640 research outputs found

    A SCAN-TO-BIM Workflow proposal for cultural heritage. Automatic point cloud segmentation and parametric-adaptive modelling of vaulted systems

    Get PDF
    Abstract. Cultural Heritage has been significantly impacted by advancements in the Information and Communications Technology domains, which have inspired a strong multidisciplinary interest and enabled the development of innovative strategies for the preservation, management, and enhancement of the heritage itself. Notably, the digitisation process, which entails the acquisition of 3D data obtained through cutting-edge LiDAR and photogrammetric scanning techniques, is set up as an advantageous tool for producing an accurate representation of the historical buildings. In addition, point clouds and reliable HBIM models have caught the minds of the architectural community, and are now receiving huge backing from Artificial Intelligence. Such support is provided by procedures that link semantic features to structural and decorative elements. In this scenario, the following research is presented: the aim is to test an automated iterative process within a scan-to-BIM methodology, starting from automatic point cloud segmentation operations with open-source, model-fitting algorithms. This method will prove to be a solid support for the final phase of the 3D parametric/adaptive reconstruction that’s also compatible with BIM Authoring. The study focuses on various masonry vaulted systems. These types of structures are first examined using ideal models, which were perfectly discretised and set up by the user, and then employed as a starting point for validating the parameters of the RANSAC algorithm on point clouds acquired by laser scanners. These latter ones nevertheless have irregular geometries, making comprehension, analysis, and management far more challenging

    Consistent Density Scanning and Information Extraction From Point Clouds of Building Interiors

    Get PDF
    Over the last decade, 3D range scanning systems have improved considerably enabling the designers to capture large and complex domains such as building interiors. The captured point cloud is processed to extract specific Building Information Models, where the main research challenge is to simultaneously handle huge and cohesive point clouds representing multiple objects, occluded features and vast geometric diversity. These domain characteristics increase the data complexities and thus make it difficult to extract accurate information models from the captured point clouds. The research work presented in this thesis improves the information extraction pipeline with the development of novel algorithms for consistent density scanning and information extraction automation for building interiors. A restricted density-based, scan planning methodology computes the number of scans to cover large linear domains while ensuring desired data density and reducing rigorous post-processing of data sets. The research work further develops effective algorithms to transform the captured data into information models in terms of domain features (layouts), meaningful data clusters (segmented data) and specific shape attributes (occluded boundaries) having better practical utility. Initially, a direct point-based simplification and layout extraction algorithm is presented that can handle the cohesive point clouds by adaptive simplification and an accurate layout extraction approach without generating an intermediate model. Further, three information extraction algorithms are presented that transforms point clouds into meaningful clusters. The novelty of these algorithms lies in the fact that they work directly on point clouds by exploiting their inherent characteristic. First a rapid data clustering algorithm is presented to quickly identify objects in the scanned scene using a robust hue, saturation and value (H S V) color model for better scene understanding. A hierarchical clustering algorithm is developed to handle the vast geometric diversity ranging from planar walls to complex freeform objects. The shape adaptive parameters help to segment planar as well as complex interiors whereas combining color and geometry based segmentation criterion improves clustering reliability and identifies unique clusters from geometrically similar regions. Finally, a progressive scan line based, side-ratio constraint algorithm is presented to identify occluded boundary data points by investigating their spatial discontinuity

    3D indoor scene modeling from RGB-D data: a survey

    Get PDF
    3D scene modeling has long been a fundamental problem in computer graphics and computer vision. With the popularity of consumer-level RGB-D cameras, there is a growing interest in digitizing real-world indoor 3D scenes. However, modeling indoor 3D scenes remains a challenging problem because of the complex structure of interior objects and poor quality of RGB-D data acquired by consumer-level sensors. Various methods have been proposed to tackle these challenges. In this survey, we provide an overview of recent advances in indoor scene modeling techniques, as well as public datasets and code libraries which can facilitate experiments and evaluation

    VISUAL SEMANTIC SEGMENTATION AND ITS APPLICATIONS

    Get PDF
    This dissertation addresses the difficulties of semantic segmentation when dealing with an extensive collection of images and 3D point clouds. Due to the ubiquity of digital cameras that help capture the world around us, as well as the advanced scanning techniques that are able to record 3D replicas of real cities, the sheer amount of visual data available presents many opportunities for both academic research and industrial applications. But the mere quantity of data also poses a tremendous challenge. In particular, the problem of distilling useful information from such a large repository of visual data has attracted ongoing interests in the fields of computer vision and data mining. Structural Semantics are fundamental to understanding both natural and man-made objects. Buildings, for example, are like languages in that they are made up of repeated structures or patterns that can be captured in images. In order to find these recurring patterns in images, I present an unsupervised frequent visual pattern mining approach that goes beyond co-location to identify spatially coherent visual patterns, regardless of their shape, size, locations and orientation. First, my approach categorizes visual items from scale-invariant image primitives with similar appearance using a suite of polynomial-time algorithms that have been designed to identify consistent structural associations among visual items, representing frequent visual patterns. After detecting repetitive image patterns, I use unsupervised and automatic segmentation of the identified patterns to generate more semantically meaningful representations. The underlying assumption is that pixels capturing the same portion of image patterns are visually consistent, while pixels that come from different backdrops are usually inconsistent. I further extend this approach to perform automatic segmentation of foreground objects from an Internet photo collection of landmark locations. New scanning technologies have successfully advanced the digital acquisition of large-scale urban landscapes. In addressing semantic segmentation and reconstruction of this data using LiDAR point clouds and geo-registered images of large-scale residential areas, I develop a complete system that simultaneously uses classification and segmentation methods to first identify different object categories and then apply category-specific reconstruction techniques to create visually pleasing and complete scene models

