135 research outputs found

    Forest Aboveground Biomass Estimation Using Multi-Source Remote Sensing Data in Temperate Forests

    Get PDF
    Forests are a crucial part of global ecosystems. Accurately estimating aboveground biomass (AGB) is important in many applications including monitoring carbon stocks, investigating forest degradation, and designing sustainable forest management strategies. Remote sensing techniques have proved to be a cost-effective way to estimate forest AGB with timely and repeated observations. This dissertation investigated the use of multiple remotely sensed datasets for forest AGB estimation in temperate forests. We compared the performance of Landsat and lidar data—individually and fused—for estimating AGB using multiple regression models (MLR), Random Forest (RF) and Geographically Weight Regression (GWR). Our approach showed MLR performed similarly to GWR and both were better than RF. Integration of lidar and Landsat inputs outperformed either data source alone. However, although lidar provides valuable three-dimensional forest structure information, acquiring comprehensive lidar coverage is often cost prohibitive. Thus we developed a lidar sampling framework to support AGB estimation from Landsat images. We compared two sampling strategies—systematic and classification-based—and found that the systematic sampling selection method was highly dependent on site conditions and had higher model variability. The classification-based lidar sampling strategy was easy to apply and provides a framework that is readily transferable to new study sites. The performance of Sentinel-2 and Landsat 8 data for quantifying AGB in a temperate forest using RF regression was also tested. We modeled AGB using three datasets: Sentinel-2, Landsat 8, and a pseudo dataset that retained the spatial resolution of Sentinel-2 but only the spectral bands that matched those on Landsat 8. We found that while RF model parameters impact model outcomes, it is more important to focus attention on variable selection. Our results showed that the incorporation of red-edge information increased AGB estimation accuracy by approximately 6%. The additional spatial resolution improved accuracy by approximately 3%. The variable importance ranks in the RF regression model showed that in addition to the red- edge bands, the shortwave infrared bands were important either individually (in the Sentinel-2 model) or in band indices. With the growing availability of remote sensing datasets, developing tools to appropriately and efficiently apply remote sensing data is increasingly important

    Airborne Lidar Sampling Strategies to Enhance Forest Aboveground Biomass Estimation from Landsat Imagery

    Get PDF
    Accurately estimating aboveground biomass (AGB) is important in many applications, including monitoring carbon stocks, investigating deforestation and forest degradation, and designing sustainable forest management strategies. Although lidar provides critical three-dimensional forest structure information for estimating AGB, acquiring comprehensive lidar coverage is often cost prohibitive. This research focused on developing a lidar sampling framework to support AGB estimation from Landsat images. Two sampling strategies, systematic and classification-based, were tested and compared. The proposed strategies were implemented over a temperate forest study site in northern New York State and the processes were then validated at a similar site located in central New York State. Our results demonstrated that while the inclusion of lidar data using systematic or classification-based sampling supports AGB estimation, the systematic sampling selection method was highly dependent on site conditions and had higher accuracy variability. Of the 12 systematic sampling plans, R-2 values ranged from 0.14 to 0.41 and plot root mean square error (RMSE) ranged from 84.2 to 93.9 Mg ha(-1). The classification-based sampling outperformed 75% of the systematic sampling strategies at the primary site with R-2 of 0.26 and RMSE of 70.1 Mg ha(-1). The classification-based lidar sampling strategy was relatively easy to apply and was readily transferable to a new study site. Adopting this method at the validation site, the classification-based sampling also worked effectively, with an R-2 of 0.40 and an RMSE of 108.2 Mg ha(-1) compared to the full lidar coverage model with an R-2 of 0.58 and an RMSE of 96.0 Mg ha(-1). This study evaluated different lidar sample selection methods to identify an efficient and effective approach to reduce the volume and cost of lidar acquisitions. The forest type classification-based sampling method described in this study could facilitate cost-effective lidar data collection in future studies

    The global tree carrying capacity (keynote)

    Full text link
    editorial reviewe

    Evaluation of the MODIS LAI product using independent lidar-derived LAI: A case study in mixed conifer forest

