3,762 research outputs found

    A New Chaotic System with a Pear-shaped Equilibrium and its Circuit Simulation

    Get PDF
    This paper reports the finding a new chaotic system with a pear-shaped equilibrium curve and makes a valuable addition to existing chaotic systems with infinite equilibrium points in the literature. The new chaotic system has a total of five nonlinearities. Lyapunov exponents of the new chaotic system are studied for verifying chaos properties and phase portraits of the new system are unveiled. An electronic circuit simulation of the new chaotic system with pear-shaped equilibrium curve is shown using Multisim to check the model feasibility

    Hybrid Synchronization of the Generalized Lotka-Volterra Three-Species Biological Systems via Adaptive Control

    Get PDF
    Abstract: Since the recent research has shown the importance of biological control in many biological systems appearing in nature, this research paper investigates research in the dynamic and chaotic analysis of the generalized Lotka-Volterra three-species biological system, which was studied b

    Hybrid Chaos Synchronization of 3-Cells Cellular Neural Network Attractors via Adaptive Control Method

    Get PDF
    Abstract: In this research work, we first discuss the properties of the 3-cells cellular neural network (CNN) attractor discovered b

    Dynamic system with no equilibrium and its chaos anti-synchronization

    Get PDF
    Recently, systems with chaos and the absence of equilibria have received a great deal of attention. In our work, a simple five-term system and its anti-synchronization are presented. It is special that the system has a hyperbolic sine nonlinearity and no equilibrium. Such a system generates chaotic behaviours, which are verified by phase portraits, positive Lyapunov exponent as well as an electronic circuit. Moreover, the system displays multistable characteristic when changing its initial conditions. By constructing an adaptive control, chaos anti-synchronization of the system with no equilibrium is obtained and illustrated via a numerical example

    Multi-objective Active Control Policy Design for Commensurate and Incommensurate Fractional Order Chaotic Financial Systems

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.In this paper, an active control policy design for a fractional order (FO) financial system is attempted, considering multiple conflicting objectives. An active control template as a nonlinear state feedback mechanism is developed and the controller gains are chosen within a multi-objective optimization (MOO) framework to satisfy the conditions of asymptotic stability, derived analytically. The MOO gives a set of solutions on the Pareto optimal front for the multiple conflicting objectives that are considered. It is shown that there is a trade-off between the multiple design objectives and a better performance in one objective can only be obtained at the cost of performance deterioration in the other objectives. The multi-objective controller design has been compared using three different MOO techniques viz. Non Dominated Sorting Genetic Algorithm-II (NSGA-II), epsilon variable Multi-Objective Genetic Algorithm (ev-MOGA), and Multi Objective Evolutionary Algorithm with Decomposition (MOEA/D). The robustness of the same control policy designed with the nominal system settings have been investigated also for gradual decrease in the commensurate and incommensurate fractional orders of the financial system

    A New Chaotic System with Line of Equilibria: Dynamics, Passive Control and Circuit Design

    Get PDF
    A new chaotic system with line equilibrium is introduced in this paper. This system consists of five terms with two transcendental nonlinearities and two quadratic nonlinearities. Various tools of dynamical system such as phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, bifurcation diagram and Poincarè map are used. It is interesting that this system has a line of fixed points and can display chaotic attractors. Next, this paper discusses control using passive control method. One example is given to insure the theoretical analysis. Finally, for the  new chaotic system, An electronic circuit for realizing the chaotic system has been implemented. The numerical simulation by using MATLAB 2010 and implementation of circuit simulations by using MultiSIM 10.0 have been performed in this study

    Advanced Mathematics and Computational Applications in Control Systems Engineering

    Get PDF
    Control system engineering is a multidisciplinary discipline that applies automatic control theory to design systems with desired behaviors in control environments. Automatic control theory has played a vital role in the advancement of engineering and science. It has become an essential and integral part of modern industrial and manufacturing processes. Today, the requirements for control precision have increased, and real systems have become more complex. In control engineering and all other engineering disciplines, the impact of advanced mathematical and computational methods is rapidly increasing. Advanced mathematical methods are needed because real-world control systems need to comply with several conditions related to product quality and safety constraints that have to be taken into account in the problem formulation. Conversely, the increment in mathematical complexity has an impact on the computational aspects related to numerical simulation and practical implementation of the algorithms, where a balance must also be maintained between implementation costs and the performance of the control system. This book is a comprehensive set of articles reflecting recent advances in developing and applying advanced mathematics and computational applications in control system engineering

    On new chaotic and hyperchaotic systems: A literature survey

    Get PDF
    This paper provides a thorough survey of new chaotic and hyperchaotic systems. An analysis of the dynamic behavior of these complex systems is presented by pointing out their originality and elementary characteristics. Recently, such systems have been increasingly used in various fields such as secure communication, encryption and finance and so on. In practice, each field requires specific performances with peculiar complexity. A particular classification is then proposed in this paper based on the Lyapunov exponent, the equilibriums points and the attractor forms

    Synchronization and application of delay-coupled semiconductor lasers

    Get PDF
    The work in this thesis is focused on the complex dynamics of semiconductor laser (SL) devices which receive time-delayed feedback from an external cavity or are delay-coupled with a second semiconductor laser. We investigate fundamental properties of the dynamics and study the utilization of transient complex dynamics of a single SL arising from delayed feedback and external signal injection for a neuro-inspired photonic data processing scheme. Based on experiments and numerical modelling, we investigate systems of two coupled SLs, gaining insights into the role of laser and coupling parameters for the synchronization characteristics of these systems. We link certain features of the synchronization dynamics, like intermittent desynchronization events, to the underlying nonlinear dynamics in the coupled laser system. Our research thus combines both fundamental insights into delay-coupled lasers as well as novel application perspectives

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF
    corecore