AC −DB (23)

is a nonsingular 𝑀-matrix, where A = diag(𝑎1, 𝑎2, . . . , 𝑎𝑁),
B = (𝑏̃𝑖𝑗𝑙𝑗)𝑁×𝑀,C = diag(𝑐1, 𝑐2, . . . , 𝑐𝑀), andD = (𝑑𝑗𝑖)𝑀×𝑁.
Proof. The proof is a direct result of Theorem 6.

3.2. Global Asymptotic Synchronization. Let (1) be the drive
memristive regulatory-type networks.The response memris-
tive regulatory-type networks are described by the following:
for 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀,

Ṗ𝑖 (𝑡) = −𝑎𝑖P𝑖 (𝑡) + 𝑀∑
𝑗=1

𝑏𝑖𝑗 (Q𝑗 (𝑡)) 𝑓𝑗 (Q𝑗 (𝑡 − 𝜌𝑖𝑗))+U𝑖 (𝑡) ,
Q̇𝑗 (𝑡) = −𝑐𝑗Q𝑗 (𝑡) + 𝑁∑

𝑖=1

𝑑𝑗𝑖P𝑖 (𝑡 − 󰜚𝑗𝑖) +V𝑗 (𝑡) ,
(24)

where U𝑖(𝑡), V𝑗(𝑡), 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀, denote
the appropriate control inputs that will be designed in order
to obtain a certain control objective.

Next, the linear feedback scheme is used to achieve syn-
chronization between drive memristive regulatory-type net-
works (1) and response memristive regulatory-type networks
(24); that is, the controllers U𝑖(𝑡), V𝑗(𝑡), 𝑖 = 1, 2, . . . , 𝑁,𝑗 = 1, 2, . . . ,𝑀, are designed as follows:

U𝑖 (𝑡) = K𝑖 (𝑝𝑖 (𝑡) −P𝑖 (𝑡)) ,
V𝑗 (𝑡) = H𝑗 (𝑞𝑗 (𝑡) − Q𝑗 (𝑡)) , (25)

whereK𝑖 > 0,H𝑗 > 0 denote the control gains.
Let 𝑒𝑖 (𝑡) = 𝑝𝑖 (𝑡) −P𝑖 (𝑡) ,

E𝑗 (𝑡) = 𝑞𝑗 (𝑡) − Q𝑗 (𝑡) , (26)
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for 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀. Then by drive mem-
ristive regulatory-type networks (1), response memristive
regulatory-type networks (24), and the controllers (25), the
error system can be described bẏ𝑒𝑖 (𝑡) = −𝑎𝑖𝑒𝑖 (𝑡) + [[𝑀∑𝑗=1𝑏𝑖𝑗 (𝑞𝑗 (𝑡)) 𝑓𝑗 (𝑞𝑗 (𝑡 − 𝜌𝑖𝑗))

− 𝑀∑
𝑗=1

𝑏𝑖𝑗 (Q𝑗 (𝑡)) 𝑓𝑗 (Q𝑗 (𝑡 − 𝜌𝑖𝑗))]] −K𝑖𝑒𝑖 (𝑡) ,
Ė𝑗 (𝑡) = −𝑐𝑗E𝑗 (𝑡) + 𝑁∑

𝑖=1

𝑑𝑗𝑖𝑒𝑖 (𝑡 − 󰜚𝑗𝑖) −H𝑗E𝑗 (𝑡) ,
(27)

for 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀.
To apply the theories of set-valued maps and differential

inclusions, (27) is equivalent tȯ𝑒𝑖 (𝑡) ∈ −𝑎𝑖𝑒𝑖 (𝑡)+ [[𝑀∑𝑗=1𝐾(𝑏𝑖𝑗 (𝑞𝑗 (𝑡))) 𝑓𝑗 (𝑞𝑗 (𝑡 − 𝜌𝑖𝑗))
− 𝑀∑
𝑗=1

𝐾(𝑏𝑖𝑗 (Q𝑗 (𝑡))) 𝑓𝑗 (Q𝑗 (𝑡 − 𝜌𝑖𝑗))]] −K𝑖𝑒𝑖 (𝑡) ,
Ė𝑗 (𝑡) = −𝑐𝑗E𝑗 (𝑡) + 𝑁∑

𝑖=1

𝑑𝑗𝑖𝑒𝑖 (𝑡 − 󰜚𝑗𝑖) −H𝑗E𝑗 (𝑡) .
(28)