    Get PDF
    This study presents an alternative assessment of the MODIS LAI product for a 58,000 ha evergreen needleleaf forest located in the western Rocky Mountain range in northern Idaho by using lidar data to model (R2=0.86, RMSE=0.76) and map LAI at higher resolution across a large number of MODIS pixels in their entirety. Moderate resolution (30 m) lidar-based LAI estimates were aggregated to the resolution of the 1-km MODIS LAI product and compared to temporally-coincident MODIS retrievals. Differences in the MODIS and lidar-derived values of LAI were grouped and analyzed by several different factors, including MODIS retrieval algorithm, sun/sensor geometry, and sub-pixel heterogeneity in both vegetation and terrain characteristics. Of particular interest is the disparity in the results when MODIS LAI was analyzed according to algorithm retrieval class. We observed relatively good agreement between lidar-derived and MODIS LAI values for pixels retrieved with the main RT algorithm without saturation for LAI LAI≤4. Moreover, for the entire range of LAI values, considerable overestimation of LAI (relative to lidar-derived LAI) occurred when either the main RT with saturation or back-up algorithm retrievals were used to populate the composite product regardless of sub-pixel vegetation structural complexity or sun/sensor geometry. These results are significant because algorithm retrievals based on the main radiative transfer algorithm with or without saturation are characterized as suitable for validation and subsequent ecosystem modeling, yet the magnitude of difference appears to be specific to retrieval quality class and vegetation structural characteristics

    3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function

    Get PDF
    Dear Colleagues, The composition, structure and function of forest ecosystems are the key features characterizing their ecological properties, and can thus be crucially shaped and changed by various biotic and abiotic factors on multiple spatial scales. The magnitude and extent of these changes in recent decades calls for enhanced mitigation and adaption measures. Remote sensing data and methods are the main complementary sources of up-to-date synoptic and objective information of forest ecology. Due to the inherent 3D nature of forest ecosystems, the analysis of 3D sources of remote sensing data is considered to be most appropriate for recreating the forest’s compositional, structural and functional dynamics. In this Special Issue of Forests, we published a set of state-of-the-art scientific works including experimental studies, methodological developments and model validations, all dealing with the general topic of 3D remote sensing-assisted applications in forest ecology. We showed applications in forest ecology from a broad collection of method and sensor combinations, including fusion schemes. All in all, the studies and their focuses are as broad as a forest’s ecology or the field of remote sensing and, thus, reflect the very diverse usages and directions toward which future research and practice will be directed

    Remote sensing technology applications in forestry and REDD+

    Get PDF
    Advances in close-range and remote sensing technologies are driving innovations in forest resource assessments and monitoring on varying scales. Data acquired with airborne and spaceborne platforms provide high(er) spatial resolution, more frequent coverage, and more spectral information. Recent developments in ground-based sensors have advanced 3D measurements, low-cost permanent systems, and community-based monitoring of forests. The UNFCCC REDD+ mechanism has advanced the remote sensing community and the development of forest geospatial products that can be used by countries for the international reporting and national forest monitoring. However, an urgent need remains to better understand the options and limitations of remote and close-range sensing techniques in the field of forest degradation and forest change. Therefore, we invite scientists working on remote sensing technologies, close-range sensing, and field data to contribute to this Special Issue. Topics of interest include: (1) novel remote sensing applications that can meet the needs of forest resource information and REDD+ MRV, (2) case studies of applying remote sensing data for REDD+ MRV, (3) timeseries algorithms and methodologies for forest resource assessment on different spatial scales varying from the tree to the national level, and (4) novel close-range sensing applications that can support sustainable forestry and REDD+ MRV. We particularly welcome submissions on data fusion

    Assesment of biomass and carbon dynamics in pine forests of the Spanish central range: A remote sensing approach