    Single-tree detection in high-density LiDAR data from UAV-based survey

    Get PDF
    UAV-based LiDAR survey provides very-high-density point clouds, which involve very rich information about forest detailed structure, allowing for detection of individual trees, as well as demanding high computational load. Single-tree detection is of great interest for forest management and ecology purposes, and the task is relatively well solved for forests made of single or largely dominant species, and trees having a very evident pointed shape in the upper part of the canopy (in particular conifers). Most authors proposed methods based totally or partially on search of local maxima in the canopy, which has poor performance for species that have flat or irregular upper canopy, and for mixed forests, especially where taller trees hide smaller ones. Such considerations apply in particular to Mediterranean hardwood forests. In such context, it is imperative to use the whole volume of the point cloud, however keeping computational load tractable. The authors propose the use of a methodology based on modelling the 3D-shape of the tree, which improves performance w.r.t to maxima-based models. A case study, performed on a hazel grove, is provided to document performance improvement on a relatively simple, but significant, case

    Automatic alignment of piping system components and generation of CAD models of industrial site plants

    Get PDF
    The ability to (semi-)automatically obtain CAD models from physical installations has two important benefits: (i) it can be used to identify, as soon as possible during a con struction process, any deviations from the original designs; and (ii) it can be used to document complex installations for which CAD representations are outdated or inexis tent. Both scenarios have important practical and economic value. An ongoing project in our research group aims to reconstruct CAD representations from point clouds of in dustrial sites. However, pose estimation of pipes and piping system components is not perfect, resulting in misalignments in the reconstructed scene, which is unacceptable for a CAD model. For this undergraduate thesis, I propose to use optimization techniques to fix these misalignments. I also propose to convert the detected pipes and piping system components into actual CAD model representations for a popular commercial CAD soft ware, namely AutoCAD Plant 3D

    Current State of the Art Historic Building Information Modelling

    Get PDF
    In an extensive review of existing literature a number of observations were made in relation to the current approaches for recording and modelling existing buildings and environments: Data collection and pre-processing techniques are becoming increasingly automated to allow for near real-time data capture and fast processing of this data for later modelling applications. Current BIM software is almost completely focused on new buildings and has very limited tools and pre-defined libraries for modelling existing and historic buildings. The development of reusable parametric library objects for existing and historic buildings supports modelling with high levels of detail while decreasing the modelling time. Mapping these parametric objects to survey data, however, is still a time-consuming task that requires further research. Promising developments have been made towards automatic object recognition and feature extraction from point clouds for as-built BIM. However, results are currently limited to simple and planar features. Further work is required for automatic accurate and reliable reconstruction of complex geometries from point cloud data. Procedural modelling can provide an automated solution for generating 3D geometries but lacks the detail and accuracy required for most as-built applications in AEC and heritage fields

    Doctor of Philosophy

    Get PDF
    dissertationThree-dimensional (3D) models of industrial plant primitives are used extensively in modern asset design, management, and visualization systems. Such systems allow users to efficiently perform tasks in Computer Aided Design (CAD), life-cycle management, construction progress monitoring, virtual reality training, marketing walk-throughs, or other visualization. Thus, capturing industrial plant models has correspondingly become a rapidly growing industry. The purpose of this research was to demonstrate an efficient way to ascertain physical model parameters of reflectance properties of industrial plant primitives for use in CAD and 3D modeling visualization systems. The first part of this research outlines the sources of error corresponding to 3D models created from Light Detection and Ranging (LiDAR) point clouds. Fourier analysis exposes the error due to a LiDAR system's finite sampling rate. Taylor expansion illustrates the errors associated with linearization due to flat polygonal surfaces. Finally, a statistical analysis of the error associated with LiDar scanner hardware is presented. The second part of this research demonstrates a method for determining Phong specular and Oren-Nayar diffuse reflectance parameters for modeling and rendering pipes, the most ubiquitous form of industrial plant primitives. For specular reflectance, the Phong model is used. Estimates of specular and diffuse parameters of two ideal cylinders and one measured cylinder using brightness data acquired from a LiDAR scanner are presented. The estimated reflectance model of the measured cylinder has a mean relative error of 2.88% and a standard deviation of relative error of 4.0%. The final part of this research describes a method for determining specular, diffuse and color material properties and applies the method to seven pipes from an industrial plant. The colorless specular and diffuse properties were estimated by numerically inverting LiDAR brightness data. The color ambient and diffuse properties are estimated using k-means clustering. The colorless properties yielded estimated brightness values that are within an RMS of 3.4% with a maximum of 7.0% and a minimum of 1.6%. The estimated color properties effected an RMS residual of 13.2% with a maximum of 20.3% and a minimum of 9.1%

    Classification and information structure of the Terrestrial Laser Scanner: methodology for analyzing the registered data of Vila Vella, historic center of Tossa de Mar

    Get PDF
    This paper presents a methodology for an architectural survey, based on the Terrestrial Laser Scanning technology TLS, not as a simple measurement and representation work, but with the purpose understanding the projects being studied, starting from the analysis, as a process of distinction and separation of the parts of a whole, in order to know their principles or elements. As a case study we start from the Vila Vella recording, conducted by the City’s Virtual Modeling Laboratory in 2008, being taken up from the start, in relation to the registration, georeferencing, filtering and handling. Aimed at a later stage of decomposition and composition of data, in terms of floor plan and facades, using semiautomatic classification techniques, for the detection of vegetation as well as the relationship of the planes of the surfaces, leading to reorganize the information from 3D data to 2D and 2.5D, considering information management, as well as the characteristics of the case study presented, in the development of methods for the construction and exploitation of new databases, to be exploited by the Geographic Information Systems and Remote Sensing.Peer Reviewe
    • …
    corecore