According to Lemma 5,󵄨󵄨󵄨󵄨󵄨𝐾 (𝑏𝑖𝑗 (𝑞𝑗 (𝑡))) 𝑓𝑗 (𝑞𝑗 (𝑡 − 𝜌𝑖𝑗))− 𝐾 (𝑏𝑖𝑗 (Q𝑗 (𝑡))) 𝑓𝑗 (Q𝑗 (𝑡 − 𝜌𝑖𝑗))󵄨󵄨󵄨󵄨󵄨≤ 𝑏̃𝑖𝑗𝑙𝑗 󵄨󵄨󵄨󵄨󵄨E𝑗 (𝑡 − 𝜌𝑖𝑗)󵄨󵄨󵄨󵄨󵄨 . (29)

From (28) and (29), for 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀,󵄨󵄨󵄨󵄨 ̇𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 ≤ − (𝑎𝑖 +K𝑖) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑀∑
𝑗=1

𝑏̃𝑖𝑗𝑙𝑗 󵄨󵄨󵄨󵄨󵄨E𝑗 (𝑡 − 𝜌𝑖𝑗)󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨Ė𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 = − (𝑐𝑗 +H𝑗) 󵄨󵄨󵄨󵄨󵄨E𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑁∑
𝑖=1

𝑑𝑗𝑖 󵄨󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡 − 󰜚𝑗𝑖)󵄨󵄨󵄨󵄨󵄨 . (30)

Theorem 9. The zero solution of system (28) is globally
asymptotically stable; that is, the response system (24) can be
globally asymptotically synchronized with the drive system (1),
if the following matrix

W = ( A −B−D C
)
(𝑁+𝑀)×(𝑁+𝑀)

(31)

is a nonsingular 𝑀-matrix, where A = diag(𝑎1 + K1, 𝑎2 +
K2, . . . , 𝑎𝑁 +K𝑁), B = (𝑏̃𝑖𝑗𝑙𝑗)𝑁×𝑀, C = diag(𝑐1 +H1, 𝑐2 +
H2, . . . , 𝑐𝑀 +H𝑀), andD = (𝑑𝑗𝑖)𝑀×𝑁.

Proof. Since matrixW is a nonsingular𝑀-matrix, by the𝑀-
matrix theory, it follows thatW𝑇 is a nonsingular𝑀-matrix.
Based on the fact that W𝑇 is a nonsingular 𝑀-matrix, then
there exists an (𝑁 + 𝑀)-dimensional vector 𝜂 > 0 such that
W𝑇𝜂 > 0; that is,(𝑎𝑖 +K𝑖) 𝜂𝑖 − 𝑀∑

𝑗=1

𝑑𝑗𝑖𝜂𝑁+𝑗 > 0, for 𝑖 = 1, 2, . . . , 𝑁,
(𝑐𝑗 +H𝑗) 𝜂𝑁+𝑗 − 𝑁∑

𝑖=1

𝑏̃𝑖𝑗𝑙𝑗𝜂𝑖 > 0, for 𝑗 = 1, 2, . . . ,𝑀. (32)

Choose𝜗1 = min
1≤𝑖≤𝑁

{{{(𝑎𝑖 +K𝑖) 𝜂𝑖 − 𝑀∑
𝑗=1

𝑑𝑗𝑖𝜂𝑁+𝑗}}} ,
𝜗2 = min
1≤𝑗≤𝑀

{(𝑐𝑗 +H𝑗) 𝜂𝑁+𝑗 − 𝑁∑
𝑖=1

𝑏̃𝑖𝑗𝑙𝑗𝜂𝑖} , (33)

and then we get 𝜗 = min {𝜗1, 𝜗2} > 0. (34)

Consider the following positive definite and radially
unbounded Lyapunov function:𝑉 (𝑒 (𝑡) ,E (𝑡)) = 𝑁∑

𝑖=1

𝜂𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑀∑
𝑗=1

𝜂𝑁+𝑗 󵄨󵄨󵄨󵄨󵄨E𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑀∑
𝑗=1

𝜂𝑁+𝑗 𝑁∑
𝑖=1

𝑑𝑗𝑖 ∫𝑡
𝑡−󰜚𝑗𝑖

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠)󵄨󵄨󵄨󵄨 d𝑠
+ 𝑁∑
𝑖=1

𝜂𝑖 𝑀∑
𝑗=1

𝑏𝑖𝑗𝑙𝑗 ∫𝑡
𝑡−𝜌𝑖𝑗

󵄨󵄨󵄨󵄨󵄨E𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨 d𝑠.
(35)