    Get PDF
    Forests play a dynamic role in the terrestrial carbon (C) budget, by means of the biomass stock and C fluxes involved in photosynthesis and respiration. Remote sensing in combination with data analysis constitute a practical means for evaluation of forest implications in the carbon cycle, providing spatially explicit estimations of the amount, quality, and spatio-temporal dynamics of biomass and C stocks. Medium and high spatial resolution optical data from satellite-borne sensors were employed, supported by field measures, to investigate the carbon role of Mediterranean pines in the Central Range of Spain during a 25 year period (1984-2009). The location, extent, and distribution of pine forests were characterized, and spatial changes occurred in three sub-periods were evaluated. Capitalizing on temporal series of spectral data from Landsat sensors, novel techniques for processing and data analysis were developed to identify successional processes at the landscape level, and to characterize carbon stocking condition locally, enabling simultaneous characterization of trends and patterns of change. High spatial resolution data captured by the commercial satellite QuickBird-2 were employed to model structural attributes at the stand level, and to explore forest structural diversity

    QUANTIFYING GRASSLAND NON-PHOTOSYNTHETIC VEGETATION BIOMASS USING REMOTE SENSING DATA

    Get PDF
    Non-photosynthetic vegetation (NPV) refers to vegetation that cannot perform a photosynthetic function. NPV, including standing dead vegetation and surface plant litter, plays a vital role in maintaining ecosystem function through controlling carbon, water and nutrient uptake as well as natural fire frequency and intensity in diverse ecosystems such as forest, savannah, wetland, cropland, and grassland. Due to its ecological importance, NPV has been selected as an indicator of grassland ecosystem health by the Alberta Public Lands Administration in Canada. The ecological importance of NPV has driven considerable research on quantifying NPV biomass with remote sensing approaches in various ecosystems. Although remote images, especially hyperspectral images, have demonstrated potential for use in NPV estimation, there has not been a way to quantify NPV biomass in semiarid grasslands where NPV biomass is affected by green vegetation (PV), bare soil and biological soil crust (BSC). The purpose of this research is to find a solution to quantitatively estimate NPV biomass with remote sensing approaches in semiarid mixed grasslands. Research was conducted in Grasslands National Park (GNP), a parcel of semiarid mixed prairie grassland in southern Saskatchewan, Canada. Multispectral images, including newly operational Landsat 8 Operational Land Imager (OLI) and Sentinel-2A Multi-spectral Instrument (MSIs) images and fine Quad-pol Radarsat-2 images were used for estimating NPV biomass in early, middle, and peak growing seasons via a simple linear regression approach. The results indicate that multispectral Landsat 8 OLI and Sentinel-2A MSIs have potential to quantify NPV biomass in peak and early senescence growing seasons. Radarsat-2 can also provide a solution for NPV biomass estimation. However, the performance of Radarsat-2 images is greatly affected by incidence angle of the image acquisition. This research filled a critical gap in applying remote sensing approaches to quantify NPV biomass in grassland ecosystems. NPV biomass estimates and approaches for estimating NPV biomass will contribute to grassland ecosystem health assessment (EHA) and natural resource (i.e. land, soil, water, plant, and animal) management

    Remote Sensing of Plant Biodiversity

    Get PDF
    This Open Access volume aims to methodologically improve our understanding of biodiversity by linking disciplines that incorporate remote sensing, and uniting data and perspectives in the fields of biology, landscape ecology, and geography. The book provides a framework for how biodiversity can be detected and evaluated—focusing particularly on plants—using proximal and remotely sensed hyperspectral data and other tools such as LiDAR. The volume, whose chapters bring together a large cross-section of the biodiversity community engaged in these methods, attempts to establish a common language across disciplines for understanding and implementing remote sensing of biodiversity across scales. The first part of the book offers a potential basis for remote detection of biodiversity. An overview of the nature of biodiversity is described, along with ways for determining traits of plant biodiversity through spectral analyses across spatial scales and linking spectral data to the tree of life. The second part details what can be detected spectrally and remotely. Specific instrumentation and technologies are described, as well as the technical challenges of detection and data synthesis, collection and processing. The third part discusses spatial resolution and integration across scales and ends with a vision for developing a global biodiversity monitoring system. Topics include spectral and functional variation across habitats and biomes, biodiversity variables for global scale assessment, and the prospects and pitfalls in remote sensing of biodiversity at the global scale
    corecore