Calculating the upper right Dini derivative of 𝑉(𝑒(𝑡),
E(𝑡)) along the trajectory of system (28) yields𝐷+𝑉 (𝑒 (𝑡) ,E (𝑡)) ≤ 𝑁∑

𝑖=1

𝜂𝑖 [[− (𝑎𝑖 +K𝑖) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨
+ 𝑀∑
𝑗=1

𝑏𝑖𝑗𝑙𝑗 󵄨󵄨󵄨󵄨󵄨E𝑗 (𝑡 − 𝜌𝑖𝑗)󵄨󵄨󵄨󵄨󵄨]]+ 𝑀∑
𝑗=1

𝜂𝑁+𝑗 [− (𝑐𝑗 +H𝑗) 󵄨󵄨󵄨󵄨󵄨E𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑁∑
𝑖=1

𝑑𝑗𝑖 󵄨󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡 − 󰜚𝑗𝑖)󵄨󵄨󵄨󵄨󵄨] + 𝑀∑
𝑗=1

𝜂𝑁+𝑗 𝑁∑
𝑖=1

𝑑𝑗𝑖 [󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨
− 󵄨󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡 − 󰜚𝑗𝑖)󵄨󵄨󵄨󵄨󵄨] + 𝑁∑

𝑖=1

𝜂𝑖 𝑀∑
𝑗=1

𝑏𝑖𝑗𝑙𝑗 [󵄨󵄨󵄨󵄨󵄨E𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
− 󵄨󵄨󵄨󵄨󵄨E𝑗 (𝑡 − 𝜌𝑖𝑗)󵄨󵄨󵄨󵄨󵄨] = − 𝑁∑

𝑖=1

𝜂𝑖 (𝑎𝑖 +K𝑖) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨
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− 𝑀∑
𝑗=1

𝜂𝑁+𝑗 (𝑐𝑗 +H𝑗) 󵄨󵄨󵄨󵄨󵄨E𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 + 𝑀∑
𝑗=1

𝜂𝑁+𝑗 𝑁∑
𝑖=1

𝑑𝑗𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨
+ 𝑁∑
𝑖=1

𝜂𝑖 𝑀∑
𝑗=1

𝑏𝑖𝑗𝑙𝑗 󵄨󵄨󵄨󵄨󵄨E𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 = 𝑁∑
𝑖=1

[[−𝜂𝑖 (𝑎𝑖 +K𝑖)
+ 𝑀∑
𝑗=1

𝜂𝑁+𝑗𝑑𝑗𝑖]] 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑀∑
𝑗=1

[−𝜂𝑁+𝑗 (𝑐𝑗 +H𝑗)
+ 𝑁∑
𝑖=1

𝜂𝑖𝑏𝑖𝑗𝑙𝑗] 󵄨󵄨󵄨󵄨󵄨E𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ −𝜗[[ 𝑁∑𝑖=1 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨+ 𝑀∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨E𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨]] .
(36)

By Lyapunov global asymptotic stability theory, we can
conclude that system (28) is globally asymptotically stable.
Thus, the response system (24) can be globally asymptotically
synchronized with the drive system (1). The proof is com-
pleted.

Next we extendTheorem 9 to other possible cases.

Corollary 10. The zero solution of system (28) is globally
asymptotically stable; that is, the response system (24) can be
globally asymptotically synchronized with the drive system (1),
if 𝑎𝑖 +K𝑖 > 𝑀∑

𝑗=1

𝑑𝑗𝑖, for 𝑖 = 1, 2, . . . , 𝑁,
𝑐𝑗 +H𝑗 > 𝑁∑

𝑖=1

𝑏̃𝑖𝑗𝑙𝑗, for 𝑗 = 1, 2, . . . ,𝑀. (37)

Proof. Select the (𝑁 + 𝑀)-dimensional unit vector as 𝜂 in
the proof of Theorem 9, from (37), it follows that (32) hold.
Therefore, the conclusion of Corollary 10 is obvious.

Corollary 11. When𝑀 = 𝑁, the zero solution of system (28)
is globally asymptotically stable; that is, the response system
(24) can be globally asymptotically synchronized with the drive
system (1), if the matrix

W = AC −DB (38)

is a nonsingular 𝑀-matrix, where A = diag(𝑎1 + K1, 𝑎2 +
K2, . . . , 𝑎𝑁 +K𝑁), B = (𝑏̃𝑖𝑗𝑙𝑗)𝑁×𝑀, C = diag(𝑐1 +H1, 𝑐2 +
H2, . . . , 𝑐𝑀 +H𝑀), andD = (𝑑𝑗𝑖)𝑀×𝑁.
Proof. The proof is a direct result of Theorem 9.

Remark 12. Theorem 9 and Corollaries 10 and 11 show the
feasibility of linear feedback scheme for designing a perfect
control in memristive regulatory-type networks, and the suf-
ficient conditions only depend on some system parameters,
which are easy to be checked.

Remark 13. Compared with many other control strategies,
linear feedback scheme is more suitable for implementation
in memristive regulatory-type networks. For one thing, tran-
sient states are quite prevalent in memristive regulatory-type
networks; that is, state-dependent jump abruptly spikes up
or down with uncertainty. For another thing, linear feedback
scheme itself is relatively cheaper and simpler to operate. It
is more reasonable and implementable for linear feedback
scheme only carried out at finite gain and bandwidth.

Remark 14. The asymptotic synchronization strategy con-
tains more general synchronization behaviors. Through the
node cluster, asymptotic synchronization in each group can
achieve complete synchronization.

4. Illustrative Examples

In this section, we discuss two numerical examples to illus-
trate the theoretical results.

Example 1. Consider the following memristive regulatory-
type networks:

𝑝̇𝑖 (𝑡) = −𝑝𝑖 (𝑡) + 2∑
𝑗=1

𝑏𝑖𝑗 (𝑞𝑗 (𝑡)) 𝑓𝑗 (𝑞𝑗 (𝑡 − 0.1)) ,
𝑞̇𝑗 (𝑡) = −𝑞𝑗 (𝑡) + 3∑

𝑖=1

0.2𝑝𝑖 (𝑡 − 0.3) , (39)

where 𝑖 = 1, 2, 3, 𝑗 = 1, 2, 𝑓𝑗(]) = (|] + 1| − |] − 1|)/2,
𝑏𝑖𝑗 (𝑞𝑗 (𝑡)) = {{{0.3, 𝑞𝑗 (𝑡) < 0,−0.3, 𝑞𝑗 (𝑡) > 0, 𝑖 = 1, 2, 3, 𝑗 = 1, 2. (40)

Obviously, we can calculate that

A = (1 0 00 1 00 0 1)
3×3

,
−B = (−0.3 −0.3−0.3 −0.3−0.3 −0.3)

3×2

,
C = (1 00 1)

2×2

,
−D = (−0.2 −0.2 −0.2−0.2 −0.2 −0.2)

2×3

,
(41)
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Figure 1: Transient behaviors of system (39).

and then

W = ( 1 0 0 −0.3 −0.30 1 0 −0.3 −0.30 0 1 −0.3 −0.3−0.2 −0.2 −0.2 1 0−0.2 −0.2 −0.2 0 1 )
5×5

, (42)

and the eigenvalues of matrix W are 0.4, 1, 1, 1, and 1.6;
thus the matrix W is a nonsingular𝑀-matrix. According to
Theorem 6, system (39) is globally asymptotically stable.

The simulation results of system (39) with some initial
values are depicted in Figures 1 and 2. Based on the dynamical
evolutions in Figures 1 and 2, we can see that the experimental
results agree with the theory very well.
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Figure 2: Phase portraits of system (39) in the three-dimensional space.

Example 2. Consider the following memristive regulatory-
type networks:𝑝̇𝑖 (𝑡) = −0.2𝑝𝑖 (𝑡) + 2∑

𝑗=1

𝑏𝑖𝑗 (𝑞𝑗 (𝑡)) 𝑓𝑗 (𝑞𝑗 (𝑡 − 0.1)) ,
𝑞̇𝑗 (𝑡) = −0.2𝑞𝑗 (𝑡) + 3∑

𝑖=1

0.2𝑝𝑖 (𝑡 − 0.3) , (43)

where 𝑖 = 1, 2, 3, 𝑗 = 1, 2, 𝑓𝑗(]) = (|] + 1| − |] − 1|)/2,
𝑏𝑖𝑗 (𝑞𝑗 (𝑡)) = {{{0.3, 𝑞𝑗 (𝑡) < 0,−0.3, 𝑞𝑗 (𝑡) > 0, 𝑖 = 1, 2, 3, 𝑗 = 1, 2. (44)
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Figure 3:The error dynamics 𝑒1(𝑡) = 𝑝1(𝑡)−P1(𝑡), 𝑒2(𝑡) = 𝑝2(𝑡)−P2(𝑡), 𝑒3(𝑡) = 𝑝3(𝑡)−P3(𝑡), 𝑒4(𝑡) = 𝑞1(𝑡)−Q1(𝑡), and 𝑒5(𝑡) = 𝑞2(𝑡)−Q2(𝑡).
Let (43) be the drive system. The response system is

described by

Ṗ𝑖 (𝑡) = −0.2P𝑖 (𝑡) + 2∑
𝑗=1

𝑏𝑖𝑗 (Q𝑗 (𝑡)) 𝑓𝑗 (Q𝑗 (𝑡 − 0.1))+U𝑖 (𝑡) ,
Q̇𝑗 (𝑡) = −0.2Q𝑗 (𝑡) + 3∑

𝑖=1

0.2P𝑖 (𝑡 − 0.3) +V𝑗 (𝑡) ,
(45)

where 𝑖 = 1, 2, 3, 𝑗 = 1, 2, 𝑓𝑗(]) = (|] + 1| − |] − 1|)/2,𝑏𝑖𝑗 (Q𝑗 (𝑡)) = {0.3, Q𝑗 (𝑡) < 0,−0.3, Q𝑗 (𝑡) > 0, 𝑖 = 1, 2, 3, 𝑗 = 1, 2. (46)

The controllers U𝑖(𝑡), V𝑗(𝑡), 𝑖 = 1, 2, 3, 𝑗 = 1, 2, are
designed as follows:

U𝑖 (𝑡) = 0.8 (𝑝𝑖 (𝑡) −P𝑖 (𝑡)) ,
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V𝑗 (𝑡) = 0.8 (𝑞𝑗 (𝑡) − Q𝑗 (𝑡)) ,
(47)

and to apply Theorem 9, then we can calculate that

A = (1 0 00 1 00 0 1)
3×3

,
−B = (−0.3 −0.3−0.3 −0.3−0.3 −0.3)

3×2

,
C = (1 00 1)

2×2

,
−D = (−0.2 −0.2 −0.2−0.2 −0.2 −0.2)

2×3

,
(48)

and then

W = ((
(

1 0 0 −0.3 −0.30 1 0 −0.3 −0.30 0 1 −0.3 −0.3−0.2 −0.2 −0.2 1 0−0.2 −0.2 −0.2 0 1
))
)5×5

, (49)

and the eigenvalues of matrix W are 0.4, 1, 1, 1, and 1.6;
thus the matrix W is a nonsingular 𝑀-matrix. According
to Theorem 9, the response system (45) can be globally
asymptotically synchronized with the drive system (43). The
simulation result on the error dynamics 𝑒1(𝑡) = 𝑝1(𝑡)−P1(𝑡),𝑒2(𝑡) = 𝑝2(𝑡) − P2(𝑡), 𝑒3(𝑡) = 𝑝3(𝑡) − P3(𝑡), 𝑒4(𝑡) = 𝑞1(𝑡) −
Q1(𝑡), and 𝑒5(𝑡) = 𝑞2(𝑡) − Q2(𝑡), with some initial values, is
depicted in Figure 3. The dynamical evolutions in Figure 3
clearly indicate that the controller designed performs well.

5. Conclusion

Memristive network can achievemore expedient goal-finding
behavior in spiking networks via memristive connections,
which has aroused considerable interest by electronics
researchers.The practical applications ofmemristive network
popularizes real-time processing and recognition of natural
signals. It is of great significance to investigate its nonlinear
dynamics. In this paper, we study global asymptotic stabil-
ity and global asymptotic synchronization for memristive
regulatory-type networks, based on the 𝑀-matrix theory
and Lyapunov stability theory. These criteria, which can
be directly derived from the system parameters, are easily
verified. The theoretical results developed in this paper may
be applied to the synthesis of memristive regulatory-type
networks.